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Abstract: Increasing evidence suggests that skeletal muscles may play a role in the pathogenesis of
obesity and associated conditions due to their impact on insulin resistance and systemic inflammation.
Skeletal muscles, as well as adipose tissue, are largely recognized as endocrine organs, producing
biologically active substances, such as myokines and adipokines. They may have either beneficial
or harmful effects on the organism and its functions, acting through the endocrine, paracrine, and
autocrine pathways. Moreover, the collocation of adipose tissue and skeletal muscles, i.e., the
amount of intramuscular, intermuscular, and visceral adipose depots, may be of major importance
for metabolic health. Traditionally, the generalized and progressive loss of skeletal muscle mass and
strength or physical function, named sarcopenia, has been thought to be associated with age. That is
why most recently published papers are focused on the investigation of the effect of obesity on skeletal
muscle function in older adults. However, accumulated data indicate that sarcopenia may arise in
individuals with obesity at any age, so it seems important to clarify the possible mechanisms linking
obesity and skeletal muscle dysfunction regardless of age. Since steroids, namely, glucocorticoids
(GCs) and sex steroids, have a major impact on the amount and function of both adipose tissue and
skeletal muscles, and are involved in the pathogenesis of obesity, in this review, we will also discuss
the role of steroids in the interaction of these two metabolically active tissues in the course of obesity.

Keywords: obesity; steroidogenesis; sarcopenia; skeletal muscle dysfunction; insulin resistance;
systemic inflammation

1. Introduction

The global prevalence of obesity has now reached epidemic proportions. This con-
dition currently affects >2 billion people worldwide, and more than 1.9 billion adults
globally are overweight [1]. According to the experts’ estimates, if the current incidence
trend continues, by 2030, 60% of the world’s population (that is, 3.3 billion people) may be
overweight or obese [2].

Obesity is a multifactorial condition, resulting mainly from the imbalance between en-
ergy intake and expenditure and leading to the excess accumulation of fat in the body. This,
in turn, causes various metabolic and neurohumoral disturbances maintaining the vicious
circle of excess fat accumulation and increasing the likelihood of a variety of conditions
accompanied by high incidence of morbidity and mortality. They include, in particular,
cardiovascular diseases, type 2 diabetes mellitus (T2DM) [3,4], chronic kidney disease [5],
non-alcoholic fatty liver disease [6], diseases of the musculoskeletal system [7], depres-
sion [8], and different types of cancer [9]. The pathophysiology of obesity is considered to
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be complex and to include the interaction between genetic, environmental, neurohormonal,
microbial, and psychosocial factors [2,4,10]. For a long period of time, it was believed that
all of the negative health effects associated with obesity are due to the excess accumulation
of adipose tissue in the body. However, increasing evidence suggests that a decrease in
skeletal muscle mass and quality, as well as skeletal muscle function, may also be relevant.
Muscles play an important role in energy homeostasis, and they may be involved in the
pathogenesis of obesity due to their impact on insulin resistance, energy expenditure, and
systemic inflammation [10].

Generally, the loss of muscle mass and function, i.e., sarcopenia, was considered
a feature of aging. However, according to the ESPEN and EASO Consensus Statement
on the Definition and Diagnostic Criteria for Sarcopenic Obesity [11], sarcopenia may
arise in individuals with obesity at any age. Indeed, T.L. Silva et al. [12] showed that
the prevalence of sarcopenia among young and middle-aged adults (n = 108, mean age:
43 ± 11.7 years) of both sexes ranged between 11.1% and 13.9% depending on the criteria
being used for the diagnosis of sarcopenia (low muscle mass or low muscle strength,
correspondingly). Additionally, in the study conducted by E. Poggiogalle et al. [13], the
prevalence of sarcopenia in a cohort of 727 participants with obesity (141 males, mean age:
45.6 ± 13.5 years; 586 females, mean age 45.8 ± 13.6 years) was 34.8% in males and 50.1%
in females. This condition, characterized by the simultaneous presence of sarcopenia and
obesity, was named sarcopenic obesity, and is believed to be associated with worse health
outcomes than obesity and sarcopenia on their own, including the higher incidence of
osteoporosis [11,14].

It is well known that serum glucocorticoid (GC) levels are elevated in individuals with
obesity, and this contributes to the development of insulin resistance, hyperglycemia, and
dyslipidemia [15]. The accompanied increase in circulating free fatty acids may result in
the lipid infiltration of the liver, pancreas, and skeletal muscles, leading to the deterioration
of their function. Obesity is also associated with disturbances in sex steroid synthesis
and signaling, negatively affecting fertility [16,17]. On the other hand, owing to the well-
described effects of androgens and estrogens on muscle mass, structure, and function, the
impaired sex steroid balance in obesity may result in the deterioration of muscle health [18].
The fatty infiltration of skeletal muscles is defined as myosteatosis, and is characterized
by the decrease in muscle strength, regeneration capacity, and the profile of biologically
active substances produced by myocytes, i.e., myokines. It was shown that myokines
acting together with other organokines, such as adipokines and hepatokines, may take
part in the pathogenesis of obesity and associated conditions [19,20]. Currently, they are
extensively studied as potential prognostic markers and therapeutic targets [20,21]. We
provide a comprehensive review on the structural and functional changes of skeletal muscle
in the course of obesity, as well as the impact of steroids on this process. To the best of our
knowledge, this is the first multi-faceted review focused on the interactions among adipose
tissue, skeletal muscle, and steroids in patients with obesity.

