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Abstract: In this work, large-scale molecular dynamics (MD) computational simulations were per-
formed in order to explore the sliding contact responses of rough surfaces with hexadecane lubricant
and added nanoparticles. Simulation results revealed that the frictional state was dependent on
the fluid, nanoparticle, and surface roughness. Three lubricating conditions were compared based
on considerations of different amounts of fluid molecules. The lubricant was not able to separate
the frictional contact surfaces if the quantity of lubricant molecules was insufficient. Particularly,
there were no lubricating contributions when the amount of lubricant was too low, and the lubricant
therefore only filled the pits in the surface roughness. Thus, the normal load was primarily supported
by the contact between the two surfaces and nanoparticles, leading to significant surface morphology
changes. In contrast, the frictional contact surfaces were able to be completely separated by the
lubricant when there was a sufficient amount of fluid, and a very good lubricating effect could thus
be achieved, resulting in a smaller friction force. In addition, the changes in surface morphology,
contact area, and RMS are discussed in this paper, in order to reveal the dynamic frictional process.

Keywords: boundary friction; sliding contact; lubricant; nanoparticle addition; molecular dynamics
simulation

1. Introduction

The development of high-performance lubricants is critical in improving manufactur-
ing costs and increasing the service life of materials and mechanical parts [1]. In order to
overcome the relatively poor tribological performance of conventional materials in mechan-
ical contact systems, one strategy is to design and develop novel structures or new materials
with superior friction and wear properties. These novel structures and materials include the
widely reported gradient structures [2,3], nanostructures or nano-grained structures [4–6],
hieratical or heterogeneous structures [7,8], and the recently proposed medium entropy al-
loys (MEAs) [9–11], high entropy alloys (HEAs) [12–14], high entropy ceramics (HECs) [15],
and so on. In addition to improved mechanical properties, these novel structures and
materials have been reported to possess excellent wear resistances under a wide range
of environmental conditions. For example, compared with conventional coarse-grained
structures, both the friction coefficient and wear rate were found to have decreased in
Ti6Al4V when it instead consisted of bulk nano-grained structures [6]. With the help of
nano/micro-wear testing, Chen et al. [3] revealed that a lower friction coefficient could be
achieved in Cu and Cu–Ag alloys when they were composed of gradient nano-grained
microstructures. Apart from advanced microstructure designs and fabrications, new al-
loys such as MEAs and HEAs have also been found to exhibit excellent friction and wear
performances. Zhang et al. [9] found that the CrCoNi MEA has outstanding scratching
properties, not only at room temperature, but also at cryogenic temperatures. According
to Zhu et al. [14], the wear resistance of additively manufactured FeCoCrNi HEA can be
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affected by Cu-doping. Another promising strategy is to develop advanced lubricants, such
as solid-self lubricants [16–20] and glass lubricants [21,22], for engineering applications
under extreme conditions, like high temperature and pressure. Using HEAs as the solid
matrix materials, Zhang et al. [17,20] developed several self-lubricating composites based
on CoCrFeNi HEA. These HEA-based solid self-lubricating composites were found to
perform very well in a wide temperature range, from RT up to 800 ◦C.

However, liquid-based lubricants are still very popular for use at relatively low tem-
peratures, from the points of view of both lubricating and economic efficiency. For instance,
nanoparticles, including metallic nanoparticles [23], their oxides [24–28], and non-metallic
particles [29–31], have been widely added to lubricants as a strategy to reduce wear and fric-
tion during mechanical contacts in experiments. A comprehensive work by Dai et al. [32]
discussed the role of nanoparticles in oil lubricants. They compared the influences of the
physical and chemical properties of nanoparticles and discussed the effects of both size and
morphology on their lubricating performance. They found that nanoparticle size demon-
strates a significant effect on friction coefficient and wear volume, and that the optimum
size is dependent on the working conditions, i.e., base lubricant, surface roughness, and
chemical properties [33–35]. The sizes and shapes of particles have been studied widely,
including spherical, sheet, granular, onion, and tubular particles. In addition to oils, the
addition of nanoparticles or nanosheets has also been found to be able to greatly improve
the tribological properties of water-based lubricants [36]. These nanoparticles contribute to
low wear and friction in terms of rolling, sliding, and exfoliation, or a combination of these
modes [30,32,35].

