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Abstract: The prediction of drug combinations is of great clinical significance. In many diseases,
such as high blood pressure, diabetes, and stomach ulcers, the simultaneous use of two or more
drugs has shown clear efficacy. It has greatly reduced the progression of drug resistance. This review
presents the latest applications of methods for predicting the effects of drug combinations and the
bioactivity databases commonly used in drug combination prediction. These studies have played a
significant role in developing precision therapy. We first describe the concept of synergy. we study
various publicly available databases for drug combination prediction tasks. Next, we introduce five
algorithms applied to drug combinatorial prediction, which include traditional machine learning
methods, deep learning methods, mathematical methods, systems biology methods and search
algorithms. In the end, we sum up the difficulties encountered in prediction models.

Keywords: drug combination; synergistic effect; drug resistance; side effects; machine learning;
deep learning

1. Introduction

As a new cross-discipline, pharmacogenomics mainly studies how genomic changes
affect drug response and explains the role of drugs in clinical treatment. So far, it is still
challenging to use transcriptome data to predict drug responses in tumors because of
the heterogeneity between cell lines and tumor cells [1]. Cell lines are cells grown in the
laboratory from tumor tissue, while tumor cells are cells in real tumor tissue. Genomic
and epigenetic differences exist between cell lines and tumor cells, including mutation,
copy number variation, DNA methylation, histone modification, etc. Therefore, there are
some differences in cell state, metabolic characteristics and cell signaling pathways between
cell lines and tumor cells. This heterogeneity makes it challenging to use transcriptome
data from cell lines to predict drug response in tumors. In predicting the sensitivity of
melanoma to drugs, Barretina J. et al. [2] found that when applied exclusively to melanoma-
derived cell lines, classifiers built using entire cell line datasets performed poorly, with a
true positive of only about 0.6 when the false positive was 0.2. Models built using only
melanoma cell lines performed better on the receiver operating characteristic (ROC) curve,
with a true positive of 0.8 when the false positive was 0.2.

Similarly, there is considerable heterogeneity in inter-tumor and intra-tumor cells.
Even patients with the same cancer type may have different prognoses under the same
clinical treatment. Tumor heterogeneity makes tumor drug resistance become an urgent
problem to be solved. Drug resistance is mainly caused by these mechanisms, such as the
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mutation of drug target [3], increased efflux of drugs [4] and amplification of an alternate
pathway [5]. The main strategy to overcome tumor drug resistance is combination therapy.
Combination therapy uses a variety of drugs in the process of treatment, which not only
reduces drug intake and side effects but also improves the therapeutic effect by targeting
multiple genes and pathways at the same time [6].

In vivo, animal experiments and in vitro drug screening for “case-by-case” identifi-
cation are the main source of traditional methods for drug combinatorial discovery, but
these methods are often tedious, expensive, and labor intensive [7]. In the past few decades,
efficient approaches like microarray, next-generation sequencing, and multi-omics data have
been developed to solve this problem [8,9]. As the number of potential drug components in-
creases, the number of potential drug and dose combinations increases exponentially. Thus,
systematically screening all possible drug combinations is not feasible [10]. Therefore, the
search space for drug combinations requires appropriate computational methods urgently.

As shown in Figure 1, the synergy scoring system is broken down into four sections
according to the flow of the prediction model. Section A clearly explaining the concept of
synergism and antagonism between drug combinations, then input the query combina-
tions. Section B provides information on associated databases, such as gene expression and
synergistic drug combination databases. Section C introduces several useful computational
methods, including traditional machine learning, deep learning (DL), mathematical meth-
ods, systems biology methods and search algorithms. Finally, the experimental validation
will be needed, illustrated in Section D.
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Figure 1. The workflow of the synergy scoring system of the drug combination. In predicting
drug combination response, the model calculates synergistic scores according to the quantification
of synergistic effect, input biological data and chemical information using a specific synergistic
quantification method. Finally, in vitro/in vivo experiments were carried out.

2. Quantification of Synergistic Effect

The problem of predicting drug combinations is usually defined as a classification
or regression task. According to the definition, combined effects can be divided into
synergistic, additive, and antagonistic effects because their effects are superior to, equal to,
or inferior to the sum of the effects of each drug, respectively [11]. In the regression
task, the basic assumptions for quantifying the synergistic or antagonistic effects of drug
combinations are different according to the models [12]. The most used models in vivo and
in vitro methods are the Loewe additivity model (Loewe) [13] and the Bliss independent
model (Bliss) [14]. The overall structure of the drug combination response is shown in
Figure 2.
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Figure 2. The overall framework of drug combination response prediction model. The principle
of predicting drug combination response is to use the information provided by the database and
advanced computational models to predict the synergy score of a specific cell line for a specific
drug combination.