2. Skeletal Muscles in Obesity

There are three main adipose tissue depots in the body: subcutaneous, visceral, and
ectopic. Ectopic corresponds to the accumulation of adipose tissue in internal organs or
other compartments of the body, including skeletal muscles, which are originally unap-
propriated for the storage of fat [14]. Depending on the localization, fat depots in skeletal
muscles may be classified as intermuscular (adipocytes localized between muscle groups),
intramuscular (adipocytes located between the muscle fibers), and intramyocellular (IMCL,
lipids stored within the myocytes) (Figure 1) [22]. Usually, adipocytes localized between
the muscle fibers (intramuscular fat) and muscle groups (literally intermuscular fat) are
combined by the term “intermuscular” (INTM) fat as both of them represent the fat depots
situated underneath the deep fascia of the muscle, are formed by adipocytes of the same
origin, and have similar significance for the muscle metabolic state [23]. In this review, we
will also use the term “intermuscular fat” to denote both depots.
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Figure 1. Localization of fat depots in skeletal muscles. Intermuscular fat depots represent adipocytes
localized between muscle groups, whereas intramuscular fat depots are adipocytes located between
the muscle fibers. Usually, these two depots are combined by the term “intermuscular fat”. Intramy-
ocellular lipids denote lipid droplets stored within the myocytes.

2.1. Metabolic Properties of INTM Fat

Currently, INTM fat is most often considered to be related to metabolic disturbances.
Indeed, several studies have established that the increase in the amount of INTM fat is
significantly associated with a decrease in muscle mass and strength, as well as insulin
sensitivity [24,25]. Several studies indicate that INTM fat is functionally quite similar to
visceral adipose tissue (VAT), particularly with regard to its ability to induce and maintain
inflammation and influence insulin sensitivity [24,26]. For instance, both INTM fat and VAT
are characterized by the increased expression of interleukin (IL)-6, tumor necrosis factor
(TNF), and plasminogen activator inhibitor 1 (PAI1) [27]. At the same time, the results of
direct comparisons of the qualitive and quantitative composition of inflammatory proteins
secreted by INTM fat, VAT, or subcutaneous adipose tissue (SAT) in individuals with obesity
clearly indicate that INTM depots secrete substantially greater amounts of inflammatory
cytokines (such as interferon-(IFN) γ, IL-2, IL-5, and IL-10) and chemokines compared
to VAT or SAT [28]. Moreover, it was shown that the lipolytic capacity of INTM fat was
significantly greater than the rate of lipolysis in subcutaneous adipose tissue and was
similar to that in VAT [29,30]. Thus, INTM fat may increase the concentration of free fatty
acids in the interstitial space, negatively influencing the local muscle microenvironment
and promoting muscle insulin resistance. In an in vitro study, it was shown that proteins
secreted by INTM fat were able to increase the concentration of 1,2-diacylglycerols within
the myotubes, intramyocellular lipids associated with impaired insulin sensitivity [29].
Sachs et al. [26] demonstrated that the metabolic properties of INTM fat can change and
become more unfavorable with the aggravation of metabolic health. Further, taking into
account the role of insulin signaling in muscle protein synthesis, the impaired insulin
sensitivity of skeletal muscles resulting from myosteatosis may directly contribute to the
decrease in muscle strength and mass [31].

It is suggested that INTM fat may originate from several cell sources, in particular
fibro-adipogenic progenitors, muscle satellite stem cells, adipose-derived stem cells, and
bone-marrow-derived mesenchymal stem cells.
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2.1.1. Fibro-Adipogenic Progenitors

It is believed that adipocytes constituting the INTM depots originate mainly from
fibro-adipogenic progenitors (FAPs) [31]. These cells received their name because of their
ability to differentiate either into fibroblasts or adipocytes. In in vitro studies, it was shown
that the fibrogenic differentiation of FAPs can be induced by transforming growth factor-
β (TGF-β), whereas their differentiation into adipocytes can be stimulated by insulin,
3-isobutyl-1-methylxanthine, and dexamethasone [32–34]. Except for being involved in
muscle tissue regeneration under physiological conditions [35], these cells take part in the
processes of muscle atrophy during disease and aging [36,37]. Moreover, animal studies
showed that FAPs are essential for the maintenance of the amount and function of muscle
stem cells, which are responsible for muscle regeneration and growth [38,39].

It is suggested that FAP differentiation into fibroblasts or adipocytes in the settings
of insulin resistance and impaired metabolism can contribute to the muscle remodeling,
degeneration, and fibrosis taking place in obesity [40]. For instance, it was shown that
thrombospondin 1 (THBS1), an adipokine secreted by adipocytes of white adipose tissue,
is capable of promoting the proliferation of FAPs in obese mice [41]. In addition, chronic
inflammation, being an important pathogenic mechanism in the development of obesity
and associated conditions, may sustain the activated state of FAP, thus contributing to the
development and progression of the so-called fibrofatty degeneration of skeletal muscles in
obesity. It is worth noting that this condition is accompanied not only by the decrease in
muscle function, but also by the increase in the insulin resistance of the muscle tissue. Such
effects may be due to the cytokines expressed either by M1 (IL-1β polarized) or M2 (IL-4
polarized) macrophages infiltrating muscle tissue, and their influence on the processes of
FAP differentiation and adipogenesis [42]. Finally, it was shown that adipocytes derived
from FAPs were characterized by the impaired phosphorylation of insulin receptors, which
contributed to the increase in peripheral insulin resistance [43].

2.1.2. Other Cell Types as Possible Source of INTM Fat

B.H. Goodpaster et al. [25] suggested that, along with FAPs, several other cell types
may participate in the generation of INTM fat depots, including muscle satellite stem cells
(MSCs) and adipose-derived stem cells (ASCs), which migrate into the muscles from other
adipose tissue depots. Although MSCs represent a major source of skeletal muscle cells
and are responsible for muscle tissue regeneration and growth in the postnatal period,
in vitro studies have shown that MSCs do differentiate into adipocytes in the presence
of adipogenic factors [44,45]. However, the exact factors capable of stimulating the MSC
differentiation into adipocytes in vivo remain unknown. For instance, L. Guo et al. [46]
showed that intramuscular preadipocytes might hamper the differentiation of MSCs via
C-Jun N-terminal kinases (JNK)/mitogen-activated protein kinase (MAPK) pathway and
simultaneously facilitate their lipid deposition through peroxisome proliferator–activated
receptor (PPAR) signaling in chickens.