Unfortunately, it has been commonly accepted that the friction mechanisms of nanopar-
ticles and lubricant are hardly observable by current experimental approaches. However,
molecular dynamics (MD) simulation, which is based on Newton’s equations of motion for
molecular systems, is considered to be one of the cheapest and most accurate approaches to
explore tribological phenomena at the molecular or atomic level [37,38]. In recent research,
numerous computations employing the MD approach have been carried out to explore the
surface contacts and friction properties of diverse lubricants and nanoparticles. These mod-
els have encompassed surfaces with single asperities [38–40], and amorphous [41] or rough
profiles [42,43]. Models with thin film, flat surfaces [13] and 3D rough surfaces [44,45]
have also been studied. Most of the above simulation works were carried out with ei-
ther dry contact or simple surface contact. Lv et al. [46] performed an MD simulation
of Cu–Ar nanofluids between two solid surfaces. They revealed that the nanoparticles
provided a supporting force on the plate, consequently diminishing the contacts between
these solid surfaces. Hu et al. [30] compared the friction properties of fluids with and
without nanoparticles under shearing. They found that liquid–solid transitions occurred
in both the base and nanofluid cases when the normal load was increased. However, the
nanofluids showed excellent friction-reducing properties when the load was high. They
also examined frictional fluid with hard nanoparticles (diamond and silicon dioxide) and
found that the nanoparticles could separate the two blocks. In their later work [31], it was
observed that the hard nanoparticles contributed to polishing the frictional contact surfaces.
Stephan et al. [38,39] explored the effects of lubricants on nanoparticle indentation. They
found that trapped lubricant between tip-surface gaps led to a larger contact area when
compared to the dry contact case. Zhang et al. [37] carried out multi-scale simulations of
rough lubricated contact and found that the studied lubricant molecules could effectively
separate aluminum surfaces and bear the external pressure. Ji et al. [47] conducted MD sim-
ulation of water and SiO2 mixed fluid confined between copper walls. They found that both
rolling and sliding friction occurred during sliding. The simple rough surfaces with holes
were partially filled by the nanoparticles, which helped to smooth the surfaces and decrease
the friction coefficients. Moreover, when the normal pressure increased, nanoparticles
underwent cutting and absorption into the solid surface, potentially influencing the filling
of rough plates. However, most of the above MD models were based on simplifications
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with either flat or structured rough surfaces. The combined effects of fluids, nanoparticles,
and surface roughness have not been well studied.

In the case of boundary friction, the frictional state is very complicated and can be
affected by the lubricating fluid, the composition of particles, and the surface roughness
condition. It is therefore very important to understand the effects of nanoparticles in a
lubricant on the mechanical contacts between two rough surfaces. In our previous work [44],
we examined the friction behavior of confined fluid between rough surfaces with dry,
partially lubricated, and fully lubricated cases. More recently, the effects of lubricant and
nanoparticles on sliding surfaces were discussed [48]. This modelling study is an extension
of our prior MD simulations to explore the combined effects of fluid, particles, and surface
roughness, which are hardly detectible by direct experimental observations. The findings
in this study provide a fundamental and comprehensive understanding of nano-scale
boundary lubrication and associated mechanisms from a MD simulation standpoint.

2. Simulation Models and Details
2.1. Simulation Model

MD simulation has been proven to be one of the most powerful numerical models for
studying plastic deformation and tribology at the nano-scale [9,37]. It provides insights
into non-equilibrium processes under diverse conditions, enabling exploration of surface
contacts and boundary lubrication. In this paper, all the MD simulations were carried out
using a larger-scale atomic or molecular massively parallel simulator (LAMMPS) [49].

As displayed in Figure 1, the tribological model consisted of upper and lower <001>
oriented BCC iron walls. Hexadecane was used as the lubricant, and 16 Fe rigid nanoparti-
cles with a radius of 8 Å comprised the additive. The current research mainly focused on
the combined effect from nanoparticles. Thus, the tribological system was simplified to only
consider the rigid particles. The BCC iron wall was further divided into three parts: the
rigid region, the thermostat region, and the deformable free region, as labelled in Figure 1.
Periodic boundary conditions were applied to the lateral (x and y) directions. The y and
z directions were allowed to move as the system height fluctuated during compression
and sliding processes under four different normal forces, from 0.25 GPa to 1.0 GPa. The
influences of the amount of lubricating fluid molecules (250, 500, 750, and 1000) were
investigated to represent the different amounts of lubricant between the upper and lower
contacting surfaces. However, the number of nanoparticles was kept the same for all cases,
at 16. To ensure a reasonable duration of calculations and also enough surface area to
accommodate multiple roughness peaks and valleys, 45 × 45 BCC lattice units were used
to construct the surfaces both along the x and y directions, in total equaling approximately
130 × 130 Å. Figure 1 displays a schematic illustration of the atomic contact system. The
surface roughness of both the upper and lower contact surfaces was about 0.8 nm in the
current MD models.

