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Abstract: Path planning is an indispensable component in guiding unmanned ground vehicles (UGVs)
from their initial positions to designated destinations, aiming to determine trajectories that are either
optimal or near-optimal. While conventional path-planning techniques have been employed for this
purpose, planners utilizing reinforcement learning (RL) exhibit superior adaptability within exceed-
ingly complex and dynamic environments. Nevertheless, existing RL-based path planners encounter
several shortcomings, notably, redundant map representations, inadequate feature extraction, and
limited adaptiveness across diverse environments. In response to these challenges, this paper proposes
an innovative and highly self-adaptive path-planning approach based on Transformer encoder feature
extraction coupled with incremental reinforcement learning (IRL). Initially, an autoencoder is utilized
to compress redundant map representations, providing the planner with sufficient environmental
data while minimizing dimensional complexity. Subsequently, the Transformer encoder, renowned for
its capacity to analyze global long-range dependencies, is employed to capture intricate correlations
among UGV statuses at continuous intervals. Finally, IRL is harnessed to enhance the path planner’s
generalization capabilities, particularly when the trained agent is deployed in environments distinct
from its training counterparts. Our empirical findings demonstrate that the proposed method out-
performs traditional uniform-sampling-based approaches in terms of execution time, path length,
and trajectory smoothness. Furthermore, it exhibits a fivefold increase in adaptivity compared to
conventional transfer-learning-based fine-tuning methodologies.

Keywords: path planning; incremental learning; reinforcement learning; Transformer encoder; au-
toencoder

1. Introduction

Unmanned ground vehicles (UGVs) have emerged as a significant technological ad-
vancement with far-reaching applications across various fields. Their ability to operate
without human presence in potentially hazardous or challenging environments makes
them invaluable assets [1–3]. In the military domain, UGVs contribute to safeguarding
personnel by undertaking tasks like bomb disposal and reconnaissance in hostile territories.
Additionally, their deployment in risky industrial settings, such as hazardous material han-
dling or mining operations, minimizes human exposure to potential dangers. Furthermore,
UGVs play an increasingly crucial role in civilian sectors, including agriculture, where they
automate tasks like crop monitoring and precision spraying, leading to enhanced efficiency
and resource optimization. Therefore, the growing sophistication and versatility of UGVs
underscore their importance as transformative tools for improving safety, efficiency, and
productivity across diverse domains [4].
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The success of UGVs in achieving their designated tasks hinges critically on the efficacy
of path-planning algorithms, which play a pivotal role in determining the optimal or near-
optimal trajectory for a UGV to navigate from its starting point to its destination [5,6]. By
factoring in environmental constraints, obstacles, and potential hazards, path-planning
algorithms enable UGVs to operate safely and efficiently. In dynamic environments, path-
planning algorithms become even more crucial, as they must adapt to unforeseen changes
in real time, ensuring the UGV avoids collisions and navigates safely. The continued
development and refinement of path-planning algorithms are therefore paramount for
ensuring the safe, reliable, and successful operation of UGVs across various applications [7].

Path-planning algorithms for UGVs can be mainly divided into traditional classical
algorithms [8,9] and learning-based methods [10–12]. Traditional classic algorithms gener-
ally obtain the optimized path in complex environments through a hierarchical architecture
incorporating a global planner and a local planner [13]. The global planner generates the
global path from the starting point to the target point in the entire environment consider-
ing the map, obstacles, and other environmental information at a global scale. Then, the
local planner uses the global path as a reference and adjusts the path to adapt to dynamic
obstacles or other unexpected situations. Classic global path planners include the Dijkstra
algorithm [14], Prim algorithm [15], visible graph algorithm [16], probabilistic roadmap
algorithm [17], etc., while local path planners include the dynamic window method [18]
and time elastic band algorithm [19], etc. Although traditional path planners have a good
theoretical foundation and application robustness, they cannot demonstrate good adaptabil-
ity in extremely complex and dynamic environments due to high-dimensional nonlinear
and complicated constraints. In order to solve the above problems, learning-based path-
planning algorithms [20], especially reinforcement learning (RL)-based methods [21], have
received increasing attention in recent years.