Finally, ASCs and bone-marrow-derived mesenchymal stem cells constitute the third
and even fourth possible sources of INTM fat depots, though the exact mechanisms, as
well as factors contributing to their migration into the muscle tissue bed, require further
investigation [47,48].

2.2. Intramyocellular Fat Depots

Intramyocellular (IMCL) fat depots refer to the accumulation of fat within the my-
ofibers themselves. Inside the muscle fibers, lipids are stored mainly in the form of triacyl-
glycerols (TAG), being localized within the lipid droplets. Other components of such lipid
droplets include diacylglycerols (DAG), sphingolipids, and phospholipids. These depots
are thought to be important for muscle contraction during physical exercises and to be asso-
ciated with the impaired insulin sensitivity in patients with obesity and/or T2DM, as well
as in elderly and sedentary individuals. Indeed, in their study, J.J. Dubé et al. [49] showed
that the completion of a 16-week moderate exercise training program was accompanied by
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the increase in IMCL fat content by 21% in 25 older obese individuals. Additionally, the
authors noticed that physical activity contributed to the increase in the content of triacyl-
glycerols in skeletal muscles and to the decrease in the content of both diacylglycerols and
ceramides within the IMCL depots. This, in turn, resulted in the improvement of insulin
sensitivity. It is worth noting that the above-mentioned effect was independent of weight
reduction, thus suggesting that physical activity itself may have a beneficial effect on the
metabolic health of obese adults.

These described findings are in line with the so called “athlete’s paradox”; that is, the
higher amounts of IMCL fat in the muscles are observed not only in patients with obesity
and/or T2DM, but also in endurance-trained athletes (Figure 2) [49–51]. There are several
possible explanations for this phenomenon. First, the increase in the IMCL fat amount in
trained athletes is necessary to provide enough substrates for energy metabolism during
regular physical exercise, whereas in obese patients and patients with T2DM, the IMCL
depots serve as storage for excess fat [52]. Second, the content of IMCL depots does differ
between the endurance-trained athletes and obese adults. In particular, the latter have
greater amounts of DAGs and ceramides within the IMCL depots. These substances are
regarded as lipid metabolites, and the increase in their content within the myofibers is
suggested to be associated with impaired insulin sensitivity, possibly due to the decrease in
muscle oxidative capacity [49]. Accordingly, B.C. Bergman et al. [51] demonstrated that
physical exercise promoted the decrease in di-saturated DAG concentration both within
the membrane and cytosol, and this resulted in the insulin sensitization of skeletal muscles.
Moreover, A Gemmink et al. [53] showed that trained athletes had higher concentrations
of perilipin 5 (PLIN5), a lipid droplet coating protein, compared to patients with T2DM.
Although the content of PLIN5 was not significantly associated with the size and number
of lipid droplets, it was positively correlated with the muscle oxidative capacity.

Third, the rate of TAG synthesis within the myofibers differs between the endurance-
trained athletes, insulin resistant obese patients, and lean sedentary individuals, being the
highest in the former. These data suggest that high rates of IMCL fat synthesis, which influ-
ences intramuscular lipid structuring and localization, can help to prevent the formation of
insulin resistance [50,51]. In relation to lipid droplet partitioning, it was established that
the accumulation of triglycerides in the sarcolemma and nucleus was negatively corelated
with insulin sensitivity, whereas the localization of IMCL fat depots in close relation to
mitochondria and the endoplasmic reticulum was not associated with the development of
insulin resistance and appeared to facilitate the oxidation of TAGs [51,54]. Similar results
were obtained in the study by M.C. Devries et al. [55] that included 11 obese and 12 lean
sedentary women who underwent the 12-week endurance training program. Though the
endurance training did not result in weight loss, it led to the increase in muscle oxida-
tive capacity. Additionally, after the completion of the endurance training program, the
localization of the IMCL fat depots changed in both groups: the content of IMCL lipid
droplets in the subsarcolemmal region reduced, whereas the content of IMCL fat depots in
the intermyofibrillar compartment increased. Finally, the saturated vs. unsaturated fatty
acid ratio within the IMCL fat depots may also be relevant. Indeed, D. Kahn et al. [54]
showed that patients with T2DM had the highest content of saturated fatty acids within
the myofibers, and this appeared to be significantly associated with insulin resistance.

Interestingly, the degree of lipid accumulation within IMCL depots in obesity may
depend on the type of muscle fibers. In their study, N. Umek et al. [56] demonstrated
that the fast-twitch muscles of obese mice (i.e., gastrocnemius and intermediate plantaris
muscles) were characterized by the greatest content of IMCL lipid droplets, while in slow-
twitch muscles (soleus muscle), there was no significant lipid accumulation. Furthermore,
the authors described an increase in the expression of fast-type myosin heavy chain in the
slow-twitch soleus muscles of the obese mice.
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Figure 2. Possible explanations for “athlete’s paradox”. The term “athlete’s paradox” describes a
condition characterized by high amounts of IMCL fat in the muscles observed both in patients with
obesity and/or T2DM, and in endurance-trained athletes. In obese individuals, the IMCL depots are
located mainly in fast-twitch muscle fibers and contain high amounts of ceramides and diacylglycerols
(DAGs), as well as low concentrations of perilipin 5 (PLIN5) and triacyclglycerols (TAGs). In contrast,
in endurance-trained athletes, IMCL droplets are situated primarily in slow-twitch muscle fibers
and carry high amounts of TAGs and PLIN5 along with low concentrations of lipid metabolites,
such as DAGs and ceramides. The intracellular localization of IMCL depots also differs between
endurance-trained athletes and patients with obesity. In particular, in athletes, lipid droplets are
located predominantly in close relation to mitochondria and the endoplasmic reticulum, while in
obese individuals, they may be found in the sarcolemma, subsarcolemmal, or perinuclear regions.
Overall, these differences determine a decrease in muscle oxidative capacity and insulin sensitivity
in obese patients in contrast to the athletes, despite similar numbers of IMCL depots within the
muscle fibers. Up-oriented arrows (↑) indicate up-regulation. Down-oriented arrows (↓) indicate
downregulation. The number of arrows corresponds to the magnitude of the differences.
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In summary, one can conclude that not only the amount, but also the composition and
localization of IMCL fat depots within the myofibers may be crucial for the development of
insulin resistance and the deterioration of metabolic health in obese patients. Additionally,
the capacity of skeletal muscles for lipid oxidation may be the factor determining the
association between IMCL fat content and insulin resistance and may depend on muscle
composition as well as metabolic flexibility.

