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Abstract: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease, yet its current
treatments are limited to stopping disease progression. Moreover, the effectiveness of these treatments
remains uncertain due to the heterogeneity of the disease. Therefore, it is essential to identify disease
subtypes at a very early stage. Current data-driven approaches can be used to classify subtypes during
later stages of AD or related disorders, but making predictions in the asymptomatic or prodromal
stage is challenging. Furthermore, the classifications of most existing models lack explainability, and
these models rely solely on a single modality for assessment, limiting the scope of their analysis. Thus,
we propose a multimodal framework that utilizes early-stage indicators, including imaging, genetics,
and clinical assessments, to classify AD patients into progression-specific subtypes at an early stage.
In our framework, we introduce a tri-modal co-attention mechanism (Tri-COAT) to explicitly capture
cross-modal feature associations. Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(slow progressing = 177, intermediate = 302, and fast = 15) were used to train and evaluate Tri-COAT
using a 10-fold stratified cross-testing approach. Our proposed model outperforms baseline models
and sheds light on essential associations across multimodal features supported by known biological
mechanisms. The multimodal design behind Tri-COAT allows it to achieve the highest classification
area under the receiver operating characteristic curve while simultaneously providing interpretability
to the model predictions through the co-attention mechanism.

Keywords: disease subtyping; artificial intelligence; multimodal biomarker; transformer network;
Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, affecting
over 6.5 million people in the US alone, and its rate is expected to keep increasing [1]. Cur-
rent therapies for AD are mainly focused on the management of symptoms and promising
drugs that can slow the progression of the disease [2–4]. Therefore, early diagnosis of neu-
rodegenerative diseases is crucial. However, early diagnosis of AD presents a significant
challenge since memory loss only develops in the MCI stage of the AD continuum and
cognitive decline can vary among patients due to the disease’s heterogeneity [5]. Therefore,
it is crucial to develop methods capable of characterizing the factors that influence disease
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progression and identifying individual patients with progression-specific subtypes at an
early stage.

AD is traditionally diagnosed based on characteristic cognitive decline and behavioral
deficits that do not become apparent until intermediate to late stages of the disease. More
recently, early-stage indicators such as imaging-based and fluid biomarkers have shown
great potential for early detection of AD [6]. Fluid biomarkers found in blood and CSF
have now become standard methods of diagnosing early AD patients [7–9], even show-
ing great potential for subtyping AD [10]. Similarly, recent imaging-based approaches
such as brain connectivity analysis in the form of connectomes have shown promising
results for early diagnosis [11]. AD subtypes have been previously identified based on
hallmark AD biomarkers obtained from brain imaging such as beta-amyloid [12] and tau
accumulation [13,14].

Data-driven approaches have focused on classifying patients according to subtypes
based on disease progression from mild cognitive impairment (MCI, a prodromal stage of
AD) to AD conversion [15–19]. Current methods for subtyping AD and related disorders
have focused mainly on using longitudinal data from clinical assessments for unsupervised
learning [20–22]. For clustering approaches such as in [15,17,20,22], the authors subtyped
AD patients using single modalities at baseline, such as blood markers [17], genomic
data [20], or traits derived from imaging from longitudinal measurements [22]. These single-
modality approaches using baseline data have shown the potential of early-stage indicators
for AD subtyping. However, most of them fail to show how they relate biologically to AD
development or use multiple time points, which hinders the ability to diagnose patients at
early stages after AD onset.

Deep learning models have effectively identified diagnostic groups [23] and sub-
types [18] using multimodal imaging data and correlation-based approaches that allow a
greater explainability of of the relationships between the features learned by the model.
Nevertheless, these are limited by two key factors, namely, the use of only imaging data
and the fact that correlation-based approaches treat the clustering goal indirectly. Works
on related disorders have shown the relevance of multimodal approaches [24] using non-
negative matrix factorization and Gaussian mixture models or employing autoencoders
and long short-term memory (LSTM) networks to learn deep embeddings of disease pro-
gression [25]. However, this requires longitudinal data that involve several time points.
While several clustering and deep learning-based approaches have high accuracy when
having multiple time points, the performance decreases significantly given only baseline
data. This is driven by the subtle expression of the symptoms tracked in the clinical as-
sessments limiting the scope of the models. Early-stage indicators such as imaging traits
or genomic risk factors are rarely used and are simply aggregated to clinical assessments
as additional indicators. Therefore, it is essential to target early-stage indicators such as
genetics, imaging, and cognitive assessments.

Multimodal deep learning approaches can combine different modalities to provide a
much more informed picture of disease drivers and aid in disease subtyping [26]. However,
it is not a trivial task to identify the relevant features across modalities and how to fuse
them. The rest of this section first reviews the related works on multimodal fusion and
then provides an overview of our proposed method.