Path planners based on RL can improve their strategies through continuous interaction
with the environment, thereby obtaining an optimized policy. This kind of method can
effectively handle high-dimensional-state spaces and is suitable for application in dynamic
environments that require the consideration of complex perceptual information, surpassing
traditional classical algorithms by a large margin. RL-based path planners generally first
perform a mathematical representation of the environment, and then use feature-extraction
technology to extract features that are important to path planning from information such
as environmental representation or the status of the UGV to form a state vector. Finally,
the planner will establish a neural network to implement end-to-end mapping from the
state vector to the control instructions. However, existing RL-based path planners are
confronted with three drawbacks in terms of map representation, feature extraction, and
adaptive capability.

Regarding map representation, prevalent methods employed by existing path planners
entail utilizing either a global occupancy map or the direct input of the original camera or
3D lidar points from the immediate environment. For instance, Chen et al. employed a con-
volutional neural network (CNN) trained on an egocentric local occupancy map to predict
optimal steering actions for a robotic system, demonstrating the feasibility of deploying a
map-based end-to-end navigation model onto real-world robotic platforms [22]. Similarly,
Wang et al. introduced an off-road path-planning approach based on deep RL, training
the agent within a low-dimensional simulator constructed using occupancy maps [23].
Furthermore, Fan et al. proposed a hierarchical RL-based path planner for exploring un-
known spaces, utilizing lidar readings alongside iteratively generated occupancy maps as
observations for the RL agent [24]. However, while employing original occupancy maps
or sensor observation data as inputs for UGV path planning facilitates the preservation
of environmental information to a large extent, it also presents challenges. The high di-
mensionality of such data, particularly in the case of high-resolution maps or dense sensor
data, can markedly augment the computational complexity of subsequent path-planning
algorithms. Consequently, this may compromise the efficiency and real-time performance
of the planning system, which are crucial for ensuring safe and dependable autonomous
navigation within dynamic environments.
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In terms of feature extraction, the majority of existing RL-based path-planning method-
ologies employ convolutional neural networks (CNNs) or fully connected networks (FCNs)
as foundational architectures for information extraction [25,26]. This preference is rooted
in the remarkable efficacy of CNNs in image processing tasks, rendering them well suited
for handling image-like map representations, while FCNs are favored for their versatility
and simplicity. For instance, Sartori et al. leveraged a CNN to extract salient features from a
top-down environmental image, encompassing obstacle distributions as well as the locations
of starting and goal points [27]. Similarly, Jin et al. introduced a pyramid path-planning net-
work, amalgamating a CNN with a feature-pooling pyramid structure to extract multiscale
features from various hierarchical levels, thereby generating a local feature representation
enriched with semantic information [28]. Additionally, Qureshi et al. employed an FCN to
amalgamate environmental features such as raw point clouds obtained from depth sensors,
alongside a robot’s initial and target configurations [29]. However, notwithstanding their
proficiency in local feature extraction, CNNs and FCNs encounter challenges in capturing
long-range dependencies, a pivotal aspect for effective path planning.

As for adaptive capability, the prevailing paradigm among RL-based path planners
is predicated upon the assumption that the deployed agent will encounter environments
possessing similarities to those present during training phases. For instance, Bae et al. con-
ducted training and testing of a deep Q-learning RL agent on congruent grid-like occupancy
maps [30]. Similarly, Wang et al. introduced a pioneering path-planning methodology for
multi-agent systems, integrating flocking control and RL, wherein both training and testing
simulations were conducted within the same environments developed utilizing Visual
Studio Community software and the Unity3D engine [31]. Furthermore, Huang, R. et al.
put forward an RL-based path planner for a continuous dynamic simulation environment,
where the obstacles were all circle-like in the training and testing environments [32]. While
this presumption of congruent obstacle features and distributions across training and test-
ing settings facilitates, to some extent, the applicability of RL-based path planners, such
scenarios remain uncommon in real-world applications. It is more typical for application
scenarios to exhibit significant disparities from training environments, thereby diminishing
the performance of trained RL agents when faced with unseen environments. Consequently,
there is a pressing need for a highly self-adaptive path-planning framework to augment
the generalization capabilities of trained RL agents.

