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Abstract: This study investigated the milling of SiCp/Al composite materials using Polycrystalline
Diamond (PCD) tools under various machining conditions, including dry cutting conditions, su-
percritical carbon dioxide (SCCO2) conditions, supercritical carbon dioxide cooling with minimum
quantity lubrication (SCCO2-MQL) conditions, ultrasonic vibration conditions, and supercritical
carbon dioxide cooling with minimum quantity lubrication combined with ultrasonic vibration con-
ditions. The objective was to compare the surface roughness and morphology of the materials under
different machining conditions. Furthermore, under dry cutting conditions and SCCO2-MQL com-
bined with ultrasonic vibration, the effects of different milling parameters on the surface roughness
and morphology of SiCp/Al composite materials were investigated through a univariate experiment.
Microhardness tests were carried out on the machined workpieces to explore the influence of process
conditions and milling parameters on work hardening. The experimental results indicate that among
all the tested machining conditions, the SCCO2-MQL in combination with the ultrasonic vibration
process significantly reduced the surface roughness of the material. When the milling speed was
increased from 40 m/min to 120 m/min, both the surface roughness and the degree of work hard-
ening first increased and then decreased. As the feed rate or cutting depth increased, the degree of
work hardening also increased. Therefore, under SCCO2-MQL combined with ultrasonic vibration
conditions, it is recommended to use a milling speed of more than 60 m/min and avoid using high
feed rates and cutting depths in order to optimize the machining performance.

Keywords: SiCp/Al composites; SCCO2-MQL ultrasonic vibration; surface features; work hardening

1. Introduction

Metal matrix composites (MMCs) are composite materials that are prepared by incor-
porating ceramic materials as the reinforcing phase and metals such as aluminum, titanium,
magnesium, copper, and nickel as the matrix. Metal matrix composites (MMCs) have
attracted significant attention in recent years due to their versatile processing capabilities
and tailored properties for various practical requirements [1]. SiCp/Al composite material
is a new type of multiphase material that is prepared by incorporating SiC particles as
the reinforcing phase and combining them with ductile aluminum material through com-
plex preparation processes. One of the commonly used methods for preparing SiCp/Al
composites is powder metallurgy. The process is that the mixed powder is cold-pressed
and then sintered to achieve the composite [2]. Due to its lightweight and high specific
strength, SiCp/Al composite material has been widely used in the aerospace field [3,4].
In the field of optical precision instrument manufacturing, SiCp/Al composite material
is also considered a preferred choice [5]. Its low thermal expansion coefficient is highly
favored, and it has extensive applications in electronic packaging and thermal control
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components [6,7]. However, while enhancing the overall performance of the material,
this composite material also poses significant challenges to its processing. During the
machining process, the high-speed rotation of the tool generates a large amount of cutting
heat, which not only can alter the microstructural properties of the material but also lead to
significant tool wear [8,9]. Conventional flood cooling lubrication strategies are inefficient
in this process and environmentally unfriendly, especially considering the requirements for
green and efficient production within the framework of “Made in China 2025”. In response
to these issues, the concept of composite ultrasonic vibration-assisted machining under
supercritical carbon dioxide cooling with minimum quantity lubrication (SCCO2-MQL)
conditions has been proposed [10]. The unique properties provided by SiC particles in
SiCp/Al composite materials have sparked great interest in their machining characteristics
among researchers worldwide. Swastik Pradhan et al. used multi-layer coated hard alloy
inserts to machine SiCp/Al MMC with a volume fraction of 10%. The study found that
feed rate was the most important factor, followed by cutting speed and cutting depth [11].
Xingwen Wang studied ultrasonic vibration-assisted machining of SiCp/Al composite
materials and found that ultrasonic vibration resulted in high subsurface density and good
surface finish of the workpiece [12]. Mengfei Li et al. conducted end milling experiments
on SiCp/A356Al and found that under dry cutting conditions, fractured SiC particles
caused severe scratching on the surface, forming protrusions that were unfavorable for
obtaining a smooth surface [13]. Muthukrishnan used PCD tools to machine SiCp/Al
composite materials and investigated the generation of irregular-shaped built-up edges
on the tool surface when the cutting speed varied between 200 and 400 m/min; at higher
cutting speeds, the increase in tool wear on the rake face had a smaller impact on surface
roughness [14].

