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Simple Summary: The intricate coevolution between parasitoids and their hosts has long been a
hot research topic. Parasitoids usually manipulate the host’s metabolism and immunity to favor the
development of their offspring. In this study, we employed RNA-sequencing (RNA-seq) analysis
to explore the mechanisms of the manipulation strategy of Leptopilina myrica on its host Drosophila
melanogaster. A total of 445 differentially expressed genes (DEGs) were identified in host larvae
at 48 h post parasitization. Among them, a large proportion of DEGs plays essential roles in host
nutrition metabolism and immunity. Furthermore, the reliability of our RNA-seq data was confirmed
through a qRT-PCR analysis. Our findings help to elucidate the potential mechanism underlying
wasp parasitization and provide insights into their applications in biological control and integrated
pest management in agriculture.

Abstract: Parasitoids commonly manipulate their host’s metabolism and immunity to facilitate
their offspring survival, but the mechanisms remain poorly understood. Here, we deconstructed
the manipulation strategy of a newly discovered parasitoid wasp, L. myrica, which parasitizes
D. melanogaster. Using RNA-seq, we analyzed transcriptomes of L. myrica-parasitized and non-
parasitized Drosophila host larvae. A total of 22.29 Gb and 23.85 Gb of clean reads were obtained
from the two samples, respectively, and differential expression analysis identified 445 DEGs. Of
them, 304 genes were upregulated and 141 genes were downregulated in parasitized hosts compared
with non-parasitized larvae. Based on the functional annotations in the Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, we found that the genes involved in
host nutrition metabolism were significantly upregulated, particularly in carbohydrate, amino acid,
and lipid metabolism. We also identified 30 other metabolism-related DEGs, including hexokinase,
fatty acid synthase, and UDP-glycosyltransferase (Ugt) genes. We observed that five Bomanin genes
(Boms) and six antimicrobial peptides (AMPs) were upregulated. Moreover, a qRT-PCR analysis
of 12 randomly selected DEGs confirmed the reproducibility and accuracy of the RNA-seq data.
Our results provide a comprehensive transcriptomic analysis of how L. myrica manipulates its host,
laying a solid foundation for studies on the regulatory mechanisms employed by parasitoid wasps in
their hosts.

Keywords: parasitoid wasp; Leptopilina myrica; transcriptome; metabolism; immunity

1. Introduction

Insects represent the most diverse and populous animal group in nature, a testa-
ment to their extraordinary capacity for evolution and adaption in varied environments.
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Among the Hymenoptera insects, parasitoid wasps have emerged as a particularly notable
group because of their parasitic characteristics, and encompass an estimated 150,000 to
600,000 species [1]. These wasps are well-known as natural enemies of agricultural pests
and are widely utilized in pest control [2–4]. The knowledge on parasitoid wasps have
seen a substantial advancement over the last decades, enhancing our understanding of
their ecological and agricultural importance [5].

Parasitoid wasps are broadly categorized as endoparasitoids and ectoparasitoids [1].
The former lay eggs inside hosts, while the latter deposit eggs on the host body sur-
face [5,6]. Since the host nutrition and quality directly determine the fitness correlates
of offspring wasps, both endoparasitoids and ectoparasitoids possess the ability to ma-
nipulate their host’s nutrition metabolism and immunity, facilitating the development
of their offspring [7–12]. The parasitoid wasps utilize various factors to accomplish this
manipulation, such as venom, teratocytes, larval secretions, polydnaviruses (PDVs), and
virus-like particles (VLPs) [13–21]. For instance, a venom protein of the parasitoid wasp
Pachycrepoideus vindemiae, PvG6PDH, has been reported to inhibit glucose-6-phosphate
metabolism in its Drosophila host, thereby contributing to the effectiveness of parasitism [22].
The presence of dipeptidyl peptidase IV (DPPIV) in the venom of Scleroderma guani is ca-
pable of manipulating lipid synthesis in its host Tenebrio molitor [23]. Chelonus inanitus
elevates the concentrations of free sugars in the host hemolymph and glycogen in the
whole host body by injecting PDV particles, thereby ensuring the successful development
of its larvae [24]. The venom of Pteromalus puparum has been shown to enhance the levels
of soluble proteins in the hemolymph of Pieris rapae pupae [25]. The venom protein Lar
of L. heterotoma helps to lyse host lymph glands to damage the host’s immune responses,
while the venom protein Warm of L. boulardi helps to secure its eggs to the gut, thereby
circumventing the host’s immune defenses [26]. Cotesia vestalis injects PDV particles into its
hosts, causing apoptosis of host hemocytes and increasing the susceptibility of the hosts to
bacterial infections [27]. The teratocytes of C. flavipes produce ICK peptides that suppress
the host’s cellular immunity [28]. However, comprehensive analyses of how parasitoids
manipulate their hosts are largely lacking.