In order to overcome the above three existing drawbacks, this paper proposes a
novel RL-based path planner with highly self-adaptive capability combining a Transformer
encoder block and incremental reinforcement learning (IRL) using compressed map repre-
sentation as the input. The contributions of this study include the following three aspects.

• Firstly, the original 2D map is compressed to a 1D feature vector using an Autoencoder
to lighten the computational burden of following the RL path planner. The compressed
1D feature vector can achieve a highly accurate reconstruction of the original 2D map,
thus ensuring abundant and ample information is obtained while the input dimension
is greatly reduced.

• Secondly, the Transformer encoder block, which has global long-range dependency
analysis capability, is adopted to capture the highly intertwined correlation between
UGV status at continuous instances. The results show that the Transformer encoder
demonstrates better optimality than a traditional CNN or FCN thanks to its strong
feature-extraction capability.

• Thirdly, incremental reinforcement learning (IRL) is adopted to improve the path
planner’s generalization ability when the trained agent is deployed in totally different
environments to the training environments. The results show that ICR can achieve 5×
faster adaptivity than traditional transfer-learning-based fine-tuning methods.

The remainder of this paper is organized as follows. Section 2 will detail the general
framework of the proposed path planner, together with the relevant theoretical foundations
involved. Section 3 will validate the proposed method in various simulation environments
and compare it with the uniform-sampling-based and transfer learning of fine-tuning
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methods. Section 4 will conclude the whole paper and point out possible future research di-
rections.

2. Methodology

The general framework of the proposed path-planning method is shown in Figure 1.
Firstly, the RL agent prepares input information for the path-planning decision. The inputs
include three aspects, namely the compressed map representation, the target point, and the
UGV’s status. The compressed map representation is a latent representation of the original
2D map given by the autoencoder, which will be discussed in detail in Section 2.1. Because
the first two items are invariant during the whole path-planning process, they are directly
fed to the IRL module. The UGV status, including its x-coordinate, y-coordinate, and
orientation, will change as the UGV moves; therefore, status information from a past time
window with a length of n will be collected and fed into the Transformer encoder. Then,
four consecutive Transformer encoder layers will process the UGV status information and
fully exploit the temporal correlation of the UGV’s movements. The Transformer encoder
layer will be introduced in Section 2.2. Finally, the output of the Transformer, together with
the two direct inputs, will be processed by the IRL module, where incremental learning
will be incorporated to improve the agent’s generalization ability in different environments.
The process of IRL will be elaborated upon in Section 2.3.
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It is imperative to underscore that classical-sampling-based planners, such as rapidly
exploring random trees (RRT), RRT*, or bidirectional-RRT, typically rely on generating
samples uniformly distributed across a designated state space. However, these planners
commonly confine the UGV within a limited portion of the state space. Consequently, the
uniform sampling strategy leads to the exploration of numerous states that have a negligible
influence on the final path. This inefficiency significantly hampers the planning process,
particularly within state spaces characterized by high dimensionality and environments
featuring narrow passages. To address this challenge, the proposed method endeavors to
reduce the sampling space from the entirety of the state space to an optimal subset, guided
by the path-planning outcomes derived from RRT or RRT*. This strategic adjustment notably
enhances the efficiency of the path-planning process. For further elaboration, please refer to
Section 3.

2.1. Autoencoder for Environment Representation

An autoencoder is a type of artificial neural network trained to compress and recon-
struct its input data [33]. In simpler terms, it aims to learn a compressed representation
of the input while still being able to accurately recreate the original data from this com-
pressed version. An autoencoder consists of two main parts, namely an encoder and a
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decoder. The encoder part takes the input data and compresses it into a lower-dimensional
representation, often called the latent space. This compressed version captures the essential
features of the input. The decoder part receives the latent space representation and tries to
reconstruct the original input data from it. The general framework of the autoencoder is
shown in Figure 2.
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Let us denote the encoder network and the decoder network as h = f (x) and y = g(h),
where x, h, and y represent the input, latent representation, and output, respectively. The
encoder and decoder networks can take arbitrary networks, including the FCN, CNN,
recurrent neural network (RNN), etc. [34]. Because here, we want to compress the two-
dimensional environment map into the latent space, the CNN is selected as the encoder
network considering its superior capability in processing image-like two-dimensional inputs.