The MD simulation consisted of three steps: system relaxation (0.2 ns), then compres-
sion (0.8 ns), and finally sliding (3.0 ns). In the compression step, the lower rigid region
was kept unchanged to support the whole system, while the upper fixed region was able
to move in the y and z directions under normal loads. After compression, 20 m/s in the
x direction was applied to both rigid regions but in opposite directions, which led to a
shearing speed of 40 m/s. It has to be pointed out that the MD simulations in this study
concentrated on very small spatial scales and high shear rates. A high shearing speed
results in an increase in system temperature. In order to maintain the system temperature
at 300 K during sliding, the Nosé–Hoover [50] thermostat with a damping constant of
100 fs was applied to the thermostat regions. The velocity Verlet algorithm was used for the
numerical integration of the atomic classical equations of motion, with a time step of 2 fs.

Surface and interface roughness is crucial for boundary lubrication as it affects the
contact status during surface sliding, particularly when the thin film thickness and particle
size are close to its value. In our previous models [48], the roughness has been described
using a self-affine fractal scaling with a Hurst exponent [51]. The random midpoint
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displacement (RMD) method with the Hurst exponent was used to generate rough surfaces,
and the surface boundaries were periodic.
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Figure 1. A snapshot of the simulation model with hexadecane confined between two BCC iron surfaces.

2.2. Molecular Dynamics

Due to the surface contact, severe plastic deformation was possible during sliding.
Reasonable results intensively depended on the proper force field. Finnis–Sinclair (FS)
EAM potentials [52] have been proven to correctly represent metal deformation. In this
work, intensive surface contact occurred during sliding, and the EAM potential was used
to model wall blocks. Real surfaces are usually covered by oxidized layers, which present
relatively weak adhesion forces to their surroundings. To retain the model simplicity and
focus on the influence of nanoparticles, the LJ potential (Equation (1)), with parameters
ε = 0.02045 eV and σ = 0.321 nm [53], was used to simulate the contact between the surface
contact and nanoparticles.
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The hexadecane was modeled with the TraPPE-UA [54] force field, which simplified
all of the CHx groups with pseudo carbon atoms. The parameters of unlike interactions
were estimated using the mixing rules of the Lorentz–Berthelot theory (Equation (2)).

2.3. Atomic Scale Contact Conditions

At the atomic scale, practical contact areas are crucial to heat conduction, friction, and
adhesion. In this study, we focused on the effects of nanoparticles on lubricated surface
contacts, so it was critical to study the contact areas during sliding. In continuum models,
it is easy to obtain the contact area through the contact zone. However, in atomic models
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that contain discrete atoms, the atomic contacts are identified using the repulsive force
or distance. For classical potentials like the LJ potential, the determination of whether
two atoms are in contact or not is usually unclear. However, the attractive force of the LJ
potential decays dramatically when two atoms are separated by several atomic diameters.
For simplicity, contact between two atoms is established when their distance is less than
or equal to the distance threshold. Namely, a contact is assumed to have occurred if two
atoms are separated by a distance of less than 0.5 nm, as shown in Figure 2. The same
calculation method and threshold distance has also been used by Spijer et al. [43] in an
earlier report, in which they aimed to investigate the dry contact area at the atomic scale.
Therefore, the practical contact areas were calculated by the projected cuboid of the surface
atoms. Specifically, the x–y plane was divided into n × n grids, and the surface atoms
were labeled with each individual cuboid based on the x coordinate and y coordinate. The
grid size was equal to its BCC lattice size of 0.2855 × 0.2855 nm. Within each cuboid, the
top surface atoms were checked to define whether they were within the contact threshold,
thereby determining whether the grid was contacted or not.
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Figure 2. Slice of models at the y–z plane (a) and x–z plane (b) to define the surface contact. The
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3. Results and Discussion
3.1. Relaxation and Compression