2.3. Skeletal Muscle Composition and Metabolic Flexibility in Obesity

Skeletal muscle metabolism is crucial for total daily energy expenditure; along with
the brain, liver, heart, and gastrointestinal tract, skeletal muscles are regarded as major
contributors to overall metabolic rate [57]. This is due to their participation in resting
energy expenditure and ability to increase energy expenditure with physical exercise [58].
Depending on metabolic activity, fatigability, mitochondrial content, and movement rates,
muscle fibers may be classified into two different types: type I (slow-twitch or oxidative)
and type II (fast-twitch or glycolytic) muscle fibers [59,60]. Type II fibers can be further
classified as type IIa fibers, also called fast-oxidative glycolytic fibers or intermediate
fibers, and IIx fibers, also termed fast glycolytic fibers. The latter contain high amounts
of glycogen and use primarily anaerobic metabolism to generate adenosine triphosphate
(ATP), so they are characterized by relatively small numbers of mitochondria [59,61].
It is believed that the distribution of muscle fiber types within muscle groups varies
substantially among individuals and may be influenced by both environmental (nutrition,
physical exercises, etc.) and biological factors (age, gender, genetics, etc.), thus determining
the individual differences in daily energy expenditure, as well as the individual risk for
sustaining a positive energy balance, and, as a consequence, weight gain [58,61]. Indeed, it
was established that patients with obesity have lower proportions of type I muscle fibers
characterized by an increased number of mitochondria and, at the same time, greater
proportions of type IIx fibers compared with lean individuals [61–63]. These data are
confirmed by the results of D.A. Reiter et al., suggesting that obesity is associated with
reduced muscle energetic efficiency with a predominance of glycolysis over oxidation
processes [64].

In addition to disturbed proportions of different muscle fibers, mitochondria content
and muscle tissue metabolism are also altered in obesity. To define the ability of muscle
fibers to use either glucose or fatty acids as a fuel depending on the availability of the
substrates, physical activity, and conditional changes in metabolic or energy demand,
the term “muscle metabolic flexibility” was proposed [65]. This concept, named the
Randle Cycle, was first suggested by P.J. Randle et al. in 1963 [66] to describe the fuel
selection in the transition from fasting to fed states and to characterize its role in insulin
sensitivity and metabolic health. Nowadays, the term “metabolic flexibility” is used with
respect to physiological adaptability and encompasses several other tissues and metabolic
circumstances.

Increasing evidence suggests that an inability to adapt to metabolic stimuli, such as
insulin signaling or fatty acid exposure, may lead to the decrease in muscle oxidative ca-
pacity characteristic of obesity [67–69]. In their study including 28 juvenile Iberian pigs fed
either a control or a high-fructose, high-fat (HFF) diet for 10 weeks, H.C. Spooner et al. [70]
demonstrated that the HFF diet resulted in decreased IMCL fat content and in the forma-
tion of less oxidative skeletal muscle phenotype, reflecting the disturbed ability of skeletal
muscles to use lipids as a fuel. These changes were similar to the effects of detraining or
muscle atrophy, indicating the reduced capacity of muscles to perform endurance-type
exercises [71]. These effects may be followed by a long-term decrease in muscle mass and
strength. Indeed, G.V. Hernandez et al. [72] showed that there was a reduction in plasma
creatinine levels in juvenile Iberian pigs fed an HFF diet during 10 weeks, suggesting a
tendency towards deterioration in muscle growth in this animal model.

Disturbed muscle oxidative capacity is believed to be associated with both changes
in the proportions of muscle fiber types and mitochondrial dysfunction (Figure 3). It was
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shown that obesity is accompanied by a decrease in mitochondrial surface area by, on
average, 20–60%, as well as by the substantially lower expression of mitochondrial genes
and metabolites [67,68,73]. Accumulating data suggest that obesity has an unfavorable
impact on the activity of the mitochondrial electron transport chain and oxidative phospho-
rylation, as well as stimulating the production of reactive oxygen species (ROS), facilitating
mitochondrial fragmentation and mutations in mitochondrial DNA [74]. This may be due
to mitochondria lipid overload, which causes incomplete β-oxidation and, consequently,
the accumulation of lipid intermediates, such as ceramides. It was shown that ceramides
could affect membrane potential, electron transport, and mitochondrial morphology, re-
sulting in mitochondrial dysfunction [74]. In these settings, the expression of peroxisome
proliferator-activated receptor–gamma coactivator-1alpha (PGC-1α), known to be involved
in mitochondrial biogenesis, and to exert antioxidant action is being downregulated in
order to prevent further mitochondrial function deterioration due to the accumulation
of damaged mitochondrial DNA [75]. PGC-1α is also known to regulate lipid oxidation,
energy homeostasis, and insulin sensitivity. In particular, it was demonstrated that the
inactivation of PGC-1α expression in skeletal muscles in mice led to a shift from oxidative
type I and IIa muscle fibers toward type IIx and IIb glycolytic muscle fibers [76]. On the
contrary, elevated levels of PGC-1α in the skeletal muscles of transgenic mice were shown
to protect against age-related obesity and T2DM [77]. The results of these studies reflect the
important role of PGC-1α in promoting effective muscle energy metabolism and regulating
energy balance in the body.