Within a convolutional layer, a learnable filter, usually referred to as a kernel, is applied
to the map, followed by processing with an activation function. The mathematical formula
of the CNN layer can be expressed as [35]

xl
j = ∑

i∈Mj

xl−1
i ∗ kl

ij + bl
i (1)

where xl
j represents the jth feature map of the ith convolutional layer; Mj represents the

collection of input feature maps; * denotes the convolutional operation; and b represents
the additional bias added to the output graph.

After being processed by the CNN layer, the obtained feature map is usually smaller
than the original input, mainly due to the stride and convolutional operation. Because the
autoencoder tries to reconstruct the original input, the decoder network needs to upsample
the feature map output by the encoder network to the same size as the original input. There-
fore, transposed convolution, also known as fractionally strided convolution, is introduced
into the decoder network. It is essentially the reverse operation of convolution and allows
the network to learn to upsample the information and generate a larger image. It achieves
this by introducing learnable filters and performing similar element-wise multiplication
and summation. Details of the mathematical operation of transposed convolution can be
found in Ref. [36].

2.2. Transformer Encoder Layer

The Transformer encoder, a core component in many deep learning architectures,
utilizes a stacked structure of identical layers. Each layer is composed of two sub-layers:
a multi-head attention mechanism and a fully connected feed-forward network [37]. The
multi-head attention allows the model to attend to relevant parts of the input sequence,
while the feed-forward network introduces non-linearity for complex feature extraction [38].
Residual connections and layer normalization are implemented around each sub-layer to
address vanishing gradients and accelerate training, respectively. This design enables the
encoder to effectively capture long-range dependencies within the input data.
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At the heart of the Transformer encoder lies the multi-head attention mechanism, as
shown in Figure 3. This mechanism splits the model’s representation into multiple heads,
each acting as a subspace that allows the model to attend to different aspects of the input
information. The outputs from these heads are then concatenated, enabling the network to
capture a richer and more nuanced understanding of the features within the data. Here
scaled dot-product attention is adopted and the computational formulas are shown in
Equations (2)–(5). 

Q = WQX
K = WKX
V = WV X

(2)

Attention(Q, K, V) = so f tmax
(

QKT
√

d

)
V (3)

Hi = Attention
(

QWQ
i , KWK

i , VWv
i

)
(4)

MultiHead(Q, K, V) = [H1, . . . , Hh]Wo (5)

Here, the query matrix Q, key matrix K, and value matrix V are generated by transforming
the feature vector matrix X; WQ, WK, and WV are all linear transformation matrices; d is
the scaling factor; WQ

i , WK
i , and Wv

i are the transformation matrices projecting Q, K, and V
into the ith subspace, where i ranges from 1 to h, and h is the total number of subspaces; Hi
represents the single-head attention values in the ith subspace; and Wv

i is the transformation
matrix used to concatenate the attention values from all subspaces.
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2.3. Incremental Reinforcement Learning

This paper proposes an RL path-planning model based on incremental learning,
namely the incremental collaborative learning knowledge model (ICLKM) [39]. For the RL
part, we adopt the advanced soft actor–critic (SAC) algorithm.

The SAC algorithm distinguishes itself from other deep RL approaches by incorporating
the concept of entropy, a measure of randomness in probability distributions [40]. In the
context of SAC, entropy reflects the level of stochasticity, unpredictability, or variation within
an agent’s actions. Higher entropy values signify increased action randomness, resulting in
richer exploration of potential actions. This entropy injection encourages policy exploration
within the state space, mitigating the risk of becoming trapped in local optima. By enabling
the exploration of diverse solution pathways, entropy ultimately enhances the robustness of
the final learned policy. The specific mathematical formula for calculating entropy is

