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26480 Eskişehir, Turkey; ozercelik05@gmail.com

3 Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Eskişehir Osmangazi University,
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Abstract: This study aims to evaluate the effectiveness of employing a deep learning approach for
the automated detection of pulp stones in panoramic imaging. A comprehensive dataset comprising
2409 panoramic radiography images (7564 labels) underwent labeling using the CranioCatch labeling
program, developed in Eskişehir, Turkey. The dataset was stratified into three distinct subsets:
training (n = 1929, 80% of the total), validation (n = 240, 10% of the total), and test (n = 240, 10%
of the total) sets. To optimize the visual clarity of labeled regions, a 3 × 3 clash operation was
applied to the images. The YOLOv5 architecture was employed for artificial intelligence modeling,
yielding F1, sensitivity, and precision metrics of 0.7892, 0.8026, and 0.7762, respectively, during the
evaluation of the test dataset. Among deep learning-based artificial intelligence algorithms applied
to panoramic radiographs, the use of numerical identification for the detection of pulp stones has
achieved remarkable success. It is expected that the success rates of training models will increase by
using datasets consisting of a larger number of images. The use of artificial intelligence-supported
clinical decision support system software has the potential to increase the efficiency and effectiveness
of dentists.

Keywords: artificial intelligence; deep learning; panoramic; pulp stone; YOLOv5

1. Introduction

Pulp stones, characterized as calcified masses within the dental pulp, may manifest
across various dental conditions including permanent and primary dentition and erupted
and unerupted teeth, as well as in both healthy and compromised dental structures. Their
occurrence can be localized to a single tooth or extend across the entire dentition [1].
While the precise etiology of pulp calcifications remains elusive, their development is
thought to involve a complex interplay of various factors. These include interactions
between epithelial and pulp tissues, disturbances in pulp circulation, tissue degeneration,
periodontal pathology, dental caries, orthodontic interventions, and chronic inflammatory
processes, as well as demographic factors such as age, gender, genetic predisposition, and
idiopathic influences [2,3].

Pulp calcification is detected through radiographic and histological examinations.
However, for calcification to be discernible in radiographs, it needs to possess a certain size
(>200 µm) and degree of mineralization [4,5]. Although they have some limitations, it is a
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known fact that radiological methods are the only technique that can detect calcification
clinically and non-invasively [6].

The currently accepted clinical view is that pulp stones are of no importance other
than the possibility of causing difficulties during endodontic treatment, such as making
canal positioning difficult and preventing access to the canal [7]. However, it is known that
pulp stones affect the response to pulp tests, causing tooth perforation, instrument fracture,
and even tooth loss [8]. The extraction of pulp stones from the pulp chamber presents a
complex and intricate procedure, demanding a high level of proficiency, precision, and
expertise. Additionally, it necessitates the utilization of specialized magnification tools and
appropriate equipment. Therefore, it may be necessary to refer to an endodontist when
pulp stones are detected [9].

Machine learning represents a subset of artificial intelligence, enabling computers
to execute tasks without explicit programming, but rather through the analysis of extant
data relationships. Conversely, deep learning pertains to a domain that includes machine
learning algorithms, specifically those that involve artificial neural networks characterized
by one or more hidden layers [10]. Recently, the advancements in the realm of dental digital
imaging have paved the way for the inception of software architectures grounded in deep
learning, facilitating the identification of dental caries, periodontal ailments, and dental
abscesses from radiographic images [11].

Recognizing objects within images or videos poses a formidable challenge for com-
puters compared to the innate proficiency of humans in this cognitive task. The advent of
deep learning, particularly leveraging artificial neural networks, has garnered considerable
attention, especially in tandem with the expanding availability of labeled data. A focal
point of this technological progression is object recognition, a process integral to artificial
intelligence applications.

Object detection, a critical facet of image processing, involves precisely locating spe-
cific objects within an image or video feed. Numerous algorithms have been devised for
this purpose, with deep learning methodologies, particularly those based on convolutional
neural networks (CNNs), emerging as pre-eminent and widely adopted tools in contempo-
rary research and applications [12]. The efficacy of CNNs in object detection stems from
their adeptness in discerning hierarchical features through a multilayered architecture.