1.1. Multimodal Fusion

Multimodal fusion, while very promising, poses new challenges. There are multiple
ways to fuse the data and stages of encoding where to fuse. The effectiveness of the strategy
varies depending on data modalities and tasks. One of the key factors is the similarity
between the modalities. Highly heterogeneous data, such as imaging, genetics, and clinical
data, might not be immediately fused. Their difference in type, signal-to-noise ratio, and
dimensionality makes it very challenging to combine them without first projecting them
into a similar space. The relationship between input and output is equally important to
consider when fusing data. For example, clinical assessments reflect the direct impacts of
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the disease, while genetic data describe the building blocks of cells. The phenotype-related
information available in clinical assessments requires considerably less processing than
what might be required for genomic data to find the connection with a disease.

As illustrated in Figure 1, the existing multimodal fusion strategies can be grouped into
three main categories [27], namely, early, intermediate (also called joint), and late fusion. It
is essential to choose the right approach based on the task at hand and the data used. Early-
stage fusion has shown very promising results in recent vision–language models [28,29],
while late-fusion strategies have traditionally been very effective in aggregating machine
learning model decisions. Early- and late-stage fusion strategies, while effective for certain
tasks, are not ideal for AD subtyping using multimodal data. Early-stage fusion struggles
with dealing with highly heterogeneous and differently biologically related data such as
genetics, imaging, and clinical data. These require further encoding to first learn highly
informative representations for every modality and condense them into a similar latent
space. While late-stage fusion strategies can be very effective at aggregating the decisions
based on each modality, they cannot learn the feature relationships across modalities,
severely limiting the usefulness of the model. The intermediate fusion approach tackles
both challenges by first learning the crucial patterns associated with each modality. In the
next stage, it uses the condensed patterns from each modality to learn the cross-modal
relationships. This enables a more harmonious fusion of the heterogeneous modalities.
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Figure 1. The three main multimodal fusion strategies, early, intermediate, and late fusion, for deep
learning methods.

1.2. Overview and Contributions

Despite the potential advantages of multimodal approaches, several technical chal-
lenges exist to effectively leverage the key data of each modality. The high heterogeneity of
the data modalities for AD subtyping and the explicit learning of the cross-modal inter-
actions need to be addressed. Previous approaches in related fields have proposed dual
co-attention mechanisms to explicitly learn the cross-modal feature interaction and joint
data representations [30]. While they have shown very promising results, these have yet to
be explored for the progression-specific subtyping of neurodegenerative disease and its
corresponding modalities. Moreover, in AD and related disorder subtyping, three critical
but highly heterogeneous modalities are needed to be fused, i.e., imaging, genetics, and
clinical data. Therefore, in this paper, a tri-modal co-attention (Tri-COAT) framework is
proposed that can explicitly learn the interactions between the multimodal features to-
wards the task of classifying subtypes. While deep learning models for disease assessment
promise improved accuracy, they remain limited in the interpretability of the results. This
is a major entry barrier for the inclusion of deep learning models in the medical field.

Our contributions in this paper are twofold in both the application and technique.
First, our framework incorporates features of three early-stage biomarker modalities and
provides a cutting-edge approach to the progression-specific subtyping of early neurode-
generative diseases. Second, regarding the technical innovation, our new tri-modal co-
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attention framework can efficiently and explicitly learn the interactions between highly
heterogeneous modalities, encode the information into a joint representation, and provide
explainability to the cross-modal interactions. The proposed Tri-COAT achieved state-
of-the-art performance on the landmark Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset [31] and provided key insights into the biological pathways leading to
neurodegenerative disease development.

The rest of the paper is organized as follows. Section 2 presents the methods with
details of each component of Tri-COAT. Next, in Section 3, the dataset and experimental
design are described. In Section 4, the results are presented and discussed. Finally, in
Section 5, conclusions are drawn, and future directions are presented.

2. Method

Our proposed framework can be divided into two main parts. As seen in Figure 2,
single-modality encoders are first built using transformer modules to learn feature rep-
resentations for each modality. Second, the Tri-COAT mechanism explicitly learns the
critical cross-modal feature relationships and uses them to weigh the feature representation.
The jointly learned representation is processed through a multilayer perceptron (MLP) for
disease subtype classification.
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Figure 2. Illustration of the proposed framework for AD subtyping consisting of two main sections:
single-modality encoding and tri-modal attention with joint encoding.

2.1. Single-Modality Encoding

Three branches encode each modality individually. Each branch is comprised of a
transformer encoder with several transformer layers. This is inspired by previous works in
which transformer models have been proposed for imaging-derived connectomes [32] and
genotype data [33]. Each branch learns representations of a modality to later combine them
into a joint representation through the Tri-COAT mechanism.