The parasitoid wasps in the Leptopilina genus provide excellent models for studying
parasitoid–host interactions [5,26,29]. L. myrica is a newly discovered larval-pupal par-
asitoid wasp of Leptopilina, which parasitizes 2nd instar D. melanogaster larvae. In this
study, we employed RNA sequencing to identify differentially expressed genes (DEGs),
allowing for a comparative analysis of the changes between parasitized and non-parasitized
larvae. Our study will deepen our understanding of the intricate ways in which parasitoids
regulate host physiological processes.

2. Materials and Methods
2.1. Insects

The parasitoid L. myrica was collected from Taizhou (28.65◦ N, 121.16◦ E), Zhejiang,
China, in April 2021, and then maintained on the D. melanogaster w1118 strain as a regular
host at 25 ◦C and 50% relative humidity under a 16 h light and 8 h dark photoperiod. The
D. melanogaster w1118 hosts were fed with standard cornmeal/molasses/agar medium in
6-ounce, square bottom, plastic fly bottles, and the adult wasps were raised on apple juice
agar medium (27 g agar, 33 g brown sugar, and 330 mL pure apple juice in 1000 mL diluted
water) until exposure to hosts [26].

2.2. Samples Collection

Approximately 200 mated Drosophila females were allowed to lay eggs on medium
within a plastic fly bottle for 1 h and then removed from the bottle. After 60 h, half of the
medium with 2nd instar host larvae were transferred to another empty bottle to serve as
the control group, while the remaining hosts were used to be parasitized by well-mated
L. myrica females at a wasp/host ratio of ~1:10 for 3 h. Given that the offspring of L.
myrica fully hatched into larvae within 48 h post parasitization, and that most parasitized
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Drosophila larvae exhibited pronounced melanization encapsulation at this time point
(Figure S1)—an indicator of significant alterations in host immunity—we selected both
parasitized and non-parasitized Drosophila larvae for comparison at 48 h post parasitization.
Therefore, 40 hosts with melanotic capsules at 48 h post parasitization, L. myrica-parasitized
and non-parasitized larvae at the same age from the control group were collected into tubes
containing 500 µL of RNA-easy Isolation Reagent (R701-02-AA, Vazyme, Nanjing, China).
The collected samples were immediately frozen in liquid nitrogen and stored at −80 ◦C
until further use.

2.3. RNA Extraction and Illumina Sequencing

Total RNA was extracted using the FastPure Cell/Tissue Total RNA Isolation Kit-BOX2
(Cat.RC101-01, Vazyme, Nanjing, China) following the manufacturer’s instructions. The
quality and quantity of the total RNA were detected using a NanoDrop 2000 (Thermo scien-
tific, Waltham, MA, USA) and Agilent Bioanalyzer 2100/4200 (Agilent Technologies, Santa
Clara, CA, USA), respectively. RNA samples then were used for library preparation. Briefly,
mRNA was purified from the total RNA using oligo (dT) magnetic beads and fragmented
into 300–350 bp fragments. First-strand cDNA was synthesized using random hexamer
primers, followed by second-strand cDNA synthesis using DNA polymerase I and RNase
H. The resulting double-stranded cDNA was subjected to end repair, phosphorylation, and
ligation with Illumina paired-end sequencing adapters. The libraries were then enriched
by PCR amplification and purified with an Illumina NovaSeq 6000 platform according to
the manufacturer’s protocol (Berry Genomics Co. Ltd., Beijing, China).

All raw sequence data were filtered to ensure the quality and reliability. Raw FASTQ
data were processed in house using scripts to obtain clean reads. Reads containing adapters,
more than 3 N, or more than 20% nucleotides with a Qphred ≤5 were discarded. Addition-
ally, the Q20, Q30, and GC content were analyzed, and the clean data were mapped to the
SILVA database to remove rRNA. All subsequent transcriptome analyses were performed
on the clean data.