The fundamental operational paradigm of a CNN encompasses one or more convo-
lutional layers, with subsequent subsampling layers, and culminates in one or more fully
connected layer, akin to a conventional multilayer neural network [13]. In this context, the
mathematical convolution process mirrors a neuron’s responsiveness to stimuli within its
designated receptive field. The amalgamation of these components endows CNNs with a
robust capacity for discerning and localizing objects within complex visual data.

The object detection methodology proves applicable across various domains, including
classification and human face recognition. Object detection algorithms, with a focus on zone
recommendation, encompass prominent models such as R-CNN, Mask-RCNN, R-FCN,
SPP-net, FPN, Fast R-CNN, and Faster R-CNN, and include YOLOv5 [14].

The YOLO (You Only Look Once) algorithm is a convolutional neural network (CNN)-
based deep learning model designed for the prediction of object bounding box coordinates,
associated probability values, and class categorization within images. Renowned for its
commendable performance in both speed and accuracy, the YOLO algorithm is particularly
suited for real-time object detection applications [12].

In this study, unlike previous research studies, new effort was made in the field of
automatic pulp stone detection. While in previous studies, Mask R-CNN and YOLOv4
architectures were primarily used to detect pulp stones in bitewing images, in this research,
a new approach was presented, and the effectiveness of YOLOv5, a current architecture,
was evaluated in the field of panoramic images. This departure from other methodologies
underscores our commitment to advancing the field by exploring innovative means of
accurate and effective pulp stone detection. In this study, where YOLOv5’s architecture is
used in the context of panoramic radiographs, it is thought to not only expand the scope
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of automatic detection techniques but also provide new and different information to the
existing literature on dental radiology.

2. Material and Methods
2.1. Ethical Approval

The research protocol obtained ethical clearance from the Research Ethics Committee
of the Faculty of Dentistry at Necmettin Erbakan University, adhering to the principles
outlined in the Helsinki Declaration of Human Rights (Approval Number: 2022/17-136;
Approval Date: 28 April 2022).

2.2. Study Sample

The panoramic images used in this research were obtained from people who applied to
the clinic due to various dental disorders between January 2020 and September 2021. These
images were captured utilizing the Planmeca Promax 2D Panoramic system (Planmeca,
Helsinki, Finland; at a 68 kVp, 14 mA, and 12 s). The acquisition protocols adhered to the
manufacturer’s stipulated guidelines for respective imaging system. Notably, prior to their
integration into the study dataset, all images underwent an anonymization process.

Panoramic images meeting diagnostically acceptable criteria and surpassing the
16-year age threshold, devoid of prevalent bone or dental pathologies, were incorporated
into the study dataset. Conversely, panoramic images characterized by suboptimal quality
or the presence of artifacts or depicting individuals with specific dental disorders (such
as dentinogenesis imperfecta, dentin dysplasia, etc.) were systematically excluded from
consideration. Additionally, panoramic images capturing subjects under the age of 16 were
not included in the study parameters. However, when working with real-world data, no
diagnostic quality conditions were taken into account, and all panoramic images that met
the above-mentioned criteria were included in the study.

2.2.1. Labeling

The examinations were conducted by two oral and maxillofacial radiologists denoted
as A.A. and S.B. For the purpose of assessing inter-observer agreement, Cohen’s kappa
statistics were employed, utilizing a subset comprising 20% of the total images. The
delineation of dental regions wherein pulp stones were identified, namely incisors, canines,
premolars, and molars, was executed with the CranioCatch v1.5 program (CranioCatch,
Eskişehir, Turkey).

2.2.2. Training

Within the scope of this study, the YOLOv5 architecture (Figure 1), recognized as a
deep learning-based image segmentation model, was adopted. The model’s performance
was evaluated utilizing the confusion matrix, a metric adept at visually representing system
predictions against actual scenarios, thereby facilitating a comprehensive evaluation of
machine learning algorithm efficacy.

In total, 7564 labels were made on 2409 panoramic images. The dataset was partitioned
into three distinct groups; the training group, comprising 1929 samples with a total of
6033 labels; the validation group, consisting of 240 samples with 766 labels; and the test
group, also comprising 240 samples with 765 labels.