Interestingly, weight loss does not necessary lead to an increase in mitochondrial num-
ber and the recovery of mitochondrial function. In their study, E.V. Menshikova et al. [78]
assessed the impact of weight loss through calorie restriction (n = 7) or moderate-intensity
exercise (n = 10) on skeletal muscle mitochondrial content, mitochondrial enzyme activities,
and insulin resistance in 17 overweight or obese individuals aged 60–75 years. Interestingly,
although both interventions resulted in weight loss and improved insulin sensitivity, only
physical activity was associated with an increase in mitochondria content and the activity
of enzymes involved in mitochondrial electron transport chain and fatty acid oxidation
within the skeletal muscle.

2.4. Myokines in Obesity

Recently it was established that skeletal muscles produce some biologically active
substances called myokines, which facilitate the crosstalk between muscles and some other
organs and tissues, such as adipose tissue, brain, liver, bone, and kidney. The production
and secretion of nearly all such molecules, namely, irisin/fibronectin type III domain-
containing protein 5 (FNDC5), IL-15, IL-6, brain-derived neurotrophic factor (BDNF), and
myonectin, are upregulated during muscle contraction and physical exercise [75]. Here,
we will discuss the role of the two most studied PGC-1α-dependent myokines, irisin and
myostatin, in the deterioration of muscle structure and function in obesity.

2.4.1. Irisin

A recent meta-analysis concluded that circulating irisin levels were higher in obese
individuals compared to healthy controls, though they appeared to be affected by ethnicity
and age [79]. Irisin is produced by the proteolytical cleavage of FNDC5 during muscle
contraction and physical exercise. It is a PGC-1α-dependent myokine, able to increase the
browning of white adipose tissue by increasing the expression of uncoupling protein 1
(UCP-1). Adipose tissue and liver are also able to secret this molecule in small amounts [80].
The elevation in circulating irisin levels in patients with obesity without T2DM may be
explained by the existence of obesity-induced metabolic dysfunction, particularly insulin
resistance. In this case elevated irisin levels may represent an attempt to maximize glucose
uptake by skeletal muscle and prevent hyperglycemia [81,82]. Interestingly, it was shown
that after the onset of T2DM, the expression of FNDC5 in the muscle of treatment-naïve
patients in vivo was reduced by ~15%. However, in in vitro experiments, myotubes isolated
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from these patients were capable of expressing FNDC5 in greater amounts than myotubes
taken from lean individuals [81]. In contrast, it was shown that the irisin secretion from
adipocytes in patients with obesity is lower than in lean controls [81,83]. However, as the
body fat mass is substantially increased in patients with obesity, the overall levels of irisin
secreted by adipose tissue in patients with obesity may be quite similar or even superior to
those in lean individuals.
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Figure 3. Disturbed muscle metabolic flexibility in obesity and possible role of glucocorticoids. Dis-
turbed muscle oxidative capacity is believed to be associated with both the change in the proportions
of muscle fiber types and mitochondrial dysfunction. Patients with obesity have lower proportions
of type I muscle fibers characterized by an increased number of mitochondria and, at the same time,
greater proportions of type IIx fibers compared with lean individuals. Thus, obesity is associated
with reduced muscle energetic efficiency with a predominance of glycolysis over oxidation processes.
In addition, obesity is characterized by the decrease in mitochondrial surface area, substantially
lower expression of mitochondria genes, and reduced activity of the mitochondrial electron transport
chain. This causes incomplete β-oxidation and, consequently, the accumulation of lipid intermediates,
capable of affecting mitochondrial morphology and function. Disturbed oxidative phosphorylation
leads to the increased production of reactive oxygen species (ROS), which facilitate mitochondrial
fragmentation. In these settings, the expression of peroxisome proliferator-activated receptor–gamma
coactivator-1alpha (PGC-1α), which is initially lower in type IIx fibers compared to type I fibers, is
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being downregulated, further aggravating mitochondrial damage and dysfunction. It is well known
that serum glucocorticoid (GC) levels are elevated in individuals with obesity, and this contributes to
the development of insulin resistance, hyperglycemia, and dyslipidemia. Moreover, GCs appear to
be involved in the disturbance of muscle metabolic flexibility in obesity. It is established that type IIx
muscle fibers, being the predominant muscle fiber type in patients with obesity, are characterized
by greater susceptibility to GCs, possibly due to the greater expression of GC receptors. Therefore,
the negative effects of GCs on skeletal muscle may be more pronounced in patients with obesity.
Additionally, GCs are known to increase the accumulation of lipid intermediates in skeletal muscle,
thus facilitating mitochondria dysfunction and impairment of muscle energy metabolism. Up-
oriented arrows (↑) indicate up-regulation. Down-oriented arrows (↓) indicate downregulation. The
number of arrows corresponds to the magnitude of the differences.

It is worth noting that plasma irisin levels may be significantly decreased following
weight loss due to bariatric surgery. This effect may be explained by the decrease in fat-free
mass during weight loss and, as a consequence, lower FNDC5 mRNA expression in skeletal
muscle. In support of this suggestion, the irisin concentration returned to baseline levels in
patients who regained the original weight [84,85]. However, the contribution of adipose
tissue to the increase in total irisin levels upon weight regain cannot be excluded. These
data also confirm the notion that an increase in irisin levels in patients with obesity may
mirror metabolic disturbances characteristic of these patients, and may be directed at the
compensation of these abnormalities [20].

According to J. Jia et al. [79], irisin levels were higher in young participants compared
to older ones, possibly due to the age-related decline in muscle function. These authors
further found out that irisin levels were higher in obese individuals compared to controls
when they were from Africa, while no significant differences were described in European,
Asian, or American populations. These inconsistencies may result from genetic factors
capable of influencing the levels of irisin, as well as from the differences in body mass index
(BMI) criteria used to diagnose overweight and obesity in the Asian population.