Some scholars have studied surface defects and surface morphology [15–17], and the
research shows that the interaction between particles and tools has great impact on the
machined surface morphology. Some brittle particles fracture in the cutting path, and
the residual part on the workpiece surface causes the surrounding matrix to produce
work hardening, reducing the surface integrity. Some particles are completely removed
from the surface of the workpiece, leaving holes and greatly reducing the surface quality.
These residues and voids are characterized by the formation of peaks and troughs on
the surface, resulting in obvious microscopic surface defects and surface damage. Ruxin
Shi from the Harbin University of Technology conducted end milling experiments on
SiCp/6063Al under both low-temperature minimum quantity lubrication and dry condi-
tions, and the results show that low-temperature minimum quantity lubrication had good
lubrication effects and significantly reduced the strengthening effect of work hardening [18].
Chongyan Cai et al. found that in supercritical CO2-based minimum quantity lubrication
with oil-on-water droplet cutting fluid (SCCO2-OoWMQL) conditions, due to better cool-
ing, lubrication, and chip evacuation performance, the cutting forces, temperature, and
surface roughness were all minimized [19]. Chunzheng Duan of Dalian University of
Technology found that when milling SiCp/Al composites under SCCO2 conditions, the
shed SiC particles did not stay in the cutting zone, which reduced the friction between
SiC particles, the tool, and the machined surface. This is suitable as the preferred cooling
lubrication method for cutting SiCP/Al composites [20]. Quan et al. conducted turning
experiments on SiCp/Al composite materials under dry cutting conditions and found that
the maximum microhardness value was often not obtained on the surface of the specimen,
but on the subsurface. Additionally, the experimental data indicated that as the cutting
speed increased, the surface roughness of the specimen decreased [21].

It can be seen from the above that SCCO2 has an excellent cooling effect, MQL has
an excellent fluid flushing effect, and the cutting force is greatly reduced when milling
materials under ultrasonic vibration conditions. Therefore, on this basis, this paper will
mill SiCp/Al composite materials under dry cutting conditions, SCCO2, SCCO2-MQL,
ultrasonic vibration, and SCCO2-MQL combined with ultrasonic vibration conditions,
compare and analyze the results, and then conduct single-factor experiments under SCCO2-



Machines 2024, 12, 282 3 of 17

MQL composite ultrasonic vibration and dry cutting conditions. The effects of process
conditions and cutting factors on roughness and surface morphology were investigated.
On this basis, according to the microhardness of the machined workpiece, the influence
of process conditions and milling parameters on the work hardening of the material was
investigated. The purpose of this paper is to provide some reference for the subsequent
research on milling SiCp/Al composites under SCCO2-MQL composite ultrasonic vibration.

2. Experimental Equipment and Materials
2.1. Experimental Equipment

Milling experiments of SiCp/Al composite materials were all carried out on a VDL-
1000 three-axis vertical machining center, as shown in Figure 1. During the experiments,
supercritical carbon dioxide equipment was connected to the machine tool. The supercritical
carbon dioxide micro-lubrication equipment used Cry0lube-i0oW equipment produced by
Dongguan Anlin Machinery Manufacturing Technology Co., Ltd. (Dongguan, China) The
ultrasonic vibration system was produced by Kunshan Hengyou Yinda Machinery Technology
Co., Ltd. (Kunshan, China). Its cutting tool was the integral PCD micro-edge flat end milling
cutter produced by Huizhuan. The model number was φ8 × 2.5 × 45L × φ8-30F. The
ultrasonic vibration frequency used in the experiment was 27 khz, the amplitude was
7 µm, and the cutting oil content in SCCO2-MQL was 20 mL/h. The SCCO2 flow rate was
4 L/h. The MQL injection angle was 30◦. For the measurement of cutting force, we choose
the Kistier9253B23 model three-way piezoelectric dynamometer, a Kistier5070A charge
amplifier, and a PCIMDAS1602/16 data acquisition card.
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Figure 1. VDL-1000 three-axis vertical machining center.