In order to construct the model, nanoparticles and fluid molecules were placed in an
orderly formation first. The rigid layer was kept fixed before compression, which allowed
lubricant molecules and nanoparticles to remain fully relaxed in the first 0.2 ns. Figure 3
shows a typical model in which 250 molecules and nanoparticles are relaxing.
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Following the relaxation phase, the upper rigid layer had the normal load. At the
beginning, no supporting forces were supplied from the nanoparticles, the fluid, or the
lower surface, causing the upper surface to descend rapidly. This situation was detrimental
to surface contact, eliciting huge momentum just before the two surfaces made contact.
Even when the normal load remained constant, this process was liable to lead to the
deformation of large asperities, as the initial wall separation was different due to the
number of lubricant molecules. Therefore, the descending speed of the upper surface in
the z direction was limited by a maximum displacement value (around 0.125 m/s). Under
this limitation, despite varying initial separation distances, the starting contact between
the surfaces maintained a constant momentum. The total duration of the compression step
was 0.8 ns, where the first 0.6 ns was under the constrained displacements. Figure 4 shows
the system height of the model with 250 molecules under 0.25 GPa. The system reached a
stable system height after the compression stem, as evident from the small curve platforms
before 1 ns.
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In studying lubrication states using MD simulations, periodic boundary conditions
are typically employed along the flow direction of the lubricant, confining the lubricant
within a restricted lubricating region. In such scenarios, the boundary lubrication state
is determined by the quantity of lubricant present. In cases where the lubricant is
scarce and the surface roughness is large, the friction state is determined either by
direct contact between the surfaces, or by the presence of abrasive particles causing
wear. Comparing the results in Figure 4, it can be observed that 250 and 500 lubricant
molecules were insufficient to completely fill the contact spaces formed by surfaces
and particles. Consequently, the pressure displayed inconsistent height changes after
compression. However, with the presence of more lubricant molecules, it became evident
that the changes in system height exhibited a corresponding increase with the growth
of pressure. The details can be examined by referring to the variations in Figures 4–7
between 0.8 ns and 1 ns.
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3.2. Sliding Contact Behavior

When lubricant, surface roughness, and nanoparticles are present on frictional surfaces,
the ultimate frictional state is collectively determined by these factors, particularly when
the mean lubricant thickness is similar to the surface roughness dimension and nanoparticle
size. After the system reaches the stable compression state, the upper and lower surfaces
start to slide against each other parallel to the x direction. Although the MD model in this
study experienced high shear rates, the temperature of the fluid was maintained around
310 K due to the temperature control applied to both the upper and lower surfaces.

In this section, the sliding effect of the fluid and nanoparticles on contact surfaces
are discussed. The sliding step for all models was set to 3.0 ns, which was a sufficient
duration to ensure that the surface contact reached nine sliding cycles. Surface roughness,
nanoparticles, and lubricant jointly determine the state of surface sliding contact, ultimately
determining the surface wear, or in other words, changes in the surface morphology.
We believe that maintaining a stable surface morphology, i.e., stable surface roughness,
reflects an equilibrium in surface relative sliding. When analyzing the surface contact,
some researchers have observed the emission of dislocations in FCC structured metals
and alloys [13]. This results in a great rise in the number of atoms in the deformable layer.
However, the research focus in this study is primarily on the influences of nanoparticles,
rough surfaces, and fluids, and their interactions. The investigation aims to reveal how these
three factors determine the friction and affect the surface contact. Therefore, it is reasonable
to have a deformable layer with an atomic quantity that meets the requirements for surface
plastic deformation. As can be seen in Figure 4, the model included only 250 molecules of
the lubricating fluid. Under a pressure of 0.25 GPa, the system height exhibited noticeable
periodic fluctuations during the sliding step. This obvious fluctuation was also observed by
Spijker et al. [43] during MD simulation of dry sliding contact between rough surfaces at
the atomistic scale. This indicates that in situations of insufficient lubrication, nanoparticles
and surface roughness play a decisive role in determining the contact state of the system.
When the pressure was increased to 0.5 GPa or higher, the fluctuation became smaller.
Under a larger pressure, there was more plastic deformation at surface asperities, and the
particles tended to fill the surface valleys, which seemed to smoothen the rough surface
and help in surface sliding. More stable sliding conditions could be observed when the
lubricant molecules were increased to 1000. The system height remained relatively stable
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during the sliding process, which indicates that the surfaces were totally separated by the
molecules of lubricant.