2.4. Differential Gene Expression Analysis and Functional Annotation

The expression levels of unigenes in parasitized and non-parasitized larvae were
obtained using the fragments per kilobase of transcript per million mapped reads (FPKM)
method [30]. EdgeR was performed for the differential expression analysis between the
different samples [31]. The Benjamini and Hochberg’s approach were used to adjust the
resulting p-values to control the false discovery rate. Genes with | log2 (fold change) | > 1
and q-value < 0.05 were considered to be differentially expressed and were identified
as DEGs. GO and KEGG enrichment analyses of the differentially expressed gene sets
were implemented using the topG (http://www.bioconductor.org/packages/release/bioc/
html/topGO.html, accessed on 9 August 2022) and KOBAS packages, respectively [32].
GO terms with a p-value < 0.05 and pathways with a p-value < 0.05 were considered to be
significantly enriched.

2.5. Quantitative Real-Time PCR (qRT-PCR) Validation

Extracted total RNA from parasitized and non-parasitized larvae was reverse tran-
scribed into cDNA using HiScript III RT SuperMix for qPCR (Vazyme, Cat#R223-01) ac-
cording to the manufacturer’s protocol. qRT-PCR was performed in the QuantStudio3
Real-Time PCR System (Thermo Fisher Scientific) using the ChamQ SYBR qPCR Master Mix
Kit (Cat#Q311-02, Vazyme, Nanjing, China) to validate the results from the transcriptome
data. The primers used to amplify100–300 bp fragments of each PCR product are listed
in Table S1. The qPCRs were performed using the following conditions: 30 s at 95 ◦C,
followed by 40 cycles of a three-step PCR for 10 s: 95 ◦C, 20 s at 55 ◦C, and 20 s at 72 ◦C.
Three biological replicates were performed for this assay. The RNA levels of target genes
were normalized to actin 5C mRNA of D. melanogaster, and their relative concentrations
in parasitized hosts were compared to those in non-parasitized larvae using the 2−∆∆Ct

http://www.bioconductor.org/packages/release/bioc/html/topGO.html
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method [33]. Statistical analyses were performed using GraphPad Prism 9.0 software
(GraphPad, San Diego, CA, USA) and the data were analyzed for statistical significance us-
ing unpaired two-tailed Student’s t-tests. Pearson’s correlation method was used to assess
the association between the qRT-PCR and RNA-seq results, and the FPKM results 48 h post
L. myrica parasitization detected by RNA-seq were plotted against the qRT-PCR data.

3. Results
3.1. Transcriptomes of the Host Larvae after Parasitism by L. myrica

To comprehensively characterize the transcriptional response of host larvae after
L. myrica parasitization, cDNAs were generated from samples of non-parasitized and
parasitized larvae, followed by sequencing using the Illumina NovaSeq 6000 platform
(Figure 1A). We obtained a total of 22.29 Gb and 23.85 Gb of clean reads from the two
different treatments. Three independent biological replicates were sequenced for each
condition, resulting in a range of 5.95–8.25 Gb of clean bases for each non-parasitized larva
sample and 6.63–8.92 Gb of clean bases per parasitized larva sample (Table 1). In our results,
the GC content across the six distinct samples exhibited a range from 48.23% to 50.27%,
while the rRNA ratio varied between 2.62% and 7.57%. The RNA-seq data showed good
quality, as evidenced by the Q20 quality values (sequencing error rate < 1%) exceeding
96.21%, and the Q30 quality values (sequencing error rate < 0.1%) surpassing 90.49% in all
six samples. Subsequent mapping of the RNA-seq reads to the D. melanogaster reference
genome (GCA_000001215.4) revealed a high mapping efficiency, with 89.94% to 96.68% of
the reads aligning to the reference genome (Table 1). Finally, a total of 16,941 unigenes were
assembled across all six samples (Table S2).
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were generated from Drosophila host larvae at 48 h following parasitization by L. myrica, and non-
parasitized individuals at the same developmental stages served as the control. (B) Volcano plot of 
the 16,941 unigenes; each point in the volcano diagram represents one unigene, and only those with 
| log2 (FC) | > 1 and a q-value < 0.05 were identified as DEGs. The red points represent the upregu-
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Figure 1. Experimental design and identification of DEGs between the parasitized and non-
parasitized groups. (A) Experimental design and comparisons employed in this study. Transcriptomes
were generated from Drosophila host larvae at 48 h following parasitization by L. myrica, and non-
parasitized individuals at the same developmental stages served as the control. (B) Volcano plot
of the 16,941 unigenes; each point in the volcano diagram represents one unigene, and only those
with | log2 (FC) | > 1 and a q-value < 0.05 were identified as DEGs. The red points represent the
upregulated DEGs, the blue points represent the downregulated DEGs, and the gray points represent
the unigenes that are not significant. (C) Number of DEGs identified from the parasitized (P) and
non-parasitized (non-P) Drosophila host groups. The orange column represents the upregulated
DEGs and the blue column represents the downregulated DEGs.
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Table 1. Basic summary of RNA-sequencing results.