Moreover, it was shown that irisin expression may be associated with some anti-
inflammatory markers [86]. In particular, irisin was able to suppress the expression of
pro-inflammatory cytokines, nuclear factor-kappa B (NF-κB), TNF-α, and IL-6. In addition,
irisin reduced the monocyte chemoattractant protein 1 (MCP-1) expression in cultured
adipocytes with the subsequent attenuation of macrophage migration in the presence
of irisin. Irisin was also able to induce the transition from the M1 (pro-inflammatory)
macrophage phenotype to the M2 (anti-inflammatory) phenotype [86,87].

Therefore, taking into account the above-mentioned information, irisin seems to play
a protective role in the development of metabolic dysfunction in obesity directed at the
attenuation of insulin resistance and inflammation, as well as at the improvement of energy
metabolism. However, its concentration may be decreased in case of sarcopenic obesity.

2.4.2. Myostatin

Myostatin, also known as growth and differentiation factor 8 (GDF8), is a member of
the TGF-β superfamily. It is expressed predominantly in skeletal muscle, and its secretion
and production are inhibited during muscle contraction and exercise [88]. Except for
being involved in muscle atrophy [89], myostatin is regarded as a potential modulator of
metabolic homeostasis acting through the regulation of adipose tissue function [90,91]. With
regard to its effects, myostatin may be considered an irisin antagonist. For instance, it was
demonstrated that the inhibition of myostatin was able to decelerate the development of
insulin resistance and obesity in mice fed a high-fat diet, possibly due to the intensification
of lipolysis and mitochondrial lipid oxidation in liver and adipose tissue. Moreover, it
was shown that the inactivation of myostatin resulted in the formation of brown adipose
tissue in the white adipose tissue of myostatin knockout mice [92]. This mouse line
was also characterized by the upregulation of the expression and phosphorylation of
adenosine monophosphate (AMP)-activated protein kinase (AMPK) in muscle, leading to
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the activation of PGC-1α and FNDC5 [93]. A study by M. Amor et al. reported an increase
in serum myostatin concentrations in patients with obesity compared to lean individuals
with no differences in myostatin expression in adipose tissue [90]. The authors showed
that circulating myostatin levels were positively correlated with insulin resistance, while
muscle myostatin gene expression was strongly associated with the expression of metabolic
genes, particularly the insulin receptor substrate-1 (IRS-1) gene and sterol regulatory
element binding transcription factor 1 (SREBTF1) gene [90]. Interestingly, the inhibition of
myostatin expression in mice was accompanied by an improvement in insulin sensitivity:
myostatin knockout mice were even more insulin sensitive than wild-type mice, suggesting
that myostatin’s effect on insulin signaling may be independent of muscle mass [94].
Accordingly, physical exercises, bariatric surgery [95], and a calorie-restricted Dietary
Approaches to Stop Hypertension (DASH) diet [96], due to their well-known beneficial
effects on insulin sensitivity, were demonstrated to suppress myostatin production in
skeletal muscles.

Accumulating data suggest that myostatin is expressed in the human reproductive
system and may have different functions. For instance, myostatin is involved in the reg-
ulation of steroidogenesis, cell proliferation, the formation of extracellular matrix, and
gonadotrophin responsiveness, thus influencing the process of cell differentiation in emerg-
ing follicles [97]. In addition, it is suggested that myostatin may be involved in the patho-
genesis of some ovarian diseases, particularly polycystic ovary syndrome and ovarian
hyperstimulation syndrome [98,99].

In view of the important role of myostatin in muscle atrophy, sarcopenia, and fat
accumulation, this substance represents a promising direction for future research with
respect to aging and obesity being associated with the growing incidence of chronic non-
communicable diseases.

3. Steroids, Obesity, and Skeletal Muscles
3.1. Glucocorticoids

Glucocorticoids are considered to be major regulators of metabolism in the whole
body. Skeletal muscle represents the key GC target tissue, where GCs primarily regulate
protein and glucose metabolism [100]. The main metabolic consequence of GCs’ action in
skeletal muscle is the increase in blood glucose concentration aiming to provide enough
glucose to fuel the brain during stress. This may be achieved by the inhibition of glucose
uptake by muscle cells, the decrease in protein synthesis and increase in proteolysis, and
the suppression of glycogen synthesis in skeletal muscles [15,100].

A recent study A.Z. Shirif et al. [101] showed that the combination of a high-fructose
diet and chronic stress resulted in the increased PPAR-α and PPAR-δ expression in the
skeletal muscle of male rats after 9 weeks of exposure. This, in turn, led to the activation
of β-oxidation and promoted the use of fatty acids instead of glucose as a fuel in skeletal
muscles, concomitant accumulation of lipid intermediates, and induction of insulin resis-
tance via the activation of inflammation [102]. Additionally, A.Z. Shirif et al. described
a decrease in GC signaling in the skeletal muscles of fructose-fed stressed rats, which, in
the author’s opinion, may predispose to the initiation and maintenance of lipid-induced
inflammation in the muscle tissue, further affecting its metabolism [101].

Nowadays, GCs represent the first-line treatment for Duchenne muscular dystrophy
(DMD), as they are able to slow the deterioration of muscle function and physical per-
formance by reducing the inflammation [102]. Additionally, recent studies indicate that
glucocorticoids may have either pro- or anti-adipogenic effects on FAPs, and this depends
on the type of glucocorticoids used and on the culture conditions. For example, according
to the results of in vitro studies, budesonide exerts anti-adipogenic properties when added
to actively proliferating FAPs in the presence of adipogenic induction medium, in contrast
with halcinonide and clobetasol, which do not influence adipogenesis [103].