2.2. Experimental Material

The volume fraction of SiC in the SiCp/Al composite material selected in this paper
was about 45%, the matrix was 6063DL31 forged aluminum alloy cuboid material, and
the diameter of the silicon carbide particle was about 5–10 µm. In order to facilitate the
experimental research of cutting, it was designed as a cuboid. The specific dimensions of
the material were 200 mm × 150 mm × 90 mm. Its microstructure is shown in Figure 2.
The composite material mainly consisted of the following elements: C, Mg, Al, Si, and Cu.
The chemical composition and content of these elements are shown in Table 1.
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Figure 2. Microstructure of SiCp/Al composites.

Table 1. Chemical compositions of SiCp/Al composite material.

Element Type C Mg Al Si Cu

Weight ratio (%) 9.43 0.51 43.13 45.13 1.80
Atomic ratio (%) 19.59 0.47 34.7 44.34 0.9

3. Influence of Process Conditions on Geometric Characteristics of Milling Surfaces of
SiCp/Al Composites
3.1. Experimental Planning

The effects of dry cutting conditions, SCCO2, SCCO2-MQL, ultrasonic vibration, and
SCCO2-MQL combined with ultrasonic vibration on the surface roughness and surface
topography of SiCp/Al composites were investigated, and a single-factor comparison
experiment was designed. The milling parameters were set as follows: feed rate f was
0.06 (mm/r), milling width ae was 8 (mm), and milling depth ap was 0.15 (mm). Based
on the above experimental conditions, the milling speed vc was used as the processing
variable, and five different parameter levels (40, 60, 80, 100, 120) m/min were established,
comprising a total of 25 experimental groups.

In the process of the cutting experiment, the TR-200 roughness instrument was used
to measure roughness, and 5 surface roughness parameters Ra at different positions on the
sample surface were taken. The average value was taken to calculate the surface roughness
value, as shown in Figure 3a. After the milling experiment was completed, the workpiece
was removed, and the surface roughness was accurately measured using a SuperView W1
white light interferometer to obtain the surface topography. The white light interferometer
is shown in Figure 3b.
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3.2. Analysis of the Influence of Process Conditions on Milling
3.2.1. The Effect of Process Conditions on the Surface Roughness of SiCp/Al Composite
Material Milling

Figure 4 illustrates the trend of the influence of different process conditions on the
surface roughness (Ra). The experimental results indicate that as the milling speed (vc)
increases, the surface roughness generally tends to decrease under all five different pro-
cess conditions. Specifically, under dry cutting conditions, the surface roughness of the
workpiece is the highest. Compared with dry cutting, the addition of supercritical carbon
dioxide reduces the surface roughness. This is because when CO2 is sprayed on the cutting
area through the nozzle at high pressure, the high-pressure CO2 will blow the chips away,
and the cutting area will cool down quickly and take away a lot of cutting heat so as to
further ensure the quality of the processed surface. Ultrasonic vibration is of great help to
the removal, pressing, and ejecting of SiC particles during material processing. Notably,
the lowest surface roughness values of the machined material were achieved under the
combined condition of SCCO2-MQL and ultrasonic vibration.
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3.2.2. The Influence of Process Conditions on the Surface Morphology of Milled SiCp/Al
Composite Materials