Sample
Name

Clean Reads
(bp)

Clean Bases
(bp)

Clean GC
(%)

Clean Q20
(%)

Clean Q30
(%)

rRNA Ratio
(%)

Total
Mapped (%)

non-P1 39,663,576 5,949,536,400 48.95; 48.98 97.49; 96.77 93.31; 91.83 2.62 96.26
non-P2 54,988,600 8,248,290,000 49.81; 49.82 97.60; 96.98 93.46; 92.21 7.57 96.68
non-P3 53,963,624 8,094,543,600 49.26; 49.30 97.62; 97.81 93.69; 93.65 2.69 96.61

P1 59,486,256 8,922,938,400 48.23; 48.36 97.21; 96.21 92.86; 90.49 4.28 89.94
P2 55,431,152 8,314,672,800 50.27; 50.26 98.08; 97.45 94.53; 93.02 4.51 91.21
P2 44,168,656 6,625,298,400 48.79; 48.86 97.54; 97.20 93.45; 92.15 5.69 91.61

Abbreviations: non-P, non-parasitized larvae; P, parasitized host.

3.2. Analysis of Differentially Expressed Genes (DEGs)

The volcano plots show a total of 445 DEGs between L. myrica-parasitized and non-
parasitized D. melanogaster hosts according to the conditions of | log2 (fold change) | > 1
and a q-value < 0.05 (Figure 1B), including 304 upregulated genes and 141 downregulated
genes (Figure 1C). All 445 DEGs are presented in Table S3. These identified DEGs were
subjected to GO analysis for functional annotation across three categories: biological pro-
cesses (BP), molecular functions (MF), and cellular components (CC) (Table S4). In addition,
the top 20 enriched GO classifications for each category were systematically cataloged
and listed (Figure 2). In the BP ontology of the GO classification, a notable enrichment
was observed in the upregulated DEGs associated with the “oxidation–reduction process”,
featuring 38 DEGs (Figure 2A). Concurrently, in the MF category, the most significant en-
richment among the upregulated DEGs was identified in “catalytic activity”, encompassing
111 DEGs (Figure 2A). In the CC category, the upregulated DEGs were predominantly
linked to the “extracellular region”, with a total of 64 DEGs (Figure 2A). Furthermore, the
analysis revealed that the most downregulated GO term in the BP category was “response
to biotic stimulus”, consisting of 11 DEGs (Figure 2B), while in the MF category, “catalytic
activity” was the most affected, with 47 downregulated DEGs (Figure 2B). In the CC cat-
egory, “extracellular region” was predominantly associated with downregulated DEGs,
including 21 DEGs (Figure 2B). Collectively, these results implied an obvious change in the
physiological processes of the host 48 h post parasitization.