It is considered that the effect of GCs on skeletal muscles may depend on the duration
of administration and dosing regimen. For instance, it was established that short-term
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administration of GCs might be beneficial for physical performance and for muscle recovery
from injury due to the anti-inflammatory properties of GCs [104,105]. Additionally, M.
Quattrocelli et al. [106] showed that although both daily and pulsatile dosing regimens of
GCs enhanced muscle repair after acute injury in dystrophic mice, only the pulsatile dosing
regimen (once-weekly administration of GS over 4 weeks) was able to enhance muscle
function and physical performance, while daily dosing of GCs resulted in muscle wasting.
The authors documented that the negative effect of daily dosing was associated with the
activation of atrophic pathways, particularly F-box protein 32 (Fbxo32) in skeletal muscles,
while once-weekly dosing was accompanied by a decrease in Fbxo32 expression [106].

Chronic GC use is associated with negative consequences, namely, obesity and
metabolic disturbances, as well as muscle atrophy [107,108]. The regulation of muscle
atrophy induced by chronic GC exposure appears to be associated with the activity of
enzyme 11-beta hydroxysteroid dehydrogenase 1 (11β-HSD1), which converts cortisone to
cortisol. This enzyme is also involved in the development of GC-induced insulin resistance,
a factor possibly contributing to muscle atrophy [109,110]. The effect of GCs on fast- and
slow-twitch skeletal muscles is not similar: fast-twitch skeletal muscles are more susceptible
to the negative impact of GCs (Figure 3). This phenomenon may have several explanations.
First, slow-twitch skeletal muscles may have greater importance in life support, as they
participate in the maintenance of posture and respiration. Second, the expression of the
GC receptors differs between the fiber types, i.e., fast-twitch muscles are characterized
by the abundant expression of GC receptors [111,112]. Third, the differences may be due
to the expression of PGC-1α in the slow-twitch fibers, which is lacking in the fast-twitch
fibers. This substance is believed to prevent the development of muscle atrophy induced
by fasting [113] and to promote muscle tissue remodeling to a fiber-type composition
characterized by greater oxidative (and, consequently, less glycolytic) capacity [114].

Taking into account the known sexual dimorphism of skeletal muscles, I. Salamone
et al. [115] analyzed whether there are any differences in the muscle response to steroids
between male and female mice. The authors showed that once-weekly GC exposure re-
sulted in the increased expression of genes participating in the insulin growth factor 1
(IGF-1)/phosphoinositide 3-kinase (PI3K) pathway, which is known to be strongly impli-
cated in muscle growth [116], as well as genes involved in calcium handling in male mice.
In contrast, there was an upregulation of genes implicated in lipid metabolism in the skele-
tal muscles of female mice receiving GCs once-weekly during one month. Interestingly, the
upregulated genes also have sexually dimorphic expression in skeletal muscles [117,118],
and this may be due to the possible differences in fiber type, as female muscles appear to
have a greater proportion of oxidative fibers compared to male muscles [119]. Moreover,
weekly treated female mice exhibited a decrease in adipocyte size, whole-body percentage
fat mass, and visceral fat pad size, while these changes were not described in treated male
mice [115].

Other sex differences in muscle phenotypes between males and females are presented
in Table 1.

Table 1. Sex differences in muscle phenotypes.

Parameter Males Females Reference

Muscle fiber type
More glycolytic fibers

(fast-twitch) compared
to females

More oxidative fibers
(low-twitch) compared to

males
[118,120]

Satellite cells

Greater number of
satellite cells and higher

proliferation capacity
compared to males

Less number of satellite cells
and reduced proliferation

capacity compared to
females

[121,122]

Susceptibility to atrophy
More susceptible to

inflammation-induced
atrophy

More susceptible to
disuse-induced atrophy [123,124]
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Table 1. Cont.

Parameter Males Females Reference

Predominant
mechanism of protein

degradation
Autophagy Ubiquitin–proteasome

system [125–127]

Age-related shift in
myofiber types

Towards type 1
(slow-twitch) dominant

composition
No shift occurs [124]

Top-ranked
differentially expressed

process during aging

Oxidative
phosphorylation Cell growth [124]

3.2. Sex Steroid Hormones

Sex steroid hormones, namely, testosterone, estrogen, and progesterone, act as anabolic
hormones and are involved in the maintenance of skeletal muscle mass and function
(Figure 4) [128]. Estrogen and androgen receptors are expressed by muscle satellite cells,
myoblasts, and myocytes, while progesterone receptors may be found at myocytes [129].
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Figure 4. Key effects of estrogens, progesterone, and androgens on skeletal muscle. Obesity is
known to be associated with reduced serum progesterone and estradiol concentrations in women,
as well as with decreased production and secretion of androgens in men. Taking into account the
beneficial effects of sex steroids on skeletal muscle, these changes in their serum concentrations
may represent an additional mechanism contributing to the decline in muscle mass and function
in obesity. AR = androgen receptor; ATP = adenosine triphosphate; ER = estrogen receptor; GCs
= glucocorticoids; GH = growth hormone; IGF-1 = insulin growth factor 1; PGC-1α = peroxisome
proliferator-activated receptor-gamma coactivator-1alpha; PR = progesterone receptor. Up-oriented
arrows (↑) indicate up-regulation. Down-oriented arrows (↓) indicate downregulation.

3.2.1. Estrogens

It is considered that estrogen-mediated beneficial effects on skeletal muscle function,
namely, the mitigation of muscle injury and enhancement of muscle repair after damage,
may be associated with their ability to maintain a permanent number and function of
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satellite muscle cells, exert antioxidant action, particularly in the case of mitochondrial
stress, and to increase muscle cell membrane stability. Additionally, estrogens are believed
to participate in several signaling pathways, such as the modification of contractile proteins
and apoptosis, involved in the preservation of muscle mass and strength [130]. Estrogens’
effects on skeletal muscle may be mediated by direct binding to their receptors situated at
the level of muscle fibers, and indirectly through the regulation of the growth hormone–
IGF-1 axis [131,132].