Figure 5 presents a comparative analysis of the surface micromorphology under
five different processing conditions at milling speeds (vc) of 40 m/min, 80 m/min, and
120 m/min. Through comparison, it can be found that under ultrasonic vibration, due to
good chip removal and effective removal of SiC particles, the surface topography becomes
better and better as the cutting speed continues to increase. Moreover, surface defects
are mainly caused by particle pulling out, extrusion, and scratching, so there are fewer
surface defects under ultrasonic vibration. With SCCO2 alone, the lack of lubrication
results in more surface defects. Wang et al. obtained a similar situation by simulating the
milling process where the SiC particles broke and rotated within the matrix, resulting in
single small voids and large discontinuous voids on the machined surface [22]. Under the
simultaneous action of SCCO2-MQL and ultrasonic vibration, it is obvious that the surface
morphology is greatly improved, the surface roughness is improved, and the peak valley
distance is reduced.
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4. Effects of Milling Parameters on SiCp/Al Composite Materials under Different
Process Conditions
4.1. Experimental Planning

To investigate the effects of SCCO2-MQL combined with ultrasonic vibration condi-
tions and dry cutting conditions on the surface geometric characteristics of milled SiCp/Al
composite materials, single-factor experiments were designed for milling speed (vc), feed
rate (f ), and milling depth (ap) [23] to compare the differences in surface roughness (Ra)
and surface morphology after machining. At the same time, the cutting force (F) in the
milling process was measured. The experimental scheme is shown in Table 2.

Table 2. Test factors and level.

Factor Level Parameter Manufacturing Environment

Milling speed vc (m/min) 40, 60, 80, 100, 120
Dry cutting conditions, SCCO2-MQL
combined with ultrasonic vibration

Feed rate f (mm/r) 0.02, 0.04, 0.06, 0.08, 0.1
Milling depth ap (mm) 0.2, 0.4, 0.6, 0.8, 1
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4.2. Comparative Analysis of the Impact of Milling Parameters on Surface Roughness
4.2.1. The Influence of Milling Speed on Surface Roughness

Figure 6 shows the contrast curve of workpiece surface roughness (Ra) and cutting
force (F) under dry cutting and SCCO2-MQL combined with ultrasonic vibration when
the milling speed (vc) changes in the range of 40~120 m/min. As shown in Figure 6b,
under SCCO2-MQL combined with ultrasonic vibration conditions, the surface roughness
peaks when vc is 60 m/min. Niu Qiulin et al. also found this trend in milling experiments
on SiCp/Al composites [23]. The main reason is that under the displacement–particle
interaction, the number of silicon carbide hard particles in SiCp/Al composite material
that are crushing, breaking, and pressing into the ejection increases, which increases the
cutting force. Due to surface defects such as micro-cracks, large pits, and low milling
speed, it is easy for the tool tip to form chip nodules, resulting in increased machining
surface roughness. As the milling speed increases from 60 m/min to 120 m/min, the
surface roughness shows a decreasing trend, with the magnitude of decrease growing
larger, reaching a lowest surface roughness of 0.081 µm when vc is 120 m/min. This is
mainly because the milling speed increases the temperature of the cutting area; the higher
temperature makes the aluminum matrix soften and flow, fills the defects left after the
removal of the particles, and makes the SiC particles easier to cut off. The chip tumor is
reduced or even disappears, and finally, the surface roughness of the material is reduced.
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As can be seen from the results in Figure 6, the surface roughness obtained via SCCO2-
MQL ultrasonic vibration under the same milling parameters is 37.42% lower than that
obtained via dry cutting. High-pressure CO2 takes away the chips produced by cutting,
which greatly reduces the friction generated by the tool-piece chips. The addition of
ultrasonic vibration causes a certain increase in the diffusion rate of oil mist molecules and
the removal of hard SiC particles and cutting force; the reduction has a good effect, so the
surface roughness can be reduced.

4.2.2. The Influence of Feed Rate on Surface Roughness

Figure 7 shows the comparative curve of the influence of surface roughness (Ra) and
cutting force (F) under dry cutting and SCCO2-MQL combined with ultrasonic vibration
when the feed velocity F varies within the range of 0.02~0.1 mm /r. Based on the analysis
of the Figure 7b, it is known that as the feed rate (f ) increases from 0.02 to 0.1 mm/r, the
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surface roughness (Ra) also increases under both dry cutting conditions and SCCO2-MQL
combined with ultrasonic vibration conditions.