H(π(· | s)) = Ea[−logπ(· | s)] (6)
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In the realm of general RL algorithms, the objective centers on acquiring a strategy that
maximizes the total accumulated reward received by the agent throughout its interactions
with the environment [41]. In simpler terms, the goal is to learn a course of action that
yields the greatest overall benefit for the agent, namely

π∗ = argmax
π

E(st ,at)∼ρπ

[
∑

t
r(st, at)

]
(7)

For the SAC algorithm, in addition to the above general objectives, it is also required
that the strategy has the maximum entropy at each output action:

π∗ = argmax
π

E(st ,at)∼ρπ

∑
t

r(st, at)︸ ︷︷ ︸
reward

+ αH(π(· | st))︸ ︷︷ ︸
entropy

 (8)

Its purpose is to ensure the randomness of the strategy, making each output action
as dispersed as possible, and improving the exploration ability of the intelligent agent.
The core idea of maximum entropy in motion planning tasks is to sample as many useful
trajectories as possible.

In the SAC algorithm, the state value function Vπ
soft (s) can be expressed as

Vπ
soft (s) = E(st ,at)∼ρπ

[
∑ ∞

t=0γt(r(st, at)+ αH(π(· | st)))|s0 = s
]

(9)

The action value function Qπ
soft (s, a) can be expressed as

Qπ
soft(s, a) = E(st ,at)∼ρπ

[∑ ∞
t=0γtr(st, at)+α∑ ∞

t=0γtH(π(· | st)) | s0 = s, a0 = a
]

(10)

The SAC algorithm employs a unique network architecture consisting of one actor
network and four critic networks. Two of the critics estimate the state-value function V(s),
with corresponding target networks Vtarget(s) used for stabilization during training. The
remaining two critics focus on the action value function Q(s, a). Notably, the actor network
and both Q-networks are synchronously updated using their respective parameters, while
their target counterpart needs to be fixed for a period of time before synchronizing the
latest parameters with the V(s) network. During training, the experience replay pool D
provides samples, and exploration noise ε drawn from a standard normal distribution is
added to the actions. The loss function for the Q(s, a) is then defined as

JQ(θ) = E(st ,at ,st+1)∼D[
1
2

Qθ(st, at)− (r(st, at) + γVθ(st+1))]
2

(11)

The loss function of the actor network is

Jπ(ϕ) = Est∼D,at∼πϕ

[
αlogπϕ(at | st)− Qθ(st, at)] (12)

The reparameterization technique was introduced in the process of updating the actor
network, which means that

at = fϕ(εt; st) = f µ
ϕ (st) + εt ⊙ f σ

ϕ (st) (13)

Considering the practical applications, it is necessary to limit the output to a certain
range, so a flattening tanh function needs to be added to limit the final output to (−1, 1):

at = tanh(at) (14)

In the setting of incremental learning in path planning [42], the model will first learn
from the sample training set D0 to obtain a high-performance model M0. When new
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environmental samples appear, the already trained model will be incrementally learned
on the gradually emerging sample dataset Dt, and the entire model will be continuously
updated to obtain Mt. To equip SAC with incremental learning capability, The SAC agent
adopts a dual network structure of Mt′ and Mt. When the model is learning from Dt, the first
network Mt′ uses knowledge distillation to approximate the current learnt path-planning
model Mt−1, helping the model retain learned knowledge and reduce the forgetting of old
knowledge when learning new knowledge. Then, the second network Mt learns new data,
takes the output of the first network as the learning objective, and performs consistency
loss on the outputs of the two networks at each training step, enabling the path-planning
model to effectively learn new knowledge. Finally, the first network Mt′ and the second
network Mt learn together. Mt′ uses mean squared error (MSE) loss, consistency loss, and
distillation loss to update the internal parameters through backpropagation. Mt adopts a
knowledge collaboration strategy to update the internal parameters to generate a more
adaptive model for path planning.