2.1. Loewe Additivity Model

The Loewe additivity model defines the effect of a compound in combination with its
combined effect. Synergistic and antagonistic effects are defined by Loewe as deviations
from strict additive behavior. The doses of drugs 1 and 2 for the combination should be d1
and d2. D1 and D2 represent the dose of drugs 1 and 2 required to achieve the combination
effect when used alone. Loewe [15] argues that where no interaction occurs between drug
1 and drug 2, the additive behavior of the drug combination takes the form of:

d1

D1
+

d2

D2
= 1. (1)

Similarly, when there are N non-interacting drugs, the Loewe additivity model for this
combination is defined in this manner:

N

∑
i=1

di
Di

= 1, (2)

where di is the dosage of the i drug in the compound, and Di is the equivalent dosage of
each drug that achieves the same effect when used alone.

When a combination of drugs has a synergistic effect, the same therapeutic effect
can be achieved with a smaller dose than with a single drug. Therefore, the synergism is
defined as:

N

∑
i=1

di
Di

< 1. (3)

In contrast, in situations where a single drug is more effective than a combination of
drugs, the antagonism is defined as:

N

∑
i=1

di
Di

> 1. (4)

To better understand the Loewe additivity model, Figure 3 shows a graph in Cartesian
coordinates that represents the dose-response relationship between the two drugs in a
combination based on isolines. It portrays curves comprising many dose pairs that achieve
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a specific drug response effect. Each line represents a dose combination for a particular drug
pair. It can clearly distinguish the effects of different drug combinations at different doses.
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2.2. Bliss Independence Model

The Bliss independent model, a classic approach to quantifying drug combination
effect, considers the two drugs in the combination are probabilistically independent when
used alone. Therefore, using the independent definitions of probability and statistics, the
consequences of a combination can be determined [16]. According to Bliss, the reaction
of each component’s concentration can be used to predict the response. E is the effect of
the combination, while E1 and E2 are the fractional effects (between 0 and 1) produced by
consuming drug 1 and drug 2 separately. Thus, the effect that drugs 1 and 2 have when
combined can be formulated as:

E = E1 + E2 − E1E2. (5)

A synergistic effect occurs when E is greater than the right side of the equation.
Otherwise, there is animosity when E is less than the right side of the equation.

These two fundamental various strategies, Bliss and Loewe, have been commonly
utilized for co-exposure tests. Nonetheless, at times, they might introduce decisively
various outcomes that relate to the dose-response of a solitary medication. There are
many investigations contrasting the Bliss independence model with the Loewe additivity
model [17–19]. In these comparisons, the overall biological plausibility of the Loewe
additivity model makes it slightly preferable. Specifically, when two drugs interact with
the same pathway or target, Loewe expects the combined action to be better, while the
Bliss independence model aims for non-interacting drug combinations. It is still unclear
which model is suitable for studying the combined effects of drugs, and model selection is a
major issue. Bliss may misjudge synergism, while Loewe may overemphasize antagonistic
effects. One of the most significant obstacles in the field remains the lack of consensus
among researchers regarding the precise quantification and definition of synergies and
antagonistic relationships [20].
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3. Databases in Drug Combination Prediction

Numerous omics databases have been created in response to the growth of systems
biology and molecular biology. Table 1 lists some important databases of five types perti-
nent to recognizing effective drug combinations, including synergistic drug combination,
bioactivity resources, gene expression, toxicity/off-target effects, pathways resources and
interactions resources. These omics data are typically tested on various cell lines, using
large numbers of single drugs or drug combinations, and have received robust experimental
validation. Using these omics data, researchers can develop more efficient computational
models of drug combinations to accelerate the development of clinical therapies.

Table 1. Important omics databases related to the drug combination.

Data Type Database URL Latest Update Description

Synergistic Drug
Combination

DrugComb [21] https://drugcomb.fimm.fi/
(accessed on 13 July 2023) 2021

Synergistic Drug Combination
mainly contains data on the

response of cancer cell lines to or
combinations of drugs.

DrugCombDB [22] http://drugcombdb.denglab.org/
(accessed on 13 July 2023) 2019

NCI-ALMANAC [23] https://dtp.cancer.gov/ncialmanac
(accessed on 13 July 2023) 2017

SYNERGxDB [24] https://www.synergxdb.ca/
(accessed on 13 July 2023) 2019

Bioactivity
resources

ChEMBL [25] https://www.ebi.ac.uk/chembl/
(accessed on 13 July 2023) 2023

Bioactivity resources mainly
contain the biological activity data
of small molecules, drug targets,

enzymes and proteins.
DrugBank [26] https://www.drugbank.com

(accessed on 14 July 2023) 2023

PubChem [27] https://pubchem.ncbi.nlm.nih.gov
(accessed on 14 July 2023) 2023

Gene expression

GEO [28] https://www.ncbi.nlm.nih.gov/geo/
(accessed on 14 July 2023) 2013

It mainly includes gene expression
data with or without perturbation,
gene methylation data and some

interaction data.

CMap [29] https://clue.io (accessed on 14 July 2023) 2021

LINCS https://lincsproject.org/ (accessed on
14 July 2023) 2022

Toxicity effects
resources

SIDER [30] http://sideeffects.embl.de/
(accessed on 15 July 2023) 2015

Toxicity effects resources mainly
contain information about drugs

and targets, as well as information
on side effects.