Imaging modality. The imaging feature encoder branch uses MRI-derived quantitative
traits as input. These quantitative traits are derived from T1-weighted MRI scans. The
scans are first segmented based on the FreeSurfer atlas for cross-sectional processing.
Next, for each reconstructed region of interest (ROI), the cortical region, cortical volume,
thickness average, thickness standard deviation, and surface area are calculated. Further
details are described in Section 3.1. The imaging traits are then used to build tokens,
where each token represents an ROI in the brain and is comprised of four imaging-derived
traits (cortical thickness average, cortical thickness standard deviation, surface area, and
volume from cortical parcellation). Let XI ∈ RM×4 represent the imaging input to the
proposed model, where M = 72 and is the number of ROIs. Then, the token dimensions are
expanded through a fully connected layer to match the model dimensions k. The imaging
tokenization allows the building of an initial representation for each ROI rather than each
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trait, leading to a smaller number of input features and a more biologically informative
and interpretable input.

Genetic modality. The genotype branch has as input single nucleotide polymorphism
(SNP) data. After quality control and preprocessing of the genotype data as described in
Section 3.1, tokens for each SNP are built. Each token is composed of the allele dosage
from the patient, the corresponding odds ratio and rare allele frequency obtained from
the most recent AD GWAS study, and whether the SNP is within an intergenic region
(regulatory region) as a binary label. Then, the token dimensions are expanded through a
fully connected layer to k/2. Let XSNP ∈ RN×k/2 represent the genotype input to the model,
where N = 70 and is the number of SNPs filtered out (see Section 3.1 for details). Moreover,
based on the chromosome for which each SNP is located in, an additional embedding for
each SNP can be built. By including the chromosome embedding, location knowledge
for each SNP can be incorporated. Using an embedding layer, an embedding for each
chromosome can be obtained XChr ∈ RN×k/2. Finally, XSNP and XChr are concatenated to
obtain the final genotype embedding XG ∈ RN×k. Similarly to the imaging data encoding,
the genetic tokenization allows the building of more informative input structures to the
genetic encoder. By providing additional attributes for each SNP beyond the patient
mutation status, the model can learn richer patterns of characteristics that relate each SNP.

Clinical modality. The clinical data are already very closely related to the outcome
of interest and contain only few features; therefore, no further extensive tokenization is
performed. As there is just one value per clinical assessment, the tokens are directly built
with one dimension. Let XC ∈ RB×1 represent the clinical input to our model, where B = 7
and is the number of clinical features. Next, the token dimensions are expanded through a
fully connected layer to match the model dimensions k.

Single-modality encoders. After the tokenization of each modality, they are fed into
independent transformer encoders with L layers. The full process of the L-th layer in our
transformer encoder is formulated as follows:

F′
l = MHA(LN(Fl−1)) + Fl−1, (1)

and
Fl = FF(LN(F′

l )) + F′
l , (2)

where LN(·) is the normalization layer [34] and MHA(·) is multihead self-attention [35].

2.2. Tri-Modal Co-Attention

After each transformer encoder has learned a new representation for each modality,
these are then used to learn the cross-modal feature relationships to guide the co-attention
process on the clinical branch. In other words, the imaging and genomic features are
employed to modulate the clinical learning process by highlighting the key hidden features
that share relationships across modalities. The intuition behind the proposed approach is
that as the clinical data are most closely related to the disease phenotype, this branch will
carry most of the necessary information to classify the patients. Nevertheless, the imaging
and genomic data also provide valuable information. The idea is analogous to the clinical
data being the subject and verb in a sentence while the imaging and genomic data are the
adjectives and adverbs. These two elements enrich the representation of the health status
of a patient, analogous to enriching a sentence for a fuller meaning.

Let XEmb ∈ R{M,N,B}×k represent the learned representation of a given single-modality
encoder. These become query matrices for the genetics QG and imaging QI data, and key
KC, value VC matrices for the clinical data. Following an attention mechanism structure,
the co-attention between two modalities is computed as follows:

CoAttn({G, I}, C) = softmax

(
Q{G,I}KT

C√
dk

)
VT

C . (3)
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Next, the resulting co-attention filtered value matrices are concatenated to obtain a
final joint representation. This joint representation is then flattened and used to classify the
patients into the clusters through an MLP.

3. Materials and Experiments
3.1. Dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [31] database is a landmark
dataset for the advancement of our understanding of Alzheimer’s disease. ADNI [31] is
composed of a wide range of data modalities including MRI and PET images, genetics,
cognitive tests, CSF, and blood biomarkers. Longitudinal data for all subjects were selected
for up to two years of progression after disease onset due to the very high missingness
rate (percentage of data points missing across patients for a given time point) present
for time points after the two years. Subjects were clustered using k-means into three
main groups based on their Mini-Mental State Examination (MMSE) scores as can be seen
in Figure 3. These clusters match the cognitive decline rate of patients over time. The
MMSE score at each visit (baseline, 6 months, 12 months, and 24 months) was used to
determine the cognitive decline for each patient. As each patient may have a different
starting level at baseline, the baseline measurement is subtracted from each of the following
time points; thus, all patients start at 0. Then, using k-means clustering, using k = 3, slow,
intermediate, and fast cognitive decline groups are defined. As seen in Table 1, the raw
average MMSE score at baseline is comparable across all groups with a steep decrease for
the fast and intermediate groups at 24 months. The slow or otherwise stable group MMSE
score at 24 months is comparable to the one at the initial stage. On the other hand, all three
groups are age matched. Similarly, sex distributions across groups is maintained, with male
subjects representing approximately 60% of the subjects for each group.
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Figure 3. AD progression-specific subtype clusters based on a decrease in the MMSE at each visit.
(a) Each line represents the average score across patients for each cluster, and the shadow represents
one standard deviation. (b) Individual lines per patient are plotted.