In the proposed dual network structure, the first network model Mt′ adopts the
knowledge distillation method [43]. The distillation loss Lkd only relies on the previous
model Mt−1. It considers the MSE loss calculated between the outputs of Mt−1 and Mt′ .
Distillation loss Lkd is defined as

Lkd =
1
n∑ n

i=1[τ̂i(x)− τi(x)]2 (15)

where n is the dimension of the outputs, and τ̂i(x) and τi(x) represent the outputs of Mt′

and Mt−1, respectively.
When learning from Dt, the output of the second network model Mt using the new

dataset Dt as the input will be adopted as the learning objective of the first network model
Mt′ . By continuously maintaining consistency between the two networks, the path-planning
model can effectively learn new knowledge from new data.

Before training, both the first network model Mt′ and the second network model Mt
use the previous model Mt−1 as the pretrained model for initialization. The consistency
loss Lcon of the two networks is

Lcon =
1
n∑ n

i=1[τ̂i(x)− τ∗
i (x)]2 (16)

where τ∗
i (x) represents the output of Mt.

In each step, the first network model Mt′ is trained in a supervised manner by calcu-
lating the MSE loss Lmse:

Lmse =
1
n∑ n

i=1

[
τ̂i(x)− τ

gt
i (x)

]2
(17)

where τ
gt
i (x) represents the ground truth target point of the path-planning algorithm.

Therefore, Mt′ updates the weights based on the MSE loss Lmse, distillation loss Lkd,
and consistency loss Lcon between the two networks, and updates the weights of the model
Mt′ through backpropagation of the loss function. The complete loss function Lall for Mt′ is

Lall = Lmse + λLkd + βLcon (18)

The weights of the network loss function are balanced by λ and β. At the same time,
the weight of the second network Mt is frozen, and the weight of the network model Mt is
updated through a knowledge collaboration strategy to generate a more adaptive model,
that is, the process of updating the weight of Mt using the exponential moving average of
the weights in Mt′ :

θ
j
t = αθ

j−1
t + (1 − α)θ

j
t′ (19)

where θ
j
t and θ

j
t′ represent the weights of the networks Mt and Mt′ , respectively, and α is

the smoothing coefficient hyperparameter. The parameters are updated at each training
step j.
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Both the learnt network models, Mt′ and Mt, can be used for path planning. However,
compared to the first network model Mt′ , the second network model Mt uses a knowledge
collaboration algorithm to make parameter updates more robust and reflect the learning
state of the first network Mt′ , resulting in better prediction performance. Therefore, the
network model Mt is used as the final model for path planning.

3. Validation

In this section, we will first introduce the simulation setup information, including
the hardware configurations and the training/testing datasets that were used to train and
evaluate the agent. Then, the effectiveness of the compressed map representation will be
validated, especially its reconstruction capability. Afterwards, a comparison between the
proposed Transformer encoder and other commonly used networks will be conducted to
highlight the superiority of using the Transformer to extract features. Finally, the proposed
method will be compared with traditional uniform path-planning samplers, and its fast
adaptability to different environments will be highlighted.

3.1. Simulation Setup

Simulations were conducted on a computer with an Intel i9-11980HK CPU and an
Nvidia RTX 3080Ti graphics card. To ensure the diversity of the training dataset so that the
trained model could have better generalization ability, 200 maze map environments were
generated. The size of maze maps was 10 m × 10 m, and the resolution and wall thickness
were both 0.4 m. For each generated map, 2000 demonstration paths were generated by
the RRT* algorithm. The generated RRT* paths were fed to the path-planning network
as the training targets. Figure 4 shows four representative generated maps and the RRT*
demonstration paths.
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Figure 4. Generated maze maps and demonstration path.

3.2. Validation of Environment Compression

The latent representation of the environment has a great impact on the final path
planner performance since it incorporates all of the information of the map that the RL
agent makes a decision on. If the compressed latent state of the environment can make
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the reconstructed map very close to the original map, then it is regarded as incorporating
sufficient key information of the map representation.