TOXRIC [31] https://toxric.bioinforai.tech/
(accessed on 15 July 2023) 2022

Tox21BodyMap [32] https://sandbox.ntp.niehs.nih.gov/
bodymap/ (accessed on 15 July 2023) 2020

Pathways
resources

Reactome [33] https://reactome.org/ (accessed on
15 July 2023) 2023

Pathways resources mainly
contain various biological

pathways that facilitate drug
combination prediction.

Pathbank [34] https://pathbank.org/ (accessed on
15 July 2023) 2020

KEGG Pathways [35] https://www.kegg.jp/kegg/pathway.html
(accessed on 15 July 2023) 2023

Interactions
resources

TTD [36] https://db.idrblab.net/ttd/
(accessed on 16 July 2023) 2023

It mainly contains information
about drug targets and targeted
drugs that interact with them.

Bingding DB [37] http://www.bindingdb.org
(accessed on 16 July 2023) 2023

HPRD [38] http://www.hprd.org/ (accessed on
16 July 2023) 2008

STRING [39] https://string-db.org/ (accessed on
16 July 2023) 2021

STITCH [40] http://stitch.embl.de/ (accessed on
16 July 2023) 2016

https://drugcomb.fimm.fi/
http://drugcombdb.denglab.org/
https://dtp.cancer.gov/ncialmanac
https://www.synergxdb.ca/
https://www.ebi.ac.uk/chembl/
https://www.drugbank.com
https://pubchem.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/geo/
https://clue.io
https://lincsproject.org/
http://sideeffects.embl.de/
https://toxric.bioinforai.tech/
https://sandbox.ntp.niehs.nih.gov/bodymap/
https://sandbox.ntp.niehs.nih.gov/bodymap/
https://reactome.org/
https://pathbank.org/
https://www.kegg.jp/kegg/pathway.html
https://db.idrblab.net/ttd/
http://www.bindingdb.org
http://www.hprd.org/
https://string-db.org/
http://stitch.embl.de/
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3.1. Drug Combination Resources

Drug Combination resources mainly include DrugComb, DrugCombDB, SYNERGxDB,
NCI-ALMANAC, etc., to collect information about anti-cancer drug combinations. There is
a significant overlap between the first three databases because some of their data derives
from NCI-ALMANAC.

DrugComb [21] is a community-driven data portal for storing and analyzing drug
combination and monotherapy screening data. It offers network modeling tools to picture
the system of activity of a drug or combination of drugs for a specific disease sample.
DrugComb database contains 8397 unique drugs, 2320 cell lines representing 33 tissues
and over 750 thousand unique drug combinations obtained from 37 studies. In addition,
DrugComb also provides these combinations with five different types of synergy scores,
including Bliss, HSA, Loewe, ZIP and S scores. In MatchMaker, a model proposed by
Kuru, H.I. et al. [41] synergy scoring data provided by the DrugComb is used. The model
has three layers of network architecture, two layers of drug-specific subnetworks (DSNs)
and one layer of synergy prediction network (SPN).

DrugCombDB [22] is another web-based drug combination that integrates multiple
data sources and drug combinations, including high-throughput screening analysis of drug
combinations, external databases, and manual management of PubMed literature. This
database contains more than 6.8 million experimental data with quantitative dose-response
and concentrations of drug combinations encompassing 2 thousand drugs and 124 human
malignant growth lines.

NCI-ALMANAC [23] database is an enormous matrix of combinations of antineo-
plastic agents. It has tested over five thousand combinations of 104 approved drugs and
measured synergies against 60 cancer cell lines, resulting in more than 290 thousand syn-
ergies scores. The study by Sidorov P. et al. [42] was modeled on a dataset provided by
NCI-ALMANAC to predict synergy scores for each NCI-60 cell line. They used the Random
Forest (RF) algorithm and the Limit Gradient Lift (XGBoost) algorithm to build 2 separate
models for each cell line.

SYNERGxDB [24] is a cloud-based pharmacogenomics portal that identifies synergies
by incorporating numerous high-throughput drug combination studies with sub-atomic
and pharmacological profiles of an enormous board of malignant growth cell lines. Addi-
tionally, it provides analytical tools for predicting biomarkers across cancers and identifying
successful treatment combinations.

3.2. Bioactivity Resources

ChEMBL [25] is a chemical database of bioactive molecules with drug-like proper-
ties that have been manually curated. The current version of the CHEMBL database
contains more than 2.3 million distinct compounds, 15 thousand protein targets and
20 million bioactivity measurements. Ye, Z et al. [43] proposed ScaffComb, a deep learn-
ing framework that can be applied to ChEMBL databases for virtual screening of drug
combinations in enormous synthetic information bases.

DrugBank [26] is a web-enabled database that combines specific information about
drug information with thorough drug target information. DrugBank included data on
2358 small molecule and biotechnology drugs, 4563 drug targets, 497 drug metaboliz-
ing enzymes and drug transporters, and 2242 compound drug-target binding constants.
Ke, J. et al. [44] searched for candidate compounds and aspirin target information from
DrugBank to find drug combinations with antiplatelet effects. They finally verified the
synergistic effects of Ginkgo biloba extract.