To elucidate the intricate molecular interactions and networks influenced by L. myrica
parasitization, we conducted a comprehensive analysis of 445 DEGs in relation to their
involvement in KEGG pathways. We identified 18 KEGG pathways associated with up-
regulated DEGs and 5 KEGG pathways corresponding to downregulated DEGs (Table 2).
Notably, within the 18 pathways that were enriched with the upregulated DEGs, a substan-
tial majority (16/18, 88.89%) pertained to metabolic processes, primarily encompassing
six classes, which included “carbohydrate metabolism”, “xenobiotic biodegradation and
metabolism”, “amino acid metabolism”, “metabolism of cofactors and vitamins”, “lipid
metabolism”, and “global and overview maps”. The remaining two pathways, which are
not involved in metabolic processes, were categorized under environmental information
processing. Interestingly, a similar pattern was found in the downregulated DEGs, where
all five enriched pathways were related to metabolic processes. These encompassed four
processes: “amino acid metabolism”, “carbohydrate metabolism”, “lipid metabolism”, and
“metabolism of cofactors and vitamins”. The KEGG annotations provided new insights
into the complex metabolic regulation in host larvae post L. myrica parasitization.
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Figure 2. GO classification of the DEGs between parasitized and non-parasitized Drosophila larvae
at 48 h after parasitization. Top 20 enriched GO classifications of annotated upregulated (A) and
downregulated (B) DEGs. The distributions are summarized into three main categories: biological
processes (BP), molecular functions (MF), and cellular components (CC). The x-axis shows the number
of DEGs in each category, and the y-axis shows the different GO terms.
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Table 2. KEGG pathways significantly enriched with DEGs identified from the parasitized and
non-parasitized Drosophila larvae at 48 h after parasitization.

Expression
Level

KEGG
Pathway Category Class Description p-Value Number of

Genes Ratio (%)

Upregulated

dme00053

Metabolism

Carbohydrate
metabolism

Ascorbate and aldarate
metabolism 7.90 × 10−6 7 5.69

dme00500 Starch and sucrose
metabolism 6.65 × 10−5 8 6.50

dme00040
Pentose and
glucuronate

interconversions
1.45 × 10−5 8 6.50

dme00052 Galactose metabolism 1.33 × 10−3 5 4.07
dme00640 Propanoate metabolism 1.12 × 10−2 3 2.44