Table 1. Subject data distribution reported as the mean ± standard deviation for the MMSE and age
and as counts per category for the number of participants and sex.

Slow Intermediate Fast

Participants 177 302 15
MMSE (Baseline) 27.35 ± 2.51 27.66 ± 1.86 24.93 ± 3.55
MMSE (24 months) 28.15± 2.15 23.86 ± 3.68 15.9 ± 4.84
Age 73.26 ± 7.82 72.44 ± 7.55 71.22 ± 3.922
Sex M: 102 F: 75 M: 185 F: 117 M: 9 F: 6



J. Pers. Med. 2024, 14, 421 7 of 12

Data preprocessing: The data for the imaging and genotype modalities were processed
previously by the tokenization process following best practices for the corresponding
modality as described below.

Imaging: The FreeSurfer image analysis suite [36] was used to conduct cortical recon-
struction and volumetric segmentation. T1-weighted MRI scans were segmented based on
the FreeSurfer atlas for cross-sectional processing, enabling group comparison at a specific
time point [37]. For each reconstructed cortical region, cortical volume, thickness average,
thickness standard deviation, and surface area measurements were labeled by the 2010
Desikan-Killany atlas. The UCSF ADNI team conducted this process [38].

Genotype: The genotype variants were filtered using the intersection between the List
of AD Loci and Genes with Genetic Evidence Compiled by the ADSP Gene Verification
Committee and the most recent genome-wide association study (GWAS) on AD [39]. The
odds ratios, rare allele frequency, and intergenic region binary trait were obtained from the
most recent GWAS study with accession number (GCST90027158), accessed through the
GWAS catalog [40]. Furthermore, the genotype variants were processed for sample and
variant quality controls using PLINK1.9 [41].

Clinical: The clinical assessment features corresponded to seven different cognitive
metrics available through ADNI [31]. These were Logical Memory-Delayed Recall (LDEL-
TOTAL), Digit Symbol Substitution (DIGITSCOR), Trail Making Test B (TRABSCOR), and
Rey Auditory Verbal Learning Test (RAVLT) scores: immediate, learning, forgetting, and
percent forgetting. Values for the imaging and clinical modalities were normalized for each
training set before they were used as inputs to the network.

3.2. Experimental Design

All models underwent training and evaluation using a 10-fold stratified cross-testing
approach. Initially, the entire dataset was divided into 10 folds, with one fold reserved
for testing and the remaining nine for training. Subsequently, this training set was further
divided into 5 folds for a 5-fold stratified cross-validation process for hyperparameter
tuning. This robust framework was designed to prevent any data leakage. The optimal
hyperparameters were determined during each experimental run by selecting the best-
performing model based on the validation set. Each of the 10 test sets was evaluated
5 times, using hyperparameters determined by the validation sets, resulting in a total
of 50 evaluations for each method. Predictions were evaluated using the area under the
receiver operating curve (AUROC). A one-vs-one strategy was employed where the average
AUROC of all possible pairwise combinations of classes was computed for a balanced
metric. This was implemented using Sci-Kit Learn API [42], which implements the method
described in [43]. The mean AUROC and standard deviation across all 50 runs are reported
for each method in Table 2. The model was compared against the stage-wise deep learning
intermediate fusion model introduced in [44] and several well-established traditional ML
models—random forest (RF) and support vector machine (SVM) with radial-basis function
(RBF) kernel. Similarly, each of the branches of the model was used as comparison using a
series of transformer encoder layers and MLP head for classification.

Table 2. Mean AUROC ± SD of 10-fold cross-testing results. The proposed model significantly
outperformed all the baseline models. The statistical significance was evaluated by paired t-test with
α = 0.005, except for the entry where α = 0.05 (shown in italics).

Method Full Imaging Genetics Clinical

SVM 0.705 ± 0.036 0.669 ± 0.060 0.525 ± 0.034 0.639 ± 0.078
RF 0.684 ± 0.048 0.677 ± 0.052 0.505 ± 0.031 0.659 ± 0.087
Stage-wise fusion 0.641 ± 0.017 0.557 ± 0.096 0.562 ± 0.078 0.655 ± 0.057
Tri-COAT 0.734 ± 0.076 0.648 ± 0.056 0.539 ± 0.084 0.697 ± 0.063