The decline in estradiol levels, characteristic of menopausal transition, is accompanied
by the increased visceral adiposity as well as decreased muscle mass and strength and
diminished bone mineral density [133]. Chronic low-intensive inflammation represents
the pathophysiological mechanism common for all of the above-mentioned conditions. It
was demonstrated that 17β-estradiol is capable of suppressing the production of several
pro-inflammatory cytokines, namely, TNF-α, thus protecting skeletal muscle from wasting
and facilitating recovery from injury [134,135]. It is worth noting that hormone replacement
therapy containing estradiol was shown to be able to reverse both menopause-related obe-
sity and loss of lean mass in healthy post-menopausal women, possibly due to the anabolic
effect on skeletal muscle. Interestingly the overall body weight remained unchanged [136].

3.2.2. Progesterone

Progesterone is another female sex hormone, whose concentration increases dramat-
ically during the luteal phase of the menstrual cycle. Studies concerning the impact of
endogenous progesterone on skeletal muscle structure and function are limited. Most of
the data concerning the influence of progesterone on skeletal muscles come from studies in
women taking hormone replacement therapy or oral contraceptives. Increasing evidence
suggests that the binding of progesterone to its receptors found on the outer membrane of
mitochondria results in the enhancement of beta-oxidation and oxidative phosphorylation,
which leads to increased ATP synthesis, thus providing muscles with the energy necessary
for the maintenance of their mass and function [137,138]. Moreover, progesterone may
have a beneficial effect on muscle protein turnover in postmenopausal women. It was
demonstrated that 100 mg/day progesterone therapy for 14 days was accompanied by
an increase in muscle protein synthesis by 50% in post-menopausal women [139]. Finally,
progesterone, as estrogen, may preserve the regenerative capacity of skeletal muscles by
maintaining the number and function of muscle satellite cells [140].

With regard to obesity, in a study by R.M. Whynott et al. [141], it was shown that
both BMI and body weight correlated negatively with serum progesterone concentrations.
These data were confirmed by the findings from J. Bellver et al. [142] indicating that serum
progesterone concentrations decreased with increasing BMI; therefore, underweight or
normal weight women had higher progesterone concentrations compared to overweight
or obese women. Among others, decreased serum progesterone concentrations in obesity
may participate in the negative impact of excess body fat on the overall body composition,
particularly skeletal muscle mass.

3.2.3. Androgens

Androgens have anabolic effects on skeletal muscle, which may decline with age.
Furthermore, it is well established that obesity is associated with the decreased production
and secretion of androgens in men, providing an additional mechanism for the depletion
of skeletal muscle mass and deterioration of their function in obesity. On the contrary, high
levels of bioavailable serum testosterone may be the factor predisposing to the development
of obesity in women [18]. These data are confirmed by the study in 1765 postmenopausal
women indicating that high BMI at the moment of the inclusion was associated with
elevated serum concentrations of androgen metabolites [143].

Although the precise mechanisms by which androgens affect muscle mass and strength
remain unclear, several hypotheses are discussed. First, testosterone may increase muscle
protein synthesis via the acceleration of intracellular amino acid reutilization. This, in turn,
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leads to the enlargement of muscle fibers and muscle hypertrophy [144]. At least in part,
such a mechanism of testosterone action may be explained by its ability to upregulate the
expression of myogenin and the mammalian target of rapamycin (mTOR) and to inhibit
the production of myostatin, a myokine with a negative impact on muscle structure and
function [145,146]. Second, the results of in vivo studies also demonstrate that testosterone
may stimulate satellite cell division [147]. Third, it is suggested that testosterone is able to
increase intracellular concentrations of Ca2+ in myoblasts via G-protein cupelled receptor,
thus promoting myoblast growth [148]. Finally, androgens were reported to increase IGF-1
expression [149].

Importantly, androgen receptors and glucocorticoid receptors have 79% and 50%
homology in the DNA- and ligand-binding domains; therefore, the anti-catabolic activity
of testosterone may be explained by interfering with cortisol binding to its receptor or
by competition with cortisol–glucocorticoid receptor complexes for DNA-binding sites.
Moreover, testosterone is capable of decreasing glucocorticoid receptor expression in muscle
tissue [149].

Both estrogen and testosterone have protective effects on mitochondria in muscle
tissue, which may be attributed to their direct action on these organelles via binding with
either estrogen or androgen receptors localized on them, as well as to indirect action
through the regulation of mitochondrial protein expression at the level of nuclear and
mitochondrial DNA. Estrogen and testosterone are also able to activate PGC-1α expression
in the muscle and to inhibit mitophagy [150–153].

4. Conclusions

In conclusion, considering the high prevalence of obesity worldwide, as well as the
increasingly recognized problem of sarcopenic obesity associated with negative health
outcomes, clarifying the underlining pathophysiological mechanisms is of great impor-
tance. Obesity is characterized by ectopic fat accumulation in skeletal muscles, leading
to increased intermuscular fat deposition and the enhancement of intramyocellular lipid
droplet generation. Both these processes are accompanied by the deterioration of muscle
structure and function, the disturbance of muscle regeneration capacity, and the impairment
of energy metabolism. In turn, the above-mentioned negative changes may lead to the
shift in myokine profile and, thus, to the formation of the vicious circle facilitating excess
fat accumulation, decreasing muscle mass, and aggravating muscle function. Elevated
serum GCs levels, as well as decreased serum concentrations of sex steroids associated
with obesity, may represent the additional mechanism contributing to the disturbance in
muscle metabolic flexibility, oxidative capacity, and decreased muscle energetic efficiency,
further promoting the deterioration of muscle function, growth, and regeneration capacity.
Taking into account the known sexual dimorphism of skeletal muscles and variations in
the response to steroids depending on gender, the mechanisms of skeletal muscle dysfunc-
tion in obesity may differ between men and women. The provided data on the complex
interaction between skeletal muscle, adipose tissue, and steroids in obesity indicate the
possible need for differentiated and individualized approaches to obesity treatment and
the correction of the accompanied decrease in muscle mass and function.
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