dme00051 Fructose and mannose
metabolism 2.45 × 10−2 3 2.44

dme00983

Xenobiotics
biodegrada-

tion and
metabolism

Drug
metabolism—other

enzymes
1.65 × 10−5 8 6.50

dme00982
Drug metabolism—

cytochrome
P450

6.65 × 10−5 8 6.50

dme00980
Metabolism of
xenobiotics by

cytochrome P450
6.65 × 10−5 8 6.50

dme00860
Metabolism of
cofactors and

vitamins

Porphyrin and
chlorophyll metabolism 4.21 × 10−4 6 4.88

dme00770 Pantothenate and CoA
biosynthesis 3.42 × 10−2 2 1.63

dme00830 Retinol metabolism 7.90 × 10−6 7 5.69

dme00350 Amino acid
metabolism

Tyrosine metabolism 4.46 × 10−5 5 4.07

dme00280 Valine, leucine, and
isoleucine degradation 3.57 × 10−2 3 2.44

dme00061 Lipid
metabolism Fatty acid biosynthesis 1.88 × 10−2 2 1.63

dme01100 Global and
overview maps Metabolic pathways 4.52 × 10−4 36 29.27

dme02010 Environmental
Information
Processing

Membrane
transport ABC transporters 1.88 × 10−2 2 1.63

dme04512
Signaling

molecules and
interaction

ECM–receptor
interaction 2.60 × 10−2 2 1.63

dme00250

Metabolism

Amino acid
metabolism

Alanine, aspartate, and
glutamate metabolism 3.60 × 10−3 3 27.27

Downregulated

dme00350 Tyrosine metabolism 1.02 × 10−2 2 18.18

dme00650 Carbohydrate
metabolism Butanoate metabolism 1.26 × 10−2 2 18.18

dme00600 Lipid
metabolism

Sphingolipid
metabolism 3.62 × 10−2 2 18.18

dme00670
Metabolism of
cofactors and

vitamins

One carbon pool by
folate 7.14 × 10−3 2 18.18

3.3. DEGs in Nutrition Metabolic Processes

Carbohydrates, along with proteins and lipids, constitute the primary classes of
organic compounds in insects. Within the 16 upregulated KEGG pathways that are re-
lated to metabolism in our analysis (Table 2), a significant proportion of the pathways
(9/16, 56.25%) was intricately linked to the metabolic processes of carbohydrates (KEGG:
dme00053, dme00500, dme00040, dme00052, dme00640, and dme00051), amino acids
(KEGG: dme00350 and dme00280), and lipids (KEGG: dme00061). Similarly, among the
five metabolism-related KEGG pathways that were found to be downregulated in Table 2,
a predominant proportion of the pathways (4/5, 80%) was directly implicated in the
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metabolic processes of carbohydrates (KEGG: dme00650), amino acids (KEGG: dme00250
and dme00350), and lipids (KEGG: dme00600). These observations indicated a notable
alteration in the host’s nutrition metabolic processes due to L. myrica parasitization. Conse-
quently, we identified 30 DEGs across 13 nutrition metabolism-related KEGG pathways,
which comprised 22 upregulated and 8 downregulated genes, including hexokinase, UDP-
glycosyltransferase (Ugt), fatty acid synthase, etc. (Figure 3). Remarkably, six Ugt genes
(Ugt37C1, Ugt35C1, Ugt49C1, Ugt37C2, Ugt37B1, and Ugt317A1) showed a greater than
2.64-fold higher expression at 48 h post L. myrica parasitization.
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Figure 3. Expression profiles of DEGs involved in carbohydrate metabolism, amino acid metabolism,
and lipid metabolism. Each column represents an individual parasitized or non-parasitized
larva sample. The color gradient from blue to red represents low to high gene expression
levels normalized using Z-score normalization. Abbreviations: non-P, non-parasitized larvae;
P, parasitized host; Hex-C, hexokinase C; Ugt37C1, UDP-glycosyltransferase family 37 mem-
ber C1; Ugt35C1, UDP-glycosyltransferase family 35 member C1; Ect3, ectoderm-expressed 3;
Ugt49C1, UDP-glycosyltransferase family 49 member C1; tobi, target of brain insulin; Ugt37C2,
UDP-glycosyltransferase family 37 member C2; Akr1B, aldo-keto reductase 1B; Ugt37B1, UDP-
glycosyltransferase family 37 member B1; Ugt317A1, UDP-glycosyltransferase family 317 member
A1; FASN1, fatty acid synthase 1; ACC, acetyl-CoA carboxylase; PPO3, prophenoloxidase 3; hgo,
homogentisate 1,2-dioxygenase; Hpd, 4-hydroxyphenylpyruvate dioxygenase; Faa, fumarylacetoac-
etase; GstZ2, glutathione S transferase Z2; AsnS, asparagine synthetase; Ddc, dopa decarboxylase;
Prat2, phosphoribosylamidotransferase 2; b, black; PPO1, prophenoloxidase 2; Gal, β galactosidase;
sro, shroud.
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3.4. DEGs in Immunity Processes

Based on the BP ontology of the GO classification, we found half of the top 20 enriched
GO classifications, within both the upregulated and downregulated datasets, were directly
related to metabolic processes (Figure S2, blue font). However, our analysis also showed
some classifications linked to immunity processes (Figure S2, red font). Within the top
20 enriched GO terms in the BP category for upregulated genes, 4 classifications were
identified as “defense response”, “antibacterial humoral response”, “integrin-mediated
signaling pathway”, and “humoral immune response” (Figure S2A), which contained
20, 6, 3, and 10 DEGs, respectively (Figure 2A). On the other hand, the analysis showed
2 immune response-related classifications among the downregulated top 20 enriched GO
terms, including “defense response to Gram-positive bacterium” and “response to biotic
stimulus” (Figure S2B), which contained 5 and 11 DEGs, respectively (Figure 2B). We then
focused on the immunity-related DEGs obtained from the six enriched GO classifications.
A total of 33 DEGs were discerned through a comparative analysis between the parasitized
and non-parasitized groups (Figure 4). Among them, twenty-two (22/33, 66.67%) DEGs
showed a greater than 2.21-fold higher expression, whereas the remaining 11 (11/33,
33.33%) DEGs showed a greater than 0.47-fold lower expression at 48 h post L. myrica
parasitization. Interestingly, we observed a notable increase in the expression levels of five
Bomanin genes (BomS3, BomS1, BomS5, BomBc1, and BomS2) and six AMPs (IM4, IM14,
IMPPP, Mtk, Dro and AttB) (Figure 4). Moreover, one prophenoloxidase gene (PPO3) was
upregulated in the parasitized host larvae at 48 h, while other two prophenoloxidase genes
(PPO2 and PPO1) showed decreased expression after L. myrica parasitization.
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low to high gene expression levels normalized using Z-score normalization. Abbreviations: non-P,
non-parasitized larvae; P, parasitized host; PPO3, prophenoloxidase 3; ItgaPS4, integrin alphaPS4
subunit; BomS3, Bomanin short 3; BomS1, Bomanin short 1; BomS5, Bomanin short 5; BomBc1,
Bomanin bicipital 1; BomS2, Bomanin short 2; IM4, immune-induced molecule 4; ItgaPS5, integrin
alphaPS5 subunit; IM14, immune-induced molecule 14; Mtk, metchnikowin; IMPPP, Baramicin A2;
Dro, drosocin; GstO2, glutathione S transferase O2; CalpA, calpain-A; Itgbn, integrin betanu subunit;
AttB, attacin B; Npc2h, Niemann–Pick type C-2h; AttD, attacin D; PPO2, prophenoloxidase 2; Drsl4,
drosomycin-like 4; ac, achaete; PGRP-SD, peptidoglycan recognition protein SD; Eig71Ea, ecdysone-
induced gene 71Ea; PPO1, prophenoloxidase 1; GILT2, gamma-interferon-inducible lysosomal thiol
reductase 2; e, ebony.