Tri-COAT consists of four transformer layers for each of the single-modality encoders,
with four attention heads per transformer layer. The tri-model co-attention process is done
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in a single-head attention mechanism. The classifying MLP has one hidden layer with
256 units. An embedding dimension of k = 256 was used for all modalities. The model di-
mensions for the single-modality encoders were kept at 256 throughout, as this combination
achieved the best results on the validation set. The final MLP had the concatenated class
tokens resulting from the tri-modal co-attention module and computed the output logits
for each one of the three possible classes. Adam was used to optimize both the Tri-COAT
and stage-wise MLP models using learning rates of 0.0001 for Tri-COAT and 0.0001 for
the stage-wise fusion benchmarking model. All deep learning models were trained using
cross-entropy loss. All deep learning models were implemented using PyTorch, while
the RF and SVM models were implemented using scikit-learn. All deep learning models
were trained for 100 epochs, and the best checkpoint, meaning the epoch with the highest
AUROC for the validation set, was selected for model evaluation. The stage-wise deep
learning fusion model had dimensions of 64 units for the single-modality layers, 32 for the
second-stage, and 16 for the final stage. The model dimensions were selected following
the described hyperparameters in [44]. The SVM used an RBF kernel and a regularization
parameter C of 1. The random forest used gini as its criterion for leaf splitting, 100 trees,
and no maximum depth.

4. Results and Discussion
4.1. Clustering, Label Definition

Following the literature, the number of clusters was set to three main groups [45–47].
The MMSE score was used as an indicator of mental decline. Based on the speed of the
progression of the mental decline over a period of two years, three groups were defined,
i.e., the fast-, intermediate-, and slow-progressing subtypes. K-means clustering was used
to assign each subject to one of the groups. Through this process, labels were defined for
all subjects. Only baseline data were used as input to Tri-COAT and all competing models.
Based on the baseline data, Tri-COAT was able to effectively classify the subjects into their
corresponding progression-specific subtypes.

4.2. AD Progression-Specific Subtype Classification

As seen in Table 2, Tri-COAT outperformed the single-modality ablations and baseline
models, achieving an average AUROC of 0.734 ± 0.076 across all test sets in the 10-fold
cross-testing framework. For the single-modality ablation studies, each modality was used
independently to classify the AD subtype. For Tri-COAT, a single-modality transformer
encoder backbone and MLP head were used. For the stage-wise fusion model, it was
adapted to MLPs using the same number of hidden layers as the first plus last stage of
the multimodal version. For SVM and RF, no variations were required. Each modality
was evaluated using the same 10-fold cross-testing–5-fold-cross-validation hyperparameter
tuning framework. Moreover, the single-modality ablation models outperformed their
baseline counterparts for the clinical and genetics modalities. In contrast, the baselines
achieved better performances for the imaging-derived traits. For the three modalities,
the clinical modality achieved the best classification AUROC, followed by the imaging
and genetics modalities. This is expected, as biologically, the same order follows for the
closest relation between the observed phenotype and the mechanisms behind it. Clinical
(cognitive) assessments are the closest to the MMSE metric, followed by imaging (changes
in the brain morphology), which is directly related to the observed phenotype and genetics
being the farthest apart from the expressed symptoms. Both the comparative models and
Tri-COAT achieve higher performances in their multimodal configuration compared to
single modalities, agreeing with previous literature regarding multimodal approaches for
classification of AD and related disorders.

Furthermore, as seen in Table 3, Tri-COAT outperformed variations of itself using alter-
native fusion strategies. The early fusion model considerably underperforms achieving an
AUROC of 0.571 ± 0.053 because of its limited capabilities to simultaneously encode highly
heterogeneous data with distinct biological-level relationships to the outcome. Similarly,
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the late-stage fusion model underperforms, as it is limited to joining the predictions from
each branch and cannot learn the relationships between the different modalities in the
latent space.

Table 3. Mean AUROC ± SD of 10-fold cross-testing results. Tri-COAT significantly outperformed
early and late fusion variants. The statistical significance was evaluated by paired t-test with α = 0.005,
except for the entry where α = 0.05 (shown in italics).

Method AUROC

Early 0.571 ± 0.053
Late 0.604 ± 0.048
Tri-COAT 0.734 ± 0.076

4.3. Biomarker Associations Learned by Co-Attention

One of the key advantages of Tri-COAT compared to the baseline models and tradi-
tional deep learning approaches is the ability to learn insights into the cross-modal feature
associations. In order to explore the learned relationships, the model with the highest test
AUROC from the evaluation framework was selected for attention visualization in which
the learned attention scores were averaged across all test subjects. Chord plots were drawn
using the circlize R library [48] to visualize the cross-modal attention. As seen in Figure 4,
Tri-COAT identified key associations between the Trails making test B score (TRABSCORE)
in the clinical–imaging and clinical–genetics associations. This score tests for the cognitive
ability of the patient for working memory and secondarily task-switching ability [49]. The
clinical literature shows a strong correlation between gyri structures—temporal gyrus and
parahippocampal gyrus (LTransTemp, LPH)—and the TRABSCORE [50]. Similarly, for the
clinical–genotype association, TRABSCORE was found to be associated with the CD2AP
gene, which has been clinically identified as a driver for the AD hallmark—neurofibrillary
tangles (NFT) in the temporal gyrus region [51]. This is a very exciting finding for our
network, as it establishes a putative relationship between genetics (CD2AP gene), brain
ROIs (temporal gyrus), and clinical symptoms (TRABSCORE).
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Figure 4. Cross-modal associations of key AD biomarkers visualized from the learned co-attention.