Machines 2024, 12, x FOR PEER REVIEW 8 of 16 
 

 

cooling, reducing wear, and reducing cutting force, which is conducive to the removal of 
SiC particles and can effectively inhibit the vibration generated during the cutting process. 
This is very beneficial for the reduction in surface roughness. SCCO2-MQL combined with 
ultrasonic vibration does not have much influence on the cutting geometry theory from 
the point of view of the feed rate, so SCCO2-MQL combined with ultrasonic vibration 
conditions has a limited effect on the cutting feed rate factor. 

  
(a) (b) 

Figure 7. Variation in surface roughness with feed rate (vc = 80 m/min, ap = 0.6 mm). (a) Effect of 
feed rate on cutting force; (b) effect of feed rate on surface roughness. 

4.2.3. Influence of Milling Depth on Surface Roughness 
Figure 8 shows the contrast curve of the influence of surface roughness (Ra) and cut-

ting force (F) on dry cutting and SCCO2-MQL combined with ultrasonic vibration when 
milling depth (ap) varies between 0.05 and 0.25 mm. According to the analysis of the re-
sults, it is evident that under both dry cutting conditions and SCCO2-MQL combined with 
ultrasonic vibration, the rate of increase in surface roughness accelerates as the milling 
depth (ap) ranges from 0.05 to 0.25 mm. 

At 0.05~0.15 mm, the effect of vibration reduction, lubrication, and force reduction in 
SCCO2-MQL combined with ultrasonic vibration assisted cutting is maximized, but at 0.20 
mm and 0.25 mm back cutting quantity, the excessive amount of removed material causes 
great damage to the tool, making the machining surface roughness difficult to ensure and 
unstable. According to the observation in Figure 8b, when compared with dry cutting, the 
addition of ultrasonic vibration has a good control effect on the cutting force, is very ben-
eficial to the removal of materials, and reduces the surface roughness value accordingly. 
Therefore, the PCD micro-edge milling cutter should not choose a too-large cutting 
amount in the cutting process. 

  
(a) (b) 

Figure 7. Variation in surface roughness with feed rate (vc = 80 m/min, ap = 0.6 mm). (a) Effect of
feed rate on cutting force; (b) effect of feed rate on surface roughness.

SCCO2-MQL combined with ultrasonic vibration conditions has a certain amount
of improvement compared with dry cutting under the feed factor, but the improvement
effect is not large. Firstly, SCCO2-MQL combined with ultrasonic vibration has the effect of
cooling, reducing wear, and reducing cutting force, which is conducive to the removal of
SiC particles and can effectively inhibit the vibration generated during the cutting process.
This is very beneficial for the reduction in surface roughness. SCCO2-MQL combined with
ultrasonic vibration does not have much influence on the cutting geometry theory from
the point of view of the feed rate, so SCCO2-MQL combined with ultrasonic vibration
conditions has a limited effect on the cutting feed rate factor.

4.2.3. Influence of Milling Depth on Surface Roughness

Figure 8 shows the contrast curve of the influence of surface roughness (Ra) and cutting
force (F) on dry cutting and SCCO2-MQL combined with ultrasonic vibration when milling
depth (ap) varies between 0.05 and 0.25 mm. According to the analysis of the results, it is
evident that under both dry cutting conditions and SCCO2-MQL combined with ultrasonic
vibration, the rate of increase in surface roughness accelerates as the milling depth (ap)
ranges from 0.05 to 0.25 mm.
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At 0.05~0.15 mm, the effect of vibration reduction, lubrication, and force reduction
in SCCO2-MQL combined with ultrasonic vibration assisted cutting is maximized, but at
0.20 mm and 0.25 mm back cutting quantity, the excessive amount of removed material
causes great damage to the tool, making the machining surface roughness difficult to ensure
and unstable. According to the observation in Figure 8b, when compared with dry cutting,
the addition of ultrasonic vibration has a good control effect on the cutting force, is very
beneficial to the removal of materials, and reduces the surface roughness value accordingly.
Therefore, the PCD micro-edge milling cutter should not choose a too-large cutting amount
in the cutting process.