3.5. Verification of DEG Expression

To validate the accuracy and reproducibility of the expression patterns of the DEGs
identified from our RNA-seq data, a total of 12 DEGs, namely Tep1, CG8160, IMPPP, BomS3,
FASN1, hpd, hgo, ac, PPO2, pav, hll, and AsnS, were randomly selected for confirmation
by qRT-PCR. Among these DEGs, four genes (FASNone, hpd, hgo and AsnS) are involved
in host metabolism, and four genes (IMPPP, BomS3, ac and PPO2) are involved in host
immunity. The qRT-PCR results indicated that the expression of Tep1, CG8160, IMPPP,
BomS3, FASN1, hpd, and hgo showed a 2.06–89.70-fold increase at 48 h post L. myrica
parasitization (Figure S3). Meanwhile, the expression levels of the other five DEGs (ac,
PPO2, pav, hll, and AsnS) showed a marked reduction (0.17–0.98-fold) in the parasitized
hosts in comparison with the non-parasitized larvae (Figure S3). Fold changes (FCs)
in expression levels obtained from the RNA-seq and qRT-PCR data were graphically
represented on a scatter plot, with the log2 (FC) values from RNA-seq plotted on the
x-axis and values from qRT-PCR plotted on the y-axis (Figure 5). Furthermore, the Pearson
correlation coefficient (R = 0.8926, p = 9.350 × 10−5) demonstrated a significant positive
correlation between the data from the two techniques of RNA-seq and qRT-PCR.
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4. Discussion

Almost all parasitoid wasps have a free-living lifestyle as adults; however, their off-
spring at the larval stage must develop in or on their hosts. This complex life cycle needs
the delicate manipulation of the host’s physiological processes, especially those related to
metabolism and immunity, to facilitate their own growth and development [24,34–37]. For
example, P. vindemiae can inhibit glucose-6-phosphate metabolism in the host to facilitate
its own parasitism, suggesting that alterations in host carbohydrate metabolism can sig-
nificantly influence the key fitness correlates of the parasitoid [22]. C. vestalis stimulates a
reduction in host lipid levels, benefiting the development of its wasp offspring [38]. Mete-
orus pulchricornis enhances trehalose metabolism in its host, Spodoptera litura, to improve
the fitness of its offspring [39]. M. pallidipes parasitization increases the lipid content in its S.
exigua host [40]. P. puparum parasitization induces the activity of α-amylases and influences
the carbohydrate metabolism of its butterfly host [8]. L. boulardi parasitization increases
the concentration of diptericin, an antibacterial peptide, helping the host to produce an
effective humoral immune response to Escherichia coli [41]. Previous studies suggest that
parasitoids typically manipulate the host’s metabolism and immunity in ways that favor
the development of their offspring. These strategic alterations ensure that the parasitoid
larvae have the necessary nutritional resources and a reduced risk of immunity challenges
from the host, thereby enhancing their survival and successful development. Recently,
we have discovered a new Leptopilina species, L. myrica. To comprehensively study the
underlying mechanisms of the manipulation strategy used by L. myrica on its host, we
compared the transcriptional profiles of L. myrica-parasitized and non-parasitized larvae.