We used the 200 generated maze maps as the training dataset. The size of the original
input to the autoencoder was 25 × 25 (because the width of the map was 10 m and the
resolution was 0.4 m, the size was 10 m/0.4 m = 25). For the encoder part, two consecutive
CNN layers, whose kernel size was 3 × 3, padding was 1 on two sides, and stride step
was 2, were used. Therefore, the latent representation of the environment was 7 × 7 after
being processed by the CNN layers. Then, two transposed convolution layers with the
same hyperparameters as the above CNN layer were used in the decoder network to resize
the latent representation to the original size of the map. It needs to be highlighted here
that because the original map was a binary occupancy map, i.e., each grid was 0 or 1, we
also wanted the reconstructed map to have only two values. Therefore, a softmax layer
was added to the decoder network, and then values higher than 0.5 were set to 1, while
others are set to 0. The MSE error of the original and reconstructed maps at each pixel was
defined as the loss to train the autoencoder.

Figure 5 demonstrates some examples of original and reconstructed maps. It needs to
be highlighted here that the demonstration includes both training maps and testing maps
that are not used in the autoencoder training. It can be seen that the reconstructed maps
are very close to the original maps in both the training and testing scenarios, indicating
the effectiveness and generalization ability of the trained autoencoder. The results show
that the MSEs between the original and reconstructed maps are 0.0144 and 0.0192 on the
training and testing datasets. Therefore, the latent state representation generated by the
autoencoder can provide sufficient information for following path planning.
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dataset; (b) example on testing map dataset.

3.3. Validation of Transformer Encoder Feature Extraction

According to Section 3.2, the environment was represented as a 7 × 7 matrix. Therefore,
its flattened form, namely a vector of size 49, was concatenated with the target point
configuration, a vector of 3 (representing x, y, and orientation), to be fed into the IRL
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module directly. For the Transformer encoder, a time window with a length of 10 collecting
corresponding UGV status information was set as the input. Here, four Transformer encoder
layers were used, and each layer shared an embedding size of 24, a multi-head number
of 3, and a feed-forward hidden layer size of 48. The Transformer encoder fully exploited
the correlations among the UGV statuses during the last few time windows and passed
the most essential information to the following IRL module. The reward r used by the IRL
module is defined as

r(st, at) = −l(st, at) = −
(
αex + βey

)
(20)

where l represents the loss; α and β represent the scaling coefficients; and ex and ey are the
distances between predicted the target point and the recommended target point by the
RRT* in the x and y directions, respectively. It can be seen from the above equation that the
reward is the opposite of the loss, because we wanted to maximize the reward or minimize
the loss. Here, we set α = β = 100.

In order to verify the effectiveness of the Transformer encoder’s feature-extraction
ability, three representative network structures, namely CNN, GRU, and long short-term
memory (LSTM) networks, were used as the benchmarks. Two evaluation metrics, including
path length and smoothness, were used for comparison. Path length refers to the accumu-
lated Euclidean distance of the waypoints on the path. Smoothness is defined according to
Ref. [44], and measures the total amount of curvature along a path, and a lower smoothness
value indicates a smoother path. Table 1 compares the results of the testing datasets. It can
be seen from Table 1 that the proposed method using the Transformer encoder results in a
9.6~16.3% improvement in path length and a 5.1~21.7% improvement in smoothness.

Table 1. Comparison between different network structures.

Network Structure Path Length Smoothness

CNN 18.96 m 7.43
GRU 18.21 m 6.13
LSTM 17.55 m 7.12

Transformer encoder 15.87 m 5.82

3.4. Validation of Effectiveness and Adaptability

Figure 6 demonstrates the loss of two networks, Mt′ and Mt, during the training process.
It can be seen from the figure that the losses of the two networks share a similar decreasing
trend, which means the training is effective and the target point given by the proposed
method is close to that of RRT*. It also needs to be highlighted here that the noise in the
loss trend of Mt is smaller than that of Mt′ . This is because the Mt′ network is the main
network that interacts with the environment and uses the reward signal to improve the
network performance, while the Mt network uses the parameters of Mt′ as the training target.
Therefore, the Mt′ network already provides enough beneficial experience to the Mt network,
thus saving it trial-and-error costs and demonstrating lower fluctuations in the loss curve.