PubChem [27] contains more than 115 million unique chemical structures, 306 million
chemical entities, 304 million biological activity data points and 204 thousand interactions
between chemicals, genes, and proteins. Unlike DrugBank, which has detailed drug
information, PubChem is more like ChEMBL, which focuses more on chemical information.
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3.3. Gene Expression Resources

In drug synergistic studies, Gene Expression Omnibus (GEO) [28] can query gene
expression, including expression chip data, genome methylation, genome-protein inter-
action, etc. Lv, Y. et al. [45] used the GEO database to collect relevant gene expression
and clinical data for osteosarcoma and para-cancerous tissues while investigating drug
response prediction for osteosarcoma.

A database named the Library of Integrated Network-Based Cellular Signatures
(LINCS) allows for comparisons of cell expression profiles or other cell processes before
and after cell perturbation by various methods, mainly including CMap-based L1000, Drug
Toxicity Signature Generation Center (DToxS), etc. Aissa, A.F. et al. [46] used an established
preclinical model of non-small-cell lung carcinoma (NSCLC) to analyze recognized markers
utilizing LINCS to foresee and validate the function of small molecules.

Connectivity Map (CMap) [29] is a database created by the LINCS Center for Tran-
scriptomics at the Broad Institute using the L1000 sequencing method, primarily used to
demonstrate the functional connection between genes, disease states, and small molecule
compounds. To save the sequencing cost, only 978 representative landmark genes were
sequenced during the sequencing process, and the expression level of the remaining
11,350 genes was predicted by advanced algorithms. Jin L. et al. [47] proposed a CMAP-
based scoring framework for predicting new adaptation diseases for drug combinations. In
this framework, CMap gives an information-driven way to deal with the recognition of the
relationship between genes, diseases, and drugs.

3.4. Toxicity Effects Resources

Side Effect Resource (SIDER) [30] database that integrates information on drugs,
targets, and drug side effects. It provides a platform for users to understand the effects
of drugs and their adverse reactions fully. It also provides relevant information about the
indications for the drug. Prinz, J. et al. [48] proposed a novel machine-learning approach
that combines data from SIDER and GWASdb databases into a joint matrix. The model
could be used to develop treatments with fewer side effects and test new indications for
existing drugs.

TOXRIC [31] provides information on toxicological/feature data, Machine Learning
(ML)-ready sub-datasets visualization of multiple benchmarks, etc. More than
113 thousand compounds, 13 toxicity datasets and 39 feature types are included in the
TOXRIC data.

Tox21BodyMap [32] is an intuitive web tool that supports rapid chemical toxicity
assessment and mechanism hypothesis generation. It gives a perception of mapping
Tox21/ToxCast assay targets to the districts of the human body. The web server visually
displays chemobiological activity patterns by mapping assay targets to organ systems.

3.5. Pathways Resources

KEGG Pathways [35] is a compilation of human responses and biological pathways,
which can be used in drug combination prediction. Like KEGG, Reactome [33] is a database
of peer-reviewed articles written by experts on responses and biological pathways in the
human body. Compared to KEGG, it is an improved search and data mining tool that
simplifies the data search and study related to biological pathways. The library currently
covers pathways that concentrate on 19 species, including classical metabolic pathways,
signal transduction, gene transcription regulation, and disease. In addition, it uses more
than one hundred distinct online bioinformatics resources, such as the NCBI, Ensembl, and
UniPro. To reveal the synergistic mechanism of natural products and anti-tumor drugs in
the therapy of cancer, Chamberlin, S.R. et al. [49]. Considered pathways in the Reactome
database targeted by natural products. They found a significant increase in coverage
in the Reactome database relative to other databases, such as Cancer Targetome, that
collected FDA-approved cancer drugs in the covered pathways. Moreover, as an interactive
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database, Pathbank [34] provides information on associated organelles, chemical structures,
subcellular compartments, protein complex quaternary structures, and more.

3.6. Interactions Resources

The therapeutic target database (TTD) [36] contains a large amount of drug-related
information on drug targets and natural product sources. Currently, TTD has a collection
of more than 3 thousand targets and 30 thousand targeted binding drugs. Li, P. et al. [50]
used the TTD database to develop a comprehensive model that can be used to study the
mechanism of the compound Danshen formula (CDF).

Bingding DB [37] is a publicly accessible database that primarily collects affinity
interactions between drug target proteins and small drug-like molecules. It is collected from
US patents, scientific publications, and other databases such as PubChem, ChEMBL, etc.
The Human Protein Reference Database (HPRD) [38] is the largest database of human
protein interactions. The STRING database [39] incorporates all known and anticipated
relationships between proteins. This database contains more than 14 thousand organisms,
67.6 million proteins, and 20 billion interactions.

Search Tool for Interacting Chemicals (STITCH) [40] can be used in predicting interac-
tions between chemicals and genes. It is cross-linked with databases such as BindingDB. It
shares protein data with STRING, a gene-association database developed by the same team.
STITCH collects data from human annotation databases, including DurgBank, TTD, KEGG,
Reactome, and ChEMBL. Wang T. et al. [51] used a variety of advanced computational
methods to build effective predictive models. They extracted topological characteristics of
each drug combination’s topology using a drug network built from STITCH.