5. Conclusions

AD is the most prevalent neurodegenerative disease, and all current treatments are
limited to slowing disease progression. Therefore, early diagnosis is essential. Furthermore,
there are multiple subtypes with different rates of cognitive decline. In order to move closer
to personalized medicine, it is essential to have a better understanding of the heterogeneity
surrounding the development of this disease. However, early subtyping is a very challeng-
ing task. Our proposed model, Tri-COAT, was able to effectively classify AD patients into
three main progression-specific subtypes using prodromal factors measured at baseline.

Moreover, the model was able to identify multiple putative cross-modal biomarker
networks. The putative biomarkers provide enhanced interpretability for Tri-COAT and
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shed light on possible exciting therapeutic targets. Nevertheless, the generalizability of
applying the learned features to other datasets remains to be tested.

The future directions are very exciting, as Tri-COAT could be extended to other hetero-
geneous neurodegenerative diseases such as Parkinson’s disease. Moreover, as shown in
this work, multimodal approaches achieved the best results. A promising future direction
is to incorporate further modalities such as PET imaging and transcriptomic data. PET
imaging could provide further clarity towards the accumulation of fluid biomarkers and
their impact towards neurodegeneration. Similarly, transcriptomic data could provide an
intermediate biological step between the genotype and brain endophenotypes. These could
lead to an enhanced understanding of the underlying mechanisms and provide further
therapeutic targets.

Author Contributions: Conceptualization, D.M.R., H.C., L.S. and P.Y.; Formal analysis, D.M.R.;
Funding acquisition, D.M.R., J.H. and P.Y.; Investigation, D.M.R.; Methodology, D.M.R.; Project
administration, P.Y.; Resources, P.Y.; Supervision, P.Y.; Visualization, D.M.R.; Writing—original draft,
D.M.R.; Writing—review & editing, H.C., J.H., L.S. and P.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded in part by the training grant T32AG078123, the NSF CAREER
award 2046708, NSF IIS 1837964, and NIH grants U01 AG066833, U01 AG068057, and RF1 AG063481.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD).

Acknowledgments: Data collection and sharing for this project were funded by the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD
ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National
Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through
generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug
Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company;
CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun;
F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare;
IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & John-
son Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso
Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals
Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI
clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National
Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute
for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research
Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for
Neuro Imaging at the University of Southern California.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Alzheimer’s Association. 2022 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2022, 18, 700–789. [CrossRef] [PubMed]
2. Dhillon, S. Aducanumab: First Approval. Drugs 2021, 81, 1437–1443. [CrossRef] [PubMed]
3. Swanson, C.J.; Zhang, Y.; Dhadda, S.; Wang, J.; Kaplow, J.; Lai, R.Y.K.; Lannfelt, L.; Bradley, H.; Rabe, M.; Koyama, A.; et al.

A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-AB
protofibril antibody. Alzheimer’s Res. Ther. 2021, 13, 80. [CrossRef] [PubMed]

www.fnih.org
http://doi.org/10.1002/alz.12638
http://www.ncbi.nlm.nih.gov/pubmed/35289055
http://dx.doi.org/10.1007/s40265-021-01569-z
http://www.ncbi.nlm.nih.gov/pubmed/34324167
http://dx.doi.org/10.1186/s13195-021-00813-8
http://www.ncbi.nlm.nih.gov/pubmed/33865446


J. Pers. Med. 2024, 14, 421 11 of 12

4. Shcherbinin, S.; Evans, C.D.; Lu, M.; Andersen, S.W.; Pontecorvo, M.J.; Willis, B.A.; Gueorguieva, I.; Hauck, P.M.; Brooks, D.A.;
Mintun, M.A.; et al. Association of Amyloid Reduction After Donanemab Treatment With Tau Pathology and Clinical Outcomes:
The TRAILBLAZER-ALZ Randomized Clinical Trial. JAMA Neurol. 2022, 79, 1015–1024. [CrossRef] [PubMed]

5. Foster, N.L.; Bondi, M.W.; Das, R.; Foss, M.; Hershey, L.A.; Koh, S.; Logan, R.; Poole, C.; Shega, J.W.; Sood, A.; et al. Quality
improvement in neurology. Neurology 2019, 93, 705–713. [CrossRef] [PubMed]

6. Hassen, S.B.; Neji, M.; Hussain, Z.; Hussain, A.; Alimi, A.M.; Frikha, M. Deep learning methods for early detection of Alzheimer’s
disease using structural MR images: A survey. Neurocomputing 2024, 576, 127325. [CrossRef]

7. McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.;
Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute
on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011,
7, 263–269. [CrossRef] [PubMed]

8. Dubois, B.; Feldman, H.H.; Jacova, C.; Hampel, H.; Molinuevo, J.L.; Blennow, K.; DeKosky, S.T.; Gauthier, S.; Selkoe, D.;
Bateman, R.; et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol. 2014,
13, 614–629. MDPI: We removed Publisher: Elsevier, please confirm [CrossRef] [PubMed]

9. Tao, Q.Q.; Lin, R.R.; Wu, Z.Y. Early Diagnosis of Alzheimer’s Disease: Moving Toward a Blood-Based Biomarkers Era. Clin.
Interv. Aging 2023, 18, 353–358. [CrossRef]

10. Dubois, B.; von Arnim, C.A.F.; Burnie, N.; Bozeat, S.; Cummings, J. Biomarkers in Alzheimer’s disease: Role in early and
differential diagnosis and recognition of atypical variants. Alzheimer’s Res. Ther. 2023, 15, 175. [CrossRef]

11. Zhang, S.; Zhao, H.; Wang, W.; Wang, Z.; Luo, X.; Hramov, A.; Kurths, J. Edge-centric effective connection network based on
muti-modal MRI for the diagnosis of Alzheimer’s disease. Neurocomputing 2023, 552, 126512. [CrossRef]

12. Collij, L.E.; Salvadó, G.; Wottschel, V.; Mastenbroek, S.E.; Schoenmakers, P.; Heeman, F.; Aksman, L.; Wink, A.M.; Berckel, B.N.; van de
Flier, W.M.; et al. Spatial-Temporal Patterns of B-Amyloid Accumulation. Neurology 2022, 98, e1692–e1703. [CrossRef] [PubMed]

13. Bejanin, A.; Schonhaut, D.R.; La Joie, R.; Kramer, J.H.; Baker, S.L.; Sosa, N.; Ayakta, N.; Cantwell, A.; Janabi, M.; Lauriola, M.; et al.
Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 2017, 140, 3286–3300.
[CrossRef] [PubMed]

14. Vogel, J.W.; Young, A.L.; Oxtoby, N.P.; Smith, R.; Ossenkoppele, R.; Strandberg, O.T.; La Joie, R.; Aksman, L.M.; Grothe, M.J.;
Iturria-Medina, Y.; et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 2021, 27, 871–881.
[CrossRef]

15. Mitelpunkt, A.; Galili, T.; Kozlovski, T.; Bregman, N.; Shachar, N.; Markus-Kalish, M.; Benjamini, Y. Novel Alzheimer’s disease
subtypes identified using a data and knowledge driven strategy. Sci. Rep. 2020, 10, 1327. [CrossRef]

16. Badhwar, A.; McFall, G.P.; Sapkota, S.; Black, S.E.; Chertkow, H.; Duchesne, S.; Masellis, M.; Li, L.; Dixon, R.A.; Bellec, P.
A multiomics approach to heterogeneity in Alzheimer’s disease: Focused review and roadmap. Brain 2020, 143, 1315–1331.
[CrossRef] [PubMed]

17. Martí-Juan, G.; Sanroma, G.; Piella, G.; Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer’s Disease Metabolomics
Consortium. Revealing heterogeneity of brain imaging phenotypes in Alzheimer’s disease based on unsupervised clustering of
blood marker profiles. PLoS ONE 2019, 14, e0211121. [CrossRef]

18. Feng, Y.; Kim, M.; Yao, X.; Liu, K.; Long, Q.; Shen, L.; for the Alzheimer’s Disease Neuroimaging Initiative. Deep multiview
learning to identify imaging-driven subtypes in mild cognitive impairment. BMC Bioinform. 2022, 23, 402. [CrossRef]

19. El-Sappagh, S.; Ali, F.; Abuhmed, T.; Singh, J.; Alonso, J.M. Automatic detection of Alzheimer’s disease progression: An efficient
information fusion approach with heterogeneous ensemble classifiers. Neurocomputing 2022, 512, 203–224. [CrossRef]

20. Emon, M.A.; Heinson, A.; Wu, P.; Domingo-Fernández, D.; Sood, M.; Vrooman, H.; Corvol, J.C.; Scordis, P.; Hofmann-Apitius, M.;
Fröhlich, H. Clustering of Alzheimer’s and Parkinson’s disease based on genetic burden of shared molecular mechanisms. Sci.
Rep. 2020, 10, 19097. [CrossRef]

21. Wen, J.; Varol, E.; Sotiras, A.; Yang, Z.; Chand, G.B.; Erus, G.; Shou, H.; Abdulkadir, A.; Hwang, G.; Dwyer, D.B.; et al. Multi-scale
semi-supervised clustering of brain images: Deriving disease subtypes. Med. Image Anal. 2022, 75, 102304. [CrossRef]