The 2409 images came in different sizes. For this reason, the images were resized
to 1024 × 512. The proposed artificial intelligence (AI) model, denoted as CranioCatch
(Eskişehir, Turkey), employs a deep convolutional neural network (CNN) strategy for pulp
stone (PS) detection. The model was specifically trained by utilizing 500 epochs with the
Pytorch architecture, incorporating the COCO dataset and a learning rate of 0.01. The
model is illustrated in Figure 2. Notably, the identification of PS necessitated the utilization
of a distinct deep CNN. The training regimen involved 7000 steps, executed on a computer
system (PowerEdge T640 Compute Server (Dell Inc., Austin, TX, USA), PowerEdge T640
GPU Compute Server (Dell Inc., Austin, TX, USA), PowerEdge R540 Storage Server (Dell
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Inc., Austin, TX, USA) in the computer equipment of the Eskişehir Osmangazi University,
Faculty of Dentistry-AI Laboratory) equipped with 16 GB RAM and NVIDIA GeForce
GTX 1660 TI (NVIDIA, Santa Clara, CA, USA). The training and validation datasets were
instrumental in predicting and optimizing the weight factors of the CNN algorithm.
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2.2.3. Success Evaluation

The assessment of the model’s efficacy was performed using a confusion matrix, a
significant table commonly employed to assess system performance by summarizing pre-
dicted and actual scenarios. The principal metrics utilized for assessing model performance
include true positive (TP), denoting PSs correctly identified by both experts and AI; false
negative (FN), indicating PSs identified by experts but overlooked by AI; and false positive
(FP), signifying PSs not identified by experts but flagged by AI.

Following the computation of TP, FN, and FP, the subsequent metrics were derived:
sensitivity (recall), calculated as TP/(TP + FN); precision, computed as TP/(TP + FP); and
F1 score, determined by 2TP/(2TP + FP + FN). These metrics collectively serve as robust
indicators for assessing the performance and efficacy of the AI model in the context of
PS detection.

3. Results

The kappa value of intra-observer agreement for A.A. and S.B. was found to be 0.946
and 0.913, respectively. The inter-observer agreement value was 0.921. Pulp stones were
detected in the panoramic images of 2409 patients. Upon scrutiny of the radiographs in
which the algorithm failed to detect or exhibited errors, it was noted that the YOLOv5
architecture demonstrated inadequacy in identifying small pulp stones located within the
incisor, canine, and premolar teeth, attributed to issues such as superpositions and artifacts.
The diminished visibility of root pulp in comparison to crown pulp contributes to the
challenges encountered in detecting and accurately identifying pulp stones. The relatively
smaller size of the dataset pertaining to root pulp further exacerbates this issue, leading
to instances of missed or erroneous detection within this particular region (Figure 3). The
sensitivity, precision, and F1 results obtained using the YOLOv5 architecture in the test
dataset were found to be 0.8026, 0.7762, and 0.7892, respectively (Table 1).

Table 1. Sensitivity, precision, and F1 results of artificial intelligence model obtained using YOLOv5
architecture.

True Positive
(TP)

False
Positive (FP)

False Negative
(FN) Sensitivity Precision F1 Score

614 177 151 0.8026 0.7762 0.7892

Figure 4 provides a visual representation of the training results obtained from YOLOv5,
demonstrating variations in key metrics including objectness loss, box loss, segmentation
loss, classification loss, recall, precision, and mean average precision across 500 epochs for
both training and validation datasets. Box loss delineates spatial centrality and extent, while
objectness measures the likelihood of parameter occupancy. Segmentation and classification
losses indicate algorithmic predictive efficacy. Model performance, characterized by recall,
precision, and mean average precision, evolves throughout training, with peak-performing
models highlighted in red for each parameter.