4. Methods in Drug Combination Prediction

Over the course of the last many years, computational techniques have been broadly
used to predict drug combinations, including traditional machine learning methods, deep
learning methods, mathematical methods, systems biology methods, and search algo-
rithms. A brief description of each method reviewed is listed in Table 2. Traditional
machine learning applies to various feature types for high prediction accuracy in different
scale databases. For a long time, traditional machine learning has been applied to improve
and optimize drug discovery and design processes and integrate with other computational
methods [52,53]. Deep learning methods can learn the complex nonlinear relationships
between input attribute data (such as genomics) and the associated output (such as synergy
score) [54]. Due to its multi-processing layer, the accuracy of deep learning models will
be incredibly improved with the increment of input data, particularly huge databases [55].
The key step of the mathematical model is to collect the necessary kinetic parameters from
the literature or experiments. When cellular pathways and parameterization are available,
mathematical simulations can be highly accurate for combinatorial drug discovery [56].
Systems biology methods analyze the therapeutic effects of drug combinations through
various biological networks, which take a lot of biological knowledge [57]. Search algo-
rithms are seen as a method that endeavors to investigate feature spaces, using the high
performance of computers to purposefully exhaust some or all possible scenarios of a
problem-solving space [15].

Table 2. The descriptions of some computational methods in drug combination prediction.

Methods Algorithms URL Characteristics Reference

Traditional
machine learning

Support vector machine —
Do well in identifying subtle patterns in
complex data sets; poor interpretability;

run slowly on large data sets.
[58]

Decision tree
https://github.com/Lianlian-

Wu/ForSyn (accessed on
18 July 2023)

Display visually; easy to over fit;
accuracy may decrease when processing

data with complex relationships.
[59]

https://github.com/Lianlian-Wu/ForSyn
https://github.com/Lianlian-Wu/ForSyn
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Table 2. Cont.

Methods Algorithms URL Characteristics Reference

Gradient boosting —

Do well in handling nonlinear
relationships and high dimensional

data; easy to over fit; hyperparameters
tuning is complex.

[60]

Deep learning
methods

Feedforward neural
network —

Do well in handling nonlinear
relationships and high dimensional

data; easy to over fit; poor
interpretability; processing large data

takes a long time

[61]

Autoencoder
https://github.com/qiaoliuhub/
drug_combination (accessed on

19 July 2023)

Feature learning ability is strong;
poor interpretability. [62]

Graph convolutional
network

https://github.com/Sinwang404
/DeepDDS/tree/master
(accessed on 19 July 2023)

Being able to capture the relationship
and topological information between

the nodes in the graph, poor
interpretability, and robustness is

of concern.

[63]

Deep belief network Perform well in supervised study; easy
to over fit; poor interpretability. [64]

Mathematical
methods

Network analysis — Be able to capture complex interactions;
good interpretability. [65]

Dynamic mathematical
model — Be able to simulate drug reaction more

accurately; poor interpretability. [15]

Search
algorithms

Breadth first search
algorithm —

Be able to consider a large amount of
potential drug-target interactions;

robustness is of concern.
[66]

Systems biology
methods Signature-based model https://tanlab.ucdenver.edu/kMap

(accessed on 20 July 2023)

Understand drug action mechanisms
and influencing factors more

comprehensively; high requirements on
data quality.

[67]

4.1. Application of Traditional Machine Learning in Drug Combination Prediction

Traditional ML methods include Support vector machine (SVM), Decision tree (DT)
and Gradient boosting (GB). SVM is often used for classification tasks, where the goal is to
find hyperplanes that separate positive cases from negative cases. Like SVM, a Decision
tree is a tree-shaped predictive model that judges the feasibility of various situations based
on known probability of occurrence. Different from the previous two methods, Gradient
boosting is an ensemble algorithm. It obtains a subset of the sample by operating the sample
set and then generates a series of base classifiers. These algorithms are good classifiers for
identifying whether drug combinations belong to synergistic or antagonistic effects.

Support vector machine [58] is a sparse and robust classifier. SVM is very well at
identifying subtle patterns in complex data sets. SVM also introduces kernel functions
for faster computation and prediction of nonlinear problems. In addition, because SVM
classifies by maximizing the interval, it is robust to noise and outliers. As mentioned above,
the predictive model constructed by Wang T. et al. [51] utilizes SVM to obtain the best
characteristic. Their results show that the best SVM classifier they built is significantly better
than one that uses only individual features, with prediction accuracy (ACC) of 0.903 and
Matthew’s correlation coefficient (MCC) of 0.806. This makes sense because their classifier
combines several topological information about the drug. The model is expected to be a
helpful method for predicting new drug combinations that didn’t exist in the training set.
On large-scale data sets, SVM training time is very slow and takes up a lot of computing
resources. What’s worse, SVM is poorly interpretable because its decision boundaries are
determined by the support vector rather than all training samples [68]. In general, SVM has
relatively high accuracy, strong generalization ability when dealing with nonlinear data
and can capture complex relationships in the data.