The contact state directly determines the frictional force and contact surface morphol-
ogy. The calculation method of friction force from the MD simulations in this study is
shown in the Supplementary Materials. From Figure 8a, it can be seen that the friction force
fluctuated significantly as the sliding progressed. For the purpose of analysis, a window
smoothing process with a size of 30 points was applied to the friction force and its compo-
nents. For clarity, only the total friction force without smoothing was presented together.
The total friction force was derived from three components: lower surface, nanoparticles,
and lubricant. It can be observed that the contribution of lubricant to the friction force
was smaller than the other two factors. Even in the later stages, its average contribution
essentially diminished. This was possibly because the space formed by the surfaces and
nanoparticles was relatively large. Simultaneously, the pits formed due to the surface
roughness were filled by the fluid as sliding continued, ultimately leading to a reduction in
interaction forces between the fluid and the surface. However, the friction forces induced
by the nanoparticles and lower surface still remained at a certain level, although they
fluctuated significantly. For comparison, the friction force of the flat surface model is also
plotted in Figure 8b, which indicates that the friction force from flow was the dominant
component during sliding contact.
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When the number of lubricating fluid molecules was increased to 500, as illustrated in
Figure 9a, the total friction forces were smaller than in the case of 250 molecules, particularly
at the later stages of sliding, where the friction forces were close to 20 nN. At this increased
number of fluid molecules, the friction contribution from the flow increased, but still did
not play a dominant role. At the same time, the frictional force from the nanoparticles was
slightly greater than that from the lower surface. This was because the surface asperities
contacted their opposing counterparts at the beginning of sliding with this model setup.
After several sliding cycles, the surface asperities experienced plastic deformation and their
roughness became smaller; therefore, the space formed by the surfaces and nanoparticles
grew smaller, which helped the lubricant to act with the sliding surfaces, i.e., the molecules
filled the space and exerted a larger friction force on the sliding surfaces. Figure 9b shows
that the friction force reduced significantly when the surfaces were flat, and there was only
contribution from the flow. This was due to the fact that the flat surfaces were completely
separated by the lubricant. In comparison with the results displayed in Figure 8b, it has
also been found that friction forces decrease in flat surface models when the number of
molecules is increased.
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When the number of lubricating fluid molecules was further increased to 750 and
1000, as shown in Figures 10 and 11, the total friction force not only experienced a small
fluctuation, but its average value was also below 20 nN. It is worthwhile to note that each
small fluctuation was represented a data point recorded in the simulation, and every 50th
data point has been marked in the figure for a more clear visualization. This average
value was lower compared to the values for 250 and 500 molecules. This result indicates
that the primary frictional force came from the fluid, while the frictional force from the
lower surface was nearly zero. This implies that the upper surface and lower surface were
essentially separated because of the lubricating fluid. However, the nanoparticles still
contacted the surfaces, but exerted a smaller friction force.
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To sum up the influence of the lubricant and particles, the average friction force under
0.25 GPa within the last two cycles is plotted in Figure 12. Each of the contributions from the
lower wall, the particles, and the flow are also plotted to show their influence. Generally, the
total friction force decreased as the amount of lubricant increased. The same trend was also
observed in the contribution from the lower wall and particles. Although the flow exerted
a larger friction force when 1000 molecules existed, they actually helped to reduce the total
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friction force. In addition, the particles, which acted like abrasive debris, contributed an
even larger friction force in the less lubricated cases (250 and 500 molecules). Figure 13
shows the average friction force for 250 molecules under different loads. Obviously, all of
the friction forces increased with increasing pressure.
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within the last two sliding cycles, and its contribution from the lower wall, particles, and flow.

In our previous work [48], a flat BCC iron wall was used to construct the surfaces.
When the surfaces were under dry contact, the nanoparticles showed a rolling effect during
the sliding step, which helped to reduce the friction force. In this study, we also observed
the rolling of certain particles between the upper and lower surfaces. Figure 14 shows a
top view of a particle and a portion of the lower surface at different times, indicating the
rolling effect of the nanoparticles during sliding contact. The color of the particle indicates
its rolling posture.
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Figure 14. A top view of a particle and a portion of the lower surface at (a) 2.44 ns, (b) 2.52 ns, and
(c) 2.6 ns. The color of the particle is merely for illustrating its rolling posture.