Figure 5 utilizes correlograms, specialized 2D histograms, for the simultaneous visu-
alization of multi-axial data, providing an immediate overview of dataset relationships
and label distributions. This graphical representation integrates the position coordinates,
width, and height of labels related to key parameters. The correlations among these labels
are visually compared for a nuanced understanding.
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4. Discussion

The non-invasiveness and routine integration of radiological evaluation in dental
examinations make it a very advantageous diagnostic tool. Various radiographic methods
have been used for the diagnosis of pulp stones (PSs) in many studies. For example, Tamse
et al. [15] conducted evaluations using both periapical and bitewing radiographs to detect
PSs and examined the discrepancy between these two methods. However, the limitation
of bitewing and periapical radiographs is that they cannot evaluate all teeth in the jaw
simultaneously. Although CBCT stands out as the most suitable imaging modality for pulp
stone detection due to its ability to reduce superpositions and provide superior resolution,
its routine use is limited by the associated high radiation dose. CBCT is generally reserved
for specific indications rather than being a standard component of routine radiographic
examinations. Considering these factors, and consistent with previous research findings,
panoramic radiographs that show the entire jaws and are routinely used in clinical practice
were selected to be applied in this study to detect the presence of PS.

The incorporation of artificial intelligence (AI) within the medical domain, propelled
by advancements in deep learning and neural methodologies, has permeated into the field
of dentistry [14,16]. Significantly, AI exhibits promising accuracy in the interpretation of
medical imaging modalities, including X-rays, Cone-Beam Computed Tomography (CBCT),
Computed Tomography (CT) scans, and Magnetic Resonance Imaging (MRI). Applications
of machine learning (ML) and deep learning (DL) in dental practice hold substantial
potential, presenting advantages for clinicians and indicating prospective integration into
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the dentist’s armamentarium [14]. The broader domain of AI in healthcare encompasses
disease risk prediction, the identification of genetic anomalies, disease diagnosis, prognostic
evaluation, and scrutiny of anatomical structures. In dentistry, AI technologies primarily
serve as guiding tools for clinicians, enhancing clinics’ operational efficiency and supporting
overall clinic systems. Recent investigations underscore the escalating utilization of deep
learning methodologies, particularly the proficiency of convolutional neural networks,
renowned for their adept recognition of repetitive image patterns [17,18].

Pulpal calcifications represent densely calcified masses that can manifest within the
pulp tissue, occurring ubiquitously and varying in size [19,20]. These calcifications are
broadly categorized into two classes: pulp stones and dystrophic calcifications [20,21]. The
nomenclature for these entities, including terms such as PSs, pulpal calcification, nodules,
denticles, or dystrophic calcification, is frequently utilized interchangeably, alluding to
calcified masses within the pulp chamber [20,22]. Previous investigations concerning
pulpal calcifications have commonly aimed to identify calcifications discernible from the
dentinal wall, often neglecting an in-depth analysis of their structural characteristics and
spatial distribution [2,20,23].

In the present study, a focus was placed on detecting calcifications distinctly dis-
cernible solely within the pulp of the teeth, facilitated by the chosen radiographic imaging
technique. Subsequently, artificial intelligence learning was applied to this dataset. The
principal objective of this investigation was to assess the efficacy of employing DL method-
ologies for the identification of PS, with a specific focus on panoramic radiography as the
imaging modality.

The identification of pulpal calcifications, once uncovered, generally does not necessi-
tate any dental intervention [2,14]. However, if symptoms akin to pain arise in the tooth,
endodontic treatment may become imperative. Pulpal calcifications have the potential to
impede endodontic procedures or other analogous dental interventions. Calcifications can
impede the visibility of canal openings, posing challenges in discerning the canal orifice.
Similarly, calcifications within the canal lumen have the potential to completely block the
lumen, further complicating endodontic procedures [24]. During dental interventions, in-
advertent procedural errors, such as the inadequate attainment of the root canal’s complete
working length, the fracture of dental instruments, or perforation, may occur [6,25,26].

Given that artificial intelligence exhibits enhanced proficiency in detecting features
challenging for the human eye [27], the anticipation is that the incorporation of AI-assisted
methods may assist clinicians in identifying calcifications more effectively [28,29]. The
trained deep learning model demonstrated approximately 80% success in detecting the
presence of pulpal calcifications. It is envisaged that the success rate of our deep learning
model will see improvements with the utilization of larger datasets.