4.2.4. Influence of Milling Parameters on Surface Topography

Figure 9 shows a comparative diagram of the surface morphology under SCCO2-
MQL combined with ultrasonic vibration and dry cutting conditions as the milling speed
(vc) varies. It was observed that under SCCO2-MQL combined with ultrasonic vibration
conditions, when vc increased in the range of 40~60 m/min, the peak and valley drop
of the processed surface was obvious and the spacing was slightly reduced, which was
due to the improvement of milling speed, which shortened the cutting time of the tool so
that the spacing of the tool marks decreased but the number of broken SiC hard particles
increased. The plastic flow of the aluminum matrix makes the distance between peaks
and valleys larger. With the increase in cutting speed vc from 60 m/min, the machining
surface tends to be smooth, and the gap between the tool marks is further reduced. The
dry cutting condition also has a similar rule, but due to the lack of cooling and lubrication
conditions, the surface pits increase, and scratches and knife marks are more obvious.
SCCO2-MQL combined with ultrasonic vibration under the condition of cooling lubrication
and chip removal greatly enhanced the surface morphology when compared to the dry
cutting condition.
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Figure 9. Comparison of surface topography of SCCO2-MQL combined with ultrasonic vibration
(top) and dry cutting condition (bottom) with cutting speed (f = 0.06 mm/r, ap = 0.6 mm).

Figure 10 presents a comparison diagram of surface morphology changes with the
feed rate (f ) under SCCO2-MQL combined with ultrasonic vibration and dry cutting
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conditions. With the change in feed rate from 0.02 to 0.08 mm/r in the two process
environments, the surface topography of the workpiece gradually deteriorated, the peak–
valley spacing increased, the tool mark spacing became larger, and the surface defects
increased. Meanwhile, the excessive feed rate caused the tooltip failure and the tool mark
spacing to become less obvious, but the surface pits and the peak and valley drop were
very large, resulting in extremely poor surface topography.
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Figure 10. Comparison of the surface morphology of SCCO2-MQL combined with ultrasonic vibration
(top) and dry cutting condition (bottom) with the change in feed rate (vc = 80 m/min, ap = 0.6 mm).

By comparing the surface morphology of the two environments, it can be seen that
SCCO2-MQL combined with ultrasonic vibration conditions can greatly improve the surface
defects caused by a large feed rate. It can be seen by f = 0.08 mm/r and 0.10 mm/r that
due to its cooling and lubrication effect and the auxiliary removal of SiC particles via
ultrasonic vibration, it not only reduces the wear of the tool but also prolongs the failure
time. Moreover, the formation of surface defects is reduced, and the deterioration of surface
morphology is delayed under a large feeding rate. Scholar Yanling Tang [24] also found a
similar phenomenon.

Figure 11 provides a comparison diagram of surface morphology changes with the
milling depth (ap) under SCCO2-MQL combined with ultrasonic vibration and dry cutting
conditions. As can be seen from the figure, when the milling depth ap increases in the range
of 0.05~0.15 mm, the surface morphology under the two process conditions is good and
there is no significant difference, which is due to the low material removal rate. The small
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defects formed by the removal of SiC particles can be covered by the plastic flow of the
aluminum matrix. However, when the milling depth ap is 0.20 mm and 0.25 mm, due to
the influence of the excessive material removal rate, the surface topography under the two
process conditions deteriorates greatly, especially in the dry cutting condition. Here, the
increase in cutting heat and cutting force in the cutting process of the tool aggravates e
tool wear and even the edge breaks, thus affecting the machining surface topography. The
zigzag appearance in the figure is the result of increased tool boundary wear, which leads
to the deterioration in the surface topography.
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Figure 11. Comparison of surface topography of SCCO2-MQL combined with ultrasonic vibration
(top) and dry cutting condition (bottom) with cutting depth (vc = 80 m/min, f = 0.06 mm/r).