To further analyze the relationship among the three frictional factors, Figure 15 illus-
trates the changes in surface morphology when there were 250 lubricating fluid molecules.
Only lower atoms having Z position > 25 Å have been plotted with color. It can be observed
from the comparison between Figure 15a,b that as the sliding progressed, a groove was
formed on the lower surface after 4.0 ns due to contact with the rigid particles and the upper
surface, suggesting a cutting effect from the surface contact. In situations of insufficient
lubrication, the presence of nanoparticles leads to a rapid wear of surface morphology.
Figure 15c displays the lower surface with nanoparticles and fluid during sliding contact
at 4.0 ns. Under a relatively low external pressure, the rolling of nanoparticles formed
grooves in the sliding direction, aiding in stabilizing the sliding state. However, compared
to the situations with higher external pressure, there was still considerable variation in the
system height, as shown in Figure 4.

Sufficient lubricant helps to reduce the friction force. In other words, lubricant reduces
the direct contact between the upper and lower surfaces. Therefore, it is crucial to monitor
direct surface contact. As defined in Section 2.3, the contact area was calculated to show
the contact condition. After 3 ns sliding, the contact area of the model with 250 molecules
under 1.0 GPa is depicted in Figure 16, showing that up to 25% of the surface was contacted.
Generally, the contact area increased with the pressure. Figure 17 shows the contact area
during the simulation process. Under the less lubricated condition of 250 molecules,
the surfaces were more easily contacted. There was less than 10% surface contact under
0.25 GPa after sliding. When the pressure increased to 1.0 GPa, a larger contact surface of
up to 25 was observed, as shown in Figure 17a. During sliding, obvious periodic changes
were also observed under 0.25 GPa and 1.0 GPa. This was due to the periodic boundary
conditions applied to the x sliding direction. Similar changes can also be seen in system
height in Figure 4. However, the contact area diminished to close to zero when there were
1000 lubricant molecules, as shown in Figure 18a.
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Figure 15. Changes in lower surface morphology with 250 molecules under 0.25 GPa at (a) 1.0 ns
and (b) 4.0 ns. Only the lower surface at Z > 25 Å has been plotted, and the color bar indicates the z
position of atoms. (c) The snapshot of the lower surface with nanoparticles and fluid at the sliding
contact time of 4.0 ns.
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The changes in surface morphology during sliding definitely altered the surface
roughness. Figure 17b and Figure 18b show the change in RMS associated with the
sliding process. Generally, the surface roughness RMS decreased with sliding, and a
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larger load resulted in a bigger change. After nine sliding cycles, it can be observed that
the surface roughness remained at a relatively stable value. This indicates that a sliding
time of 3 ns was sufficient for the currently simulated sliding contact system. Under the
less lubricated condition of 250 molecules, RMS under 0.25 GPa and 1.0 GPa dropped to
6.5 Å and 5.5 Å, respectively. It should be pointed out that the initial RMS in these figures
was about 7.5 Å. This was smaller than 8 Å due to the surface relaxation, i.e., we cut the
initial surface with the ideal curve, but the EAM interaction among surface atoms could
have changed the surface morphology, resulting in a smaller initial surface roughness.
When the number of molecules reached 1000, the surface roughness reduced a little, as
shown in Figure 18b, indicating that the lubricant supported the normal load, and there
was no surface contact.

4. Conclusions

In this study, a molecular dynamics model with 3D rough surfaces, hexadecane,
and nanoparticles was created to reveal the effects of fluid and nanoparticles on surface
contacts and frictional behavior in the system of boundary friction. Simulations revealed
the combined effect of fluid and nanoparticles during sliding contacts. It has been found
that when the number of fluid molecules is insufficient, the friction force comes from the
combined contributions of fluid, nanoparticles, and surface contact. This means that a
smaller amount of fluid is unable to separate the contact surfaces, thus leading to surface
plastic deformation from the rolling of nanoparticles and asperity contact. However, with a
large increase in the number of molecules, the surfaces are fully separated by the lubricant
fluid, and a smaller total friction force is observed. These findings provide a fundamental
understanding of the features and mechanisms of boundary friction systems, and also
a hint for the future design of powerful lubricants, considering the significance of the
nanoparticle concentration.

The current model is for rigid particles. In future research, consideration of the
deformation of nanoparticles during MD simulation of sliding contacts is recommended,
which will contribute to a more comprehensive understanding of the effects of lubricants,
surface roughness, and particle additions at the nanoscale.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/lubricants12050160/s1, Figure S1: A schematic view of original RMD
process within first 8 iterations. The dark areas mean the surface point from previous iteration while
the red areas present the surface profile in the current iteration.; Figure S2: The simulation domain is
divided into 16 (4 × 4) sub-squares. In each sub-square, the RMD is carried out.
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