https://github.com/qiaoliuhub/drug_combination
https://github.com/qiaoliuhub/drug_combination
https://github.com/Sinwang404/DeepDDS/tree/master
https://github.com/Sinwang404/DeepDDS/tree/master
https://tanlab.ucdenver.edu/kMap
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Decision tree [59] is easy to handle and implement. Random Forest is a Bagging
integration algorithm composed of decision trees. The results of the decision tree can be
visually displayed through the tree structure, which is easy to understand and visualize.
Wu, L. et al. [69] built an advanced deep forest-based model, ForSyn. ForSyn is a multi-layer
cascade structure with two new forest types embedded in each cascade as units. Comparing
ForSyn with other advanced algorithms on several datasets, their results show that ForSyn
performs better, with an area under the precision–recall curve (AUPR) of 0.591 and recall of
0.537. Unlike traditional machine learning methods, this model solves problems about the
imbalance of data types and high dimensions of characteristics. However, the model is still
confused by the scale of input data.

Moreover, its ability to generalize to new anti-cancer drugs or cancer cell lines is insuf-
ficient. The intrinsic problems with these drug combination predictions remain unresolved.
Decision trees are prone to over-fitting training data, especially when the depth of the
tree is large or there are too many leaf nodes [70]. The accuracy of decision trees mainly
depends on data quality, feature selection, tree structure and parameters. In cases where
there are complex interactions between complex datasets and features, the accuracy of the
decision tree may decline.

Gradient boosting [60] improves the accuracy of any given learning algorithm. It
shows high predictive accuracy in many machine learning tasks and is particularly good at
dealing with nonlinear relationships and high-dimensional data. It can clarify the decision-
making process for predicting the outcome by looking at the importance of each weak
learner. Xu, Q. et al. [71] introduced a new model based on the stochastic gradient boosting
algorithm called PDC-SGB. The model constructs 732-dimensional feature vectors con-
taining biological, chemical, and pharmacological information for each drug combination.
This study integrated six types of characteristics to describe drug combinations, including
molecular two-dimensional structure, structural similarity, anatomical therapeutic simi-
larity, protein-protein interactions, chemical-chemical interactions, and disease pathways.
Compared with other advanced models, this model shows better performance and feature
prediction ability, with its AUC up to 0.9775. However, the performance of the biological
part of the model is relatively low, which may be due to the incomplete molecular network
or biological pathway and the oversimplified characterization of biological features. Unfor-
tunately, gradient-boosting algorithms are prone to overfitting on training sets, especially
when there are many weak learners. The algorithm also involves more hyperparameters
than other methods. As a result, hyperparameter tuning is more complex [72].

4.2. Application of Deep Learning Methods in Drug Combination Prediction

Deep learning models mainly contain Feedforward neural network (FNN), Autoen-
coder (AE), Graph neural network (GNN) and Deep belief network (DBN). In the Feed-
forward neural network, every neuron is organized in layers, and every neuron is simply
associated with the neurons of the past layer. It is often used as a baseline for Deep learning
methods. Unlike FNN, the autoencoder is more complex and is a semi-supervised and
unsupervised learning artificial neural network for reduction and anomaly detection. The
graph neural network uses deep learning to directly learn graph structure by extracting
and discovering its characteristics. Deep belief networks can be utilized not exclusively to
recognize characteristics and classify data but additionally to produce data.

A feedforward neural network [61] receives the outputs of the past layer and results it
to the following layer without feedback. The advantage of this model is that it has strong
nonlinear modeling ability and can automatically learn complex relationships between
input features. In addition, it can also improve the performance of the model by increasing
the number of hidden layers and neurons. Tsai, P.L. et al. [73] proposed a multi-layer FNN
with two hidden layers, which was used to predict the treatment outcome of antidepressant
therapy in patients with initial treatment and first diagnosis of major depressive disorder
(MDD) patients during the severe depressive stage. The first layer of the neural network
is the input layer, where each unit receives a one-dimensional data vector containing



Life 2023, 13, 1878 11 of 18

patient characteristics. The final layer is the output layer that performs the classification.
The evaluation results show that the model has an Area Under Curve (AUC) range from
0.7 to 0.8 and can use clinical features and peripheral biochemical characteristics to predict
the outcome of antidepressant therapy. The drawback is that during the model training
process, they used a small sample size and could not carry out a more detailed analysis.
Deep neural networks still have insufficient mechanisms to explain the interactions between
variables. Besides, it requires many training samples and a complex network structure,
which is easy to overfit.

Furthermore, the training process of feedforward neural networks takes a long time,
especially when dealing with large data sets [74]. The results of feedforward neural networks
often lack interpretability. The accuracy of this method is affected by many factors, including
data quality, feature selection, network structure and hyperparameter selection.