5. Study on Work Hardening of SiCp/Al Composites via SCCO2-MQL Ultrasonic
Vibration Milling
5.1. Work Hardening Experiment Planning
5.1.1. Experimental Planning

Firstly, experimental parameters were selected under five different machining con-
ditions (dry cutting conditions, SCCO2, SCCO2-MQL, ultrasonic vibration, SCCO2-MQL
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combined with ultrasonic vibration): the feed rate f was 0.06 (mm/z), the milling width ae
was 8 (mm), and the milling depth ap was 0.15 (mm) for the experiments. The work harden-
ing of the machined surface was then tested after machining. Subsequently, experiments
were conducted with milling speed (vc), feed rate (f ), and milling depth (ap) as variables,
while other parameters were held constant to determine the effect of cutting parameters
on work hardening under different machining conditions. This explores the specific im-
provement effects of SCCO2-MQL combined with ultrasonic vibration conditions on the
workpiece work hardening during machining. Table 3 lists the experimental parameters.

Table 3. The single-factor contrast test.

Factor Experimental Parameters Experimental Environment

Milling speed vc (m/min) 40, 60, 80, 100, 120 Dry cutting conditions
SCCO2-MQL combined with

ultrasonic vibration
Feed rate f (mm/r) 0.04, 0.06, 0.08, 0.1, 0.12

Axial cutting depth ap (mm) 0.2, 0.4, 0.6, 0.8, 1

5.1.2. Measurement Method

After the completion of the milling experiment, the workpiece milling experiment
area was divided into 6 mm × 8 mm × 10 mm samples through wire cutting. A DHV-1000
digital microhardness tester was used to perform indentation detection experiments for
work hardening of samples, as shown in Figure 12. Since a large number of SiC particles are
dispersed in the material, if the surface of the wire-cut specimen is ground and polished,
the plastic phase will be removed, resulting in the exposure of the reinforced phase particles
and an overall high measurement value [25]. Therefore, we chose to directly measure the
microhardness of the wire-cut specimen.
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5.2. Influence of Process Conditions and Processing Parameters on Work Hardening
5.2.1. Influence of Different Process Conditions on Work Hardening of SiCp/Al
Composites in Milling

Figure 13 shows the microhardness curves under different process conditions. The com-
parative analysis of the experimental results indicates that as the milling speed (vc) increases,
the microhardness HV generally shows a trend of first increasing and then decreasing.
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Work hardening is the result of plastic deformation of the surface layer of the work-
piece and the joint action of cutting heat. Because the tool is not sharp, after the tool surface
produces a certain extrusion of the machined surface, the machined surface metal will
produce a certain elastoplastic deformation under the joint action of cutting heat. In the
process of grain refinement, hardness is improved to a certain extent [26]. Under the condi-
tions of standalone CO2 cooling and dry cutting, the degree of hardening is relatively high.
This is primarily because standalone cooling effectively reduces the cutting temperature,
preventing softening of the workpiece during the milling process. In the case of dry cutting
conditions, the intense squeezing, friction, and plastic deformation during the cutting
process leads to a higher degree of work hardening.

Therefore, under the condition of SCCO2-MQL composite ultrasonic vibration, the
cutting force and friction are reduced, the damage to the surface structure of the processed
material is small, and the dislocation deformation of the grains is small. This leads to a
minimum degree of work hardening.

5.2.2. Influence of Milling Speed on Work Hardening of SiCp/Al Composites

Figure 14 presents the comparison curves of microhardness HV of SiCp/Al composite
material machined under dry cutting conditions and SCCO2-MQL combined with ultra-
sonic vibration conditions as a function of different milling speeds (vc). The graph shows
that as the milling speed (vc) increases from 40 m/min to 60 m/min, the microhardness of
the material under both processing conditions increases. However, as the milling speed
continues to increase to 120 m/min, the microhardness consistently decreases.
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Figure 14. The variation curve of microhardness values with milling speed.