In order to demonstrate the effectiveness of the proposed method, Figure 7 shows the
target points generated by the proposed method in two representative scenarios, together
with the partially traditional uniform sampling method for comparison, where r represents
the ratio of the points generated by the proposed method to the total number of points. It
can be seen from Figure 7 that if the target points are totally generated by the proposed
method, namely r = 100%, all points are directly guiding the UGV towards the final goal
point without redundant meaningless points. However, if partially uniform sampling is
incorporated, some noise points deviating from the optimal path will appear, which would
decrease the path-planning efficiency and optimality.
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A typical example of the generated path for the traditional uniform sampling method
and the proposed method is shown in Figure 8. It can be seen that the path of the proposed
method is much shorter and smoother than that of the uniform sampling method. For
a much fairer comparison, Figure 9 compares the two methods for 30 trails to exclude
occasionality. The statistical metrics, including execution time, path length, and smoothness,
are reported. It can be seen from Figure 9 that for the metrics of path length and smoothness,
the proposed method wins a lot more than the uniform sampling method. As for the
execution time, although the mean values of the two methods are similar, the proposed
method has much lower deviation, indicating its robustness for different random settings.
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of 30 trails; (b) execution time; (c) path length; (d) smoothness.

The aforementioned simulation validates the efficacy of the proposed method un-
der conditions resembling those of the training settings. However, real-world scenarios
frequently diverge significantly from the datasets used for training, leading to a notable
decline in the performance of trained agents when employing traditional fine-tuning-based
transfer-learning techniques. In contrast, the proposed method embraces an incremental
learning framework, enabling rapid adaptation to novel environments by leveraging the
richly abstracted experiences gleaned from the training datasets. To substantiate this asser-
tion, a notably complex environment, surpassing the complexity of the training datasets, is
employed for verification, as depicted in Figure 10a. The corresponding training loss of
both the traditional fine-tuning method and the proposed method is presented in Figure 10b.
Notably, the proposed method demonstrates a fivefold increase in adaptivity compared to
traditional transfer-learning approaches. For instance, achieving a loss of approximately
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20 requires around 44,500 iterations with transfer learning, whereas the proposed method
achieves this milestone in only 9000 iterations. Furthermore, the path generated by the
proposed method, as illustrated in Figure 10a, exhibits smoothness and a rational path
length, further affirming its efficacy.
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4. Conclusions

This paper introduces a novel highly self-adaptive path-planning methodology
grounded in Transformer encoder feature extraction and IRL. Out principal conclusions
can be summarized across three key facets:

• The utilization of an autoencoder facilitates the generation of a compressed repre-
sentation of the original environment, supplying ample information for subsequent
path-planning endeavors while significantly reducing the computational overhead.
The MSEs between the original and reconstructed maps amount to 0.0144 and 0.0192
on the training and testing datasets, respectively.

• Comparative evaluations reveal that the Transformer encoder exhibits superior feature-
extraction capabilities in contrast to commonly utilized networks such as the CNN,
GRU, and LSTM. Specifically, the proposed methodology employing the Transformer
encoder yields a 9.6% to 16.3% enhancement in path length and a 5.1% to 21.7%
improvement in smoothness.

• The proposed methodology demonstrates superior optimality compared to uniform-
sampling-based approaches and enhanced adaptability relative to traditional transfer-
learning-based methodologies. Specifically, the proposed method exhibits a 14.8% re-
duction in path length and a 61.1% enhancement in smoothness compared to uniform-
sampling-based approaches. Furthermore, leveraging incremental learning, the pro-
posed method achieves adaptivity five times faster than traditional transfer-learning
approaches.

In future endeavors, our primary objective will be to enhance the credibility and
applicability of the proposed method through rigorous real-world testing conducted on a
physical UGV. By transitioning from simulated environments to actual field tests, we intend
to evaluate the method’s real-time performance and robustness under diverse practical
scenarios like in [45]. Through meticulous data collection and analysis during these tests,
we aim to not only validate the effectiveness of the proposed method but also identify any
potential limitations or areas for improvement.
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formal analysis, T.Z. and J.F.; investigation, T.Z.; resources, T.Z.; data curation, T.Z. and J.F.; writing—
original draft preparation, T.Z. and J.F.; writing—review and editing, Z.G.; visualization, T.Z. and J.F.;
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read and agreed to the published version of the manuscript.
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