The objective of artificial intelligence (AI) investigations in dental radiology is to
enhance the interpretation of routine radiographs, facilitating expeditious analysis and
decision-making for complex cases. Furthermore, AI endeavors to provide support for
novice dentists in diagnostic processes. Image segmentation, a pixel-level classification
task, involves grouping image elements pertaining to the same object class [30]. Frequently
utilized in medical applications to delineate tumor boundaries or quantify tissue volumes,
image segmentation models based on deep learning consistently demonstrate heightened
accuracy rates, signaling a transformative shift in the domain [14,30].

The R-CNN architecture, initially devised for region-based image detection tasks,
underwent iterative enhancements culminating in Faster R-CNN, forming the foundation
for Mask R-CNN. Recognized as state of the art in image and instance segmentation, Mask
R-CNN, as evaluated by He et al. [31], surpassed preceding models by leveraging RoIAalign,
multitasking training, and ResNeXt-101. Its superiority lies in pixel-to-pixel alignment,
expediting experimentation, ensuring a rapid system, and facilitating the recognition of
round-shaped pixels. This attribute proves particularly advantageous in detecting pulp
stones, typically those that are oval in contour, through deep learning methods [14,31].
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The Mask R-CNN architecture finds application in various dental domains, notably
in dentistry’s caries detection and tooth numbering/segmentation. Moutselos et al. [32]
employed Mask R-CNN to detect occlusal caries in 88 intraoral radiographs, utilizing
ICDAS scoring. The recall, precision, and F-score values obtained were 0.889, 0.778, and
0.667, respectively. Silva et al. [33] conducted an exhaustive literature review on segmen-
tation methods in dental imaging, reporting Mask R-CNN’s performance metrics. The
architecture demonstrated an average accuracy of 92%, specificity of 96%, precision of 84%,
recall of 76%, and F-score of 79%, indicative of low false positives and negatives. While
direct comparisons with other unsupervised methods may be challenging, these results
underscore Mask R-CNN’s superiority.

Within the realm of pulp stone detection, apart from Selmi et al.’s [34] conference
statement, there is a notable gap in the literature regarding artificial intelligence-based
software utilization. Selmi et al. [34] employed a convolutional neural network (CNN),
achieving a correct prediction rate of 76.4% using a Medium Gaussian Support Vector
Machine of Residual Network 50 (ResNet-50). Inception v3 attained a 73.1% correct predic-
tion rate with an identical classifier, with ResNet-50 exhibiting a 7% lower false positive
rate. In the current study, employing the YOLOv5 architecture yielded approximately
80% sensitivity for pulp stone diagnosis, affirming its superior performance over other
object-detection algorithms.

Fariza et al. [35] conducted pulp chamber, dentin, and enamel segmentation on
panoramic images, achieving an accuracy of 93.3%. Lee et al. [36] developed a deep
learning model targeting proximal caries detection in bitewing radiographs. Their model
encompassed the segmentation of various structures including pulp chamber, dentin,
enamel, background, and restoration. Performance evaluation using CNNs yielded a
precision of 63.29%, recall of 65.02%, and F1-score of 64.14%. Yang et al. [37] compared the
efficacy of four distinct deep learning models for tooth segmentation, with a focus on pulp
segmentation through the identification of pulp chamber centers. The evaluation of pulp
chamber segmentation across 10 CBCT images comprising 512 slices each revealed success
rates ranging from 55.90% to 99.78%. Here, our study employed a YOLOv5 deep learning
model, achieving an 80% success rate in pulp stone detection.

Another pulp stone detection study in the literature with artificial intelligence is
the study carried out by Yüce et al. [38], focusing on bitewing images. The employed
algorithm for pulp stone detection in this study was YOLOv4, and the reported success rate
of artificial intelligence in this context was documented as 90%. Noteworthy congruence
exists between the outcomes of this study and our own. Differences in imaging methods
and specific artificial intelligence algorithms used between studies are thought to cause the
observed differences in results. This comparison underscores the importance of accounting
for methodological divergences when interpreting and contextualizing findings in the
domain of artificial intelligence-assisted pulp stone detection.