Autoencoder [62] includes both encoder and decoder, a representation learning al-
gorithm in a general sense. It has a strong feature learning ability and can extract useful
features from drug response data through unsupervised learning without the need for
manually labeled information [75]. Liu, Q. et al. [76] constructed a knowledge-enabled
and self-attention transformer-boosted deep learning model, TranSynergy. It includes
three major components: (1) input dimension reduction component, (2) self-attention trans-
former component, and (3) output fully connected component. Their experimental results of
model evaluations showed that TranSynergy outperformed the most advanced approaches,
and the AUC and AUPR reached 0.908 and 0.625, respectively. As with traditional com-
putational models, the TranSynergy model selected only a few cancer-related genes that
included drug targets and annotations due to limited training data. In addition, the model
will also cause dimensional disasters due to too many feature dimensions, resulting in
overfitting problems. Autoencoder have the risk of overfitting when dealing with large-
scale drug response data, especially when the training set is small. The training process of
the autoencoder model is unsupervised, so the features extracted by the model are often
difficult to interpret [75,77].

Graph neural network [63] is an emergent framework that has emerged recently. The
advantage of a graph neural network is that it can capture the relationship and topological
information between the nodes in the graph and transform the data into low-dimensional
and more discriminative feature space. In addition, graph neural networks can automati-
cally learn the feature representation of nodes and edges [78]. Wang J. et al. [79] proposed
a graphical neural network (GNN) and attention mechanism-based model called Deep-
DDS. In this model, the chemical structure of the drug is represented by a graph. The
drug embeddings are calculated according to the above two deep learning models. By
integrating genomic and drug signatures, DeepDDS can capture important information
from drug chemical structures and gene expression patterns to identify synergistic drug
combinations that target specific cancer cell lines. Additionally, they compared DeepDDS
with deep learning methods and traditional machine learning methods on a benchmark
dataset. Finally, the results demonstrate the better performance of DeepDDS compared to
other models, and its performance measures of AUC, area under the AUPR and accuracy
reach 0.93, 0.93 and 0.85, respectively. Similarly, DeepDDS still did not show satisfactory
predictive accuracy on independent test sets for the same reason described earlier. The main
disadvantages of graph neural networks are as follows: (1) Due to the complex structure
of GNN, its model training process is relatively difficult. (2) GNN is also a black box,
which makes it difficult to explain its decision-making process. (3) GNN is vulnerable to
adversarial attacks, and its robustness needs to be improved [80].

A deep belief network [64] can train the weights between its neurons, allowing the
whole network to generate enough training data to maximize the probability. Moreover,
DBN can automatically learn high-level abstract features from data through unsupervised
learning and perform back-propagation through supervised learning. When it comes
to supervised training with just some labeled data and extracting features from regular
data, DBN performs admirably [81]. Chen, G. et al. [82] introduced a stacked restricted
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Boltzmann machine (RBM), which can predict the response of drug combinations from gene
expression, pathways, and body fingerprints. In their model, the training data is utilized
before the learning stage to optimize the weight of the input using contrastive divergence.
Their evaluation of the model showed an accuracy rate of 71.5%, the recall of 60.2%, and
an F score of 65.4%. Overall, they performed better than the DREAM competition group.
The RBM model also faces the problem of data integrity and lack of experimental data,
which may be the cause of model performance degradation. Moreover, DBN is prone to
over-fitting when dealing with small sample data, so some regularization methods are
needed to alleviate over-fitting [81]. DBN can achieve high accuracy in drug response
prediction models, but the training data and hyperparameter selection need to be carefully
considered in practical applications.

4.3. Application of Mathematical Methods in Drug Combination Prediction

Mathematical methods include Network analysis and Dynamic mathematical mod-
els. Network medicine uses a systems-network perspective to understand the disease
mechanism [65]. Similarly, the Dynamic mathematical model studies the effects of drug
combinations on potential protein concentrations and drug combination therapies, which
can effectively control the progression of disease states [15].

The human body is composed of a rich variety of biological units, and with the
advancement of bio-measurement technology, various types of disease networks have been
established. With the help of Network analysis, the complex interactions between drugs
and proteins can be captured, including physical interactions, metabolic pathways, signal
transduction, etc. In addition, it can provide an interpretation of the predicted results,
for example, by analyzing critical paths in the network, node importance, etc. [83,84].
Yin N. et al. [85] explained the connection between network topology and the effect of
drug combinations by displaying the interaction of drug combinations and their targets
in the network. They found that the effect of drug combinations depends heavily on the
network topology, and they were able to identify motifs that could serve as useful catalogs
for rational drug combination design of enzyme systems. Unlike most studies on drug
synergies, they focused on antagonism and synergies. Their model generally provides a
rational and easy-to-apply approach to designing synergistic drug combinations. However,
the results of this model are only based on enzyme networks, and other types of biological
networks still need to be further explored. Moreover, this method requires a large amount
of drug and protein interaction data, so acquisition and collation are challenging [83,84].
The accuracy of network analysis is like many other methods and is also affected by several
factors, including data quality, network construction methods, and prediction algorithms.