The microhardness of the material under SCCO2-MQL combined with ultrasonic vibra-
tion is significantly lower than that under dry cutting conditions, which is mainly affected
by the difference in cutting force, cutting temperature, and friction during cutting. With
the increase in milling speed, the cutting force increases. The surface grain dislocation and
entanglement are serious, which makes the microhardness increase to a certain extent, but
with the continuous improvement in the milling speed, the cutting temperature increases,
which has a softening effect on the material surface, especially the aluminum matrix. In
addition, the continuous increase in the milling speed makes the tool contact time shorter
and shorter, and the plastic deformation decreases. Therefore, the microhardness gradually
decreases when the milling speed is greater than 60 m/min.

5.2.3. Influence of Feed Rate on Work Hardening of SiCp/Al Composites in Milling

Figure 15 is the plotted comparison curves of microhardness HV of SiCp/Al com-
posite material machined under dry cutting conditions and SCCO2-MQL combined with
ultrasonic vibration conditions as a function of different feed rates (f ). The microhardness
under both conditions tends to increase with an increase in feed rate. The primary factor
is the increase in plastic deformation; as the feed rate increases, the material removal rate
continuously improves, resulting in severe plastic deformation on the surface layer of the
material, and thus, the work hardening becomes progressively more severe.
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5.2.4. Influence of Milling Depth on Work Hardening of SiCp/Al Composites

Figure 16 represents the comparison curves of the microhardness HV of SiCp/Al
composite material machined under dry cutting conditions and SCCO2-MQL combined
with ultrasonic vibration conditions for varying milling depths (ap). Under both conditions,
the microhardness consistently increases as the milling depth increases. The effect of milling
depth is significant, and the work hardening becomes more severe with an increase in the
milling depth. This is because the greater the milling depth, the more serious the tool wear.
As a result, there is increased fracturing and reorganization of the grains on the material
surface, as well as more severe dislocation, which contributes to the continuous increase
in microhardness.
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Figure 16. The variation curve of microhardness values with milling depth.

6. Conclusions

Firstly, under the condition of dry cutting and SCCO2-MQL ultrasonic vibration,
when the milling speed vc increases from 40 m/min to 120 m/min, the surface roughness
increases first and then decreases, and the minimum surface roughness reaches 0.081µm
at 120 m/min. When the feed f is 0.02~0.1 mm/r or the cutting depth ap is 0.05~0.25 mm,
the surface roughness increases continuously, and it has a great influence on the surface
roughness. In addition, from the microscopic morphology, the cooling, lubrication, and
chip removal effects of SCCO2-MQL ultrasonic vibration are remarkable, which can inhibit
the generation of surface defects such as holes, pits, scratches, and cracks. Secondly, the
experimental analysis shows that the inhibition of SCCO2-MQL ultrasonic vibration on
work hardening is the best under all processing conditions. The overall work hardening
degree of SCCO2-MQL under ultrasonic vibration is 125.9%, while the hardening degrees
under the SCCO2-MQL, ultrasonic vibration, SCCO2, and dry cutting conditions are 129.4%,
130.2%, 136.9%, and 143.7%, respectively. In this study, it was found through milling
experiments that compared with other processing conditions, SCCO2-MQL ultrasonic
vibration conditions have better improvements to the reduction in surface roughness of
the processed material, the improvement in surface morphology, and the suppression of
material work hardening.

Microhardness can reflect the hardness and strength changes of the material, and the
surface roughness affects the appearance and function of the workpiece. When selecting
the best milling scheme, the changes in surface roughness and microhardness should be
considered comprehensively to ensure the quality and performance of the workpiece while
improving the machining efficiency. This comprehensive analysis method will help us
to develop more effective processing strategies to meet the needs of different application
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scenarios and provide a useful reference for further research and optimization of composite
material processing.
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