Salahin et al. [39] conducted a study focusing on the implementation and validation
of an automated system for carious lesion detection from smartphone images, employing
deep learning techniques. The YOLOv5X and YOLOv5M models demonstrated superior
performance compared to alternative models within the same dataset. Similarly, Zhou
et al. [40] investigated the efficacy of deep learning methodologies in classifying and
detecting recurrent aphthous ulcerations using clinical photographs of the oral region.
Their findings indicated that ResNet50 achieved the highest success in image classification,
while the pretrained YOLOv5 architecture excelled in object detection. Additionally, Ayan
et al. [41] evaluated the caries diagnosis performance of dental students following training
with an artificial intelligence application. Using the YOLOv5 program, caries lesions were
annotated in 1200 images by two experts, with 1000 randomly selected images utilized
for student education and the remaining 200 images reserved for evaluating AI-assisted
caries diagnosis. The overall class mean average precision (mAP) scores for YOLOv5s
and YOLOv5xs were 63% and 65%, respectively. Additionally, the results of their study
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showed that students receiving artificial intelligence training in carious lesion detection
demonstrated promising results.

Altındağ et al. [14] conducted a study on the detection of pulp stones using artifi-
cial intelligence, focusing on bitewing images. In contrast to the approach employed by
Yüce et al. [38], they utilized the Mask R-CNN architecture, annotating 1745 pulp stones
across 1269 bitewing images. Their investigation yielded precision, sensitivity, and F1
success rates of approximately 90%. Notably, they highlighted the model’s proficiency in
detecting pulp stones within the crown region, albeit with a lower success rate in identi-
fying those within the root region. In our study, we opted for the YOLOv5 architecture
and panoramic images, distinguishing our research from prior research. Disparities in
outcomes may stem from variances in architectural frameworks and imaging modalities.
Additionally, differences in pulp stone size between panoramic and bitewing imaging
modalities may contribute to observed distinctions. Additional comparative analyses are
necessary to further explore and clarify these discrepancies, thus advancing knowledge in
this field.

Given the utilization of panoramic images in this study, a heightened level of detail
regarding the pulp chambers of the teeth was attainable, facilitated by the expertise of
the observers, who were experienced oral radiologists. This proficiency was reflected in
the attained high Kappa value, signifying a notable degree of consistency in observations.
However, it is imperative to acknowledge that pulpal calcifications present a diagnostic
challenge, particularly for dental students with limited perceptual acuity and practitioners,
including dentists, who lack specialization in oral radiology and endodontology. The
introduction of artificial intelligence assumes a supportive role in mitigating diagnostic
challenges for these clinicians and dental students, offering assistance within the clinical
workflow, especially for those with limited experiential depth in the nuanced assessment
of pulpal calcifications.

Limitations

This study is beset with several inherent limitations warranting acknowledgment. A
notable constraint pertains to the absence of an assessment of the performance exhibited
by the participating experts. Another limitation is the use of images obtained from a
single panoramic device. Subsequent studies could enhance the robustness of findings by
expanding the variety of panoramic devices and incorporating multicenter study designs.
The imperative for additional efforts and dedicated research endeavors is underscored, as
the meticulous refinement and advancement of the established methodology are essential
prerequisites before the prospective practical implementation of the process. This ensures
its efficacy as a supportive tool for clinicians and underscores the necessity for a seamless
translation of results into clinically meaningful effects.

5. Conclusions

Deep learning algorithms have demonstrated efficacy in the detection of pulp stones,
thereby offering the potential for software systems supported by artificial intelligence to
assist dental practitioners in diagnostic examinations. The YOLOv5 architecture, when
employed for pulp stone detection, exhibits approximate sensitivity of 80%. Notably, the
accuracy rates within deep learning techniques exhibit an upward trend with the expansion
of the dataset. The augmentation of radiographic data in training models correlates with
heightened rates of success, underscoring the imperative for increased data volume in
future studies aimed at refining and advancing these methodologies.
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13. Bozkaya, F.; Yusefi, A.; Tiğlioğlu, Ş.; Kaya, A.K.; Kazanci, O.; Akmaz, M.Y.; Durdu, A.; Sungur, C. Improved Real Time Object

Detection In Autonomous Systems Using Data Augmentation Methods. Eur. J. Sci. Technol. 2021, 2021, 83–87.
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