The dynamic mathematical model captures important dynamic aspects of disease treat-
ment. It can describe the processes of drug absorption, distribution, metabolism, and excre-
tion in organisms, to simulate drug reactions more accurately. It also has a strong predictive
ability, which can predict the effect of drugs under different doses and dosing schemes
and support the individualization of drug therapy [86,87]. Geva-Zatorsky, N. et al. [88]
dealt with accurately tracking different protein concentrations, considering different drugs
through a dynamic proteomics method. They tracked down that the dynamics of proteins’
reaction to drug pairs can be accurately depicted through their responses to various drugs.
However, Dynamic mathematical models are usually constructed based on a series of math-
ematical equations, and their complexity may limit the interpretability of the models [86,87].
These models typically have high accuracy but are more data-intensive, requiring more
data and optimization of the model parameters.

4.4. Application of Search Algorithms in Drug Combination Prediction

The breadth-first search algorithm is always extended outward through the boundary
between found and unfound vertices. The applications of breadth-first search, especially
in drug structures, include finding the shortest path and the minimum distance between
two points.
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As one of the least complex graph search algorithms, the Breadth-first search algorithm
is the basis of numerous graph algorithms. It can consider a large amount of potential
drug-target interactions. Ji, L.S. et al. [66] investigated the immunomodulatory mechanisms
of Bushen formula (BSF) combined with entecavir (ETV) in patients with newly treated
chronic hepatitis B (CHB) and CHB patients with partial virological response to ETV. They
finally demonstrated that the combination of these two drugs helped ETV partially alleviate
hBsAg reduction in patients and is a potential treatment for these patients. However, in
their study, the underlying immunomodulatory mechanisms underlying BSF treatment
of CHB patients remain to be explored. This method is not robust enough. Moreover,
because its prediction results are often based on the similarity between the drug and the
target, it does not consider other factors such as drug metabolism, drug delivery, etc. [89,90].
Regarding the accuracy of the model, the feature selection, parameter selection and tuning,
evaluation and verification methods of the search algorithm have a decisive influence.

4.5. Application of Systems Biology Methods in Drug Combination Prediction

Systems biology methods hypothesize that drugs that are effective for specific diseases
can be used as candidates for other diseases with similar characteristics of changes in gene
expression. The model is suitable for rapid drug combination prediction for experimental
verification.

The cMap database provides gene expression profiles of numerous small molecules
against different cancer cell lines, which provides rich data for the Signature-based model.
In addition, Systems biology methods can integrate large-scale biological data at different
levels, such as gene expression, protein interactions, metabolic pathways, etc., to gain a
more comprehensive understanding of drug action mechanisms and influencing factors [91].
Kim J. et al. [67] have developed a web-based program called K-Map. The program can
uncover the perplexing communications between protein kinases and their inhibitors and
provide the basis for rational clinical drug use. This model can link kinases to drugs
using quantitative signatures of kinase inhibitor activity. In addition, it is highly real-time
and useful, and they also update their data on a quarterly basis, making it even more
valuable. However, there are still some disadvantages to this method: accuracy is highly
dependent on the quality of the input data. Moreover, the method usually uses complex
network models and algorithms, which makes it difficult to interpret the result [91]. The
systems biology approaches construct complex network models by integrating multiple
data sources to achieve high accuracy.

5. Discussion

In clinical therapy, personalized cancer treatment requires that models predicting drug
response can effectively predict the effect of the drug combination and provide reasonable
explanations in the face of complex molecular characteristics and noisy pharmacogenomic
data. Till now thousands of bioactivity databases and various computational methods have
been generated in recent years. This review focuses on the databases and methods used to
predict the response of cell lines to drug combinations, as well as the definition of synergies,
to provide cancer patients with individualized, precise treatment regimens, which may
improve patient survival and survival time and achieve precision cancer therapy.

Although many studies have already achieved great predictive performance, there are
still many challenges in this research direction. Appropriate databases seem to be crucial for
better predictive performance. For instance, in some large publicly available databases, the
size of cancer cell lines and drugs is insufficient to train models with strong generalization.
Moreover, most of these models make predicting the response of novel drugs or novel
cell lines difficult, which didn’t appear in the training set. As mentioned in this article,
the problem of class imbalance also needs to be solved, which is also an important reason
for the low generalization ability of the model. In most of these models mentioned in
this paper, structural information, physical and chemical information about drugs, and
cell lines’ expression information are used as characteristics to predict the effect of drug
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combinations. The study of drug synergies should pay more attention to the biological
links between drug combinations and cell lines rather than the characteristics of each.
Therefore, more features of omics should be considered in the prediction process. Another
issue worth exploring is whether the drug combination is synergistic or antagonistic, which
is generally related to the drug dose. This can be simply understood as the fact that
drug combinations are often found to be synergistic in one dose range and antagonistic in
another. However, considering the different doses of drugs based on studying different
effects of drug combinations is a very difficult problem. Although some studies [92] have
considered the effect of drug dosage, the issue still needs to be explored more deeply to
achieve the goal of precision medicine. In recent years, deep-learning language models have
shown great promise in drug discovery, including understanding drug-drug interactions,
protein design, and engineering. For example, ProGen, a language model produced by
Madani A. et al. [93], can generate protein sequences with predictable functions and can be
adapted to different protein families. Another example is the application of ChatGPT in
predicting and interpreting common drug-drug interactions (DDIs) [94]. With the help of
ChatGPT, clinicians and patients can effectively identify potential DDI effects and make
the right decisions.
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