22. Poulakis, K.; Pereira, J.B.; Muehlboeck, J.S.; Wahlund, L.O.; Smedby, O.; Volpe, G.; Masters, C.L.; Ames, D.; Niimi, Y.;
Iwatsubo, T.; et al. Multi-cohort and longitudinal Bayesian clustering study of stage and subtype in Alzheimer’s disease.
Nat. Commun. 2022, 13, 4566. [CrossRef] [PubMed]
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GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids Res. 2023, 51, D977–D985. [CrossRef]

41. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.;
Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet.
2007, 81, 559–575. [CrossRef] [PubMed]

42. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

43. Hand, D.J.; Till, R.J. A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Mach.
Learn. 2001, 45, 171–186. [CrossRef]

44. Zhou, T.; Thung, K.H.; Zhu, X.; Shen, D. Effective feature learning and fusion of multimodality data using stage-wise deep neural
network for dementia diagnosis. Hum. Brain Mapp. 2019, 40, 1001–1016. [CrossRef] [PubMed]

45. Doody, R.S.; Massman, P.; Dunn, J.K. A Method for Estimating Progression Rates in Alzheimer Disease. Arch. Neurol. 2001,
58, 449–454. [CrossRef]

46. Doody, R.S.; Pavlik, V.; Massman, P.; Rountree, S.; Darby, E.; Chan, W. Predicting progression of Alzheimer’s disease. Alzheimer’s
Res. Ther. 2010, 2, 2. [CrossRef]

47. Prosser, A.; Evenden, D.; Holmes, R.; Kipps, C. Progression modelling of cognitive decline and associated FDG-PET imaging
features in Alzheimer’s disease. Alzheimer’s Dement. 2020, 16, e045900. [CrossRef]

48. Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 2014,
30, 2811–2812. [CrossRef] [PubMed]

49. Terada, S.; Sato, S.; Nagao, S.; Ikeda, C.; Shindo, A.; Hayashi, S.; Oshima, E.; Yokota, O.; Uchitomi, Y. Trail Making Test B and brain
perfusion imaging in mild cognitive impairment and mild Alzheimer’s disease. Psychiatry Res. Neuroimaging 2013, 213, 249–255.
[CrossRef] [PubMed]

50. Matías-Guiu, J.A.; Cabrera-Martín, M.N.; Valles-Salgado, M.; Pérez-Pérez, A.; Rognoni, T.; Moreno-Ramos, T.; Carreras, J.L.;
Matías-Guiu, J. Neural Basis of Cognitive Assessment in Alzheimer Disease, Amnestic Mild Cognitive Impairment, and Subjective
Memory Complaints. Am. J. Geriatr. Psychiatry 2017, 25, 730–740. [CrossRef]

51. Camacho, J.; Rábano, A.; Marazuela, P.; Bonaterra-Pastra, A.; Serna, G.; Moliné, T.; Ramón y Cajal, S.; Martínez-Sáez, E.;
Hernández-Guillamon, M. Association of CD2AP neuronal deposits with Braak neurofibrillary stage in Alzheimer’s disease.
Brain Pathol. 2021, 32, e13016. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.2204.14198
https://doi.org/10.48550/arXiv.2104.11178
http://dx.doi.org/10.1002/jmri.21049
http://dx.doi.org/10.1145/3535508.3545544
http://dx.doi.org/10.1109/BHI56158.2022.9926815
http://dx.doi.org/10.1016/j.neuroimage.2012.01.021
http://www.ncbi.nlm.nih.gov/pubmed/22248573
http://dx.doi.org/10.1073/pnas.200033797
http://www.ncbi.nlm.nih.gov/pubmed/10984517
http://dx.doi.org/10.1038/s41588-022-01024-z
http://www.ncbi.nlm.nih.gov/pubmed/35379992
http://dx.doi.org/10.1093/nar/gkac1010
http://dx.doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
http://dx.doi.org/10.1023/A:1010920819831
http://dx.doi.org/10.1002/hbm.24428
http://www.ncbi.nlm.nih.gov/pubmed/30381863
http://dx.doi.org/10.1001/archneur.58.3.449
http://dx.doi.org/10.1186/alzrt25
http://dx.doi.org/10.1002/alz.045900
http://dx.doi.org/10.1093/bioinformatics/btu393
http://www.ncbi.nlm.nih.gov/pubmed/24930139
http://dx.doi.org/10.1016/j.pscychresns.2013.03.006
http://www.ncbi.nlm.nih.gov/pubmed/23830931
http://dx.doi.org/10.1016/j.jagp.2017.02.002
http://dx.doi.org/10.1111/bpa.13016

	Introduction
	Multimodal Fusion
	Overview and Contributions

	Method
	Single-Modality Encoding
	Tri-Modal Co-Attention

	Materials and Experiments
	Dataset
	Experimental Design

	Results and Discussion
	Clustering, Label Definition
	AD Progression-Specific Subtype Classification
	Biomarker Associations Learned by Co-Attention

	Conclusions
	References