A total of 445 DEGs were identified between the two different groups of larvae, com-
prising 304 upregulated and 141 downregulated genes (Figure 1C). The KEGG pathway
analysis illuminated a significant enrichment in metabolic processes among the DEGs,
with a notable upregulation of essential energy substances such as carbohydrates, amino
acids, and lipids (Table 2), which may provide the essential nutrients for the development
and survival of L. myrica offspring [34]. We also analyzed the expression profiles of DEGs
related to nutrition metabolic processes (Figure 3). Among the 30 DEGs, a significant
proportion (22/30, 73%) were upregulated, and 12 DEGs (Hex-C, Ect3, CG12766, tobi, Akr1B,
CG6910, Ugt37C1, Ugt35C1, Ugt49C1, Ugt37C2, Ugt37B1, and Ugt317A1) are involved
in carbohydrate metabolic processes. Several studies have demonstrated an increased
level of sugars within parasitized hosts, which benefits the development of parasitoid
juveniles [24,36]. Hex-C is a predominant isoform of hexokinases, and its upregulation
enhanced glucose utilization and storage [42,43]. Another upregulated gene, tobi, is re-
sponsible for glycogen degradation [44], potentially facilitating the absorption of host
glycogen by the parasitoid larvae. Importantly, all six Ugt family genes (Ugt37C1, Ugt35C1,
Ugt49C1, Ugt37C2, Ugt37B1, and Ugt317A1) in host larvae were upregulated after L. myrica
parasitization. It has been reported that Ugt genes play a crucial role in the detoxification
of toxic substances encountered in food or the living environment [45–47]. For instance,
M. pulchricornis utilizes Ugt genes to detoxify the phytoalexins from plants [48]. Helicov-
erpa armigera and its closely related species H. assulta exhibit distinct adaptations to the
feeding deterrent capsaicin by employing Ugt [49]. As such, our results suggested that the
increased expression of Ugts might enhance the host resistance to toxic substances in the
living environment, thereby protecting L. myrica from external toxicity. We also screened
eight upregulated DEGs (PPO3, hgo, Hpd, Faa, GstZ2, CG5599, CG1673, and CG8199) that
are involved in amino acid metabolic processes. Hpd has been implicated in the tyrosine
catabolic process, playing a pivotal role in the formation of insect epidermis [50]. Increased
expression levels of hpd may lead to a faster cuticle maturation of parasitoid wasp larvae,
thus enhancing their ability to defend against the host immune responses and improve
their survival. Given that parasitoid larvae obtain all the necessary nutrients from their
hosts, they directly derive lipids from their hosts, consequently diminishing their own
ability for lipid synthesis [51–53]. This adaptation was further evidenced by the two upreg-
ulated host fatty acid synthesis genes (FASN1 and ACC), supporting the perspective that
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parasitoids regulate the host’s lipid metabolism for their own benefit. Sro is important for
ecdysone biosynthesis, and the downregulation of Sro post L. myrica parasitization might
illustrate the influence of parasitoids on the host ecdysis process, decelerating the host’s
development and providing the parasitoid with more time to absorb nutrients from the
host [54,55]. Based on these results, the parasitoid wasps have evolved to manipulate the
host’s nutrition metabolism, such as carbohydrate metabolism, amino acid metabolism, and
lipid metabolism, to secure the successful postembryonic development of their offspring.

It is well known that the host immunity process will change in response to wasp
parasitization [56,57]. Previous studies have documented alterations in host immune re-
sponses induced by parasitism from diverse species of parasitic wasps, showing a dual
manipulation of host immunity [2,34,58]. In this study, we found similar results, finding
that 33.33% (11/33) of the immune-related DEGs were downregulated and 66.67% (22/33)
of the immune-related DEGs were upregulated. In the upregulated immune-related DEGs,
there were four primary functional categories: “defense response”, “antibacterial humoral
response”, “integrin-mediated signaling pathway”, and “humoral immune response”.
Specifically, we found that five Boms, namely BomS1, BomS2, BomS3, BomS5, and BomBc1,
were upregulated at 48 h post L. myrica parasitism (Figure 4). Previous studies on Drosophila
hosts have reported that the expression of Boms enhances antifungal activity [59–62]. In our
study, the upregulation of Boms suggests that these proteins may help enhance the host’s
resistance to fungal infections, thus creating a more favorable environment for the devel-
oping parasitoid offspring. Prophenoloxidases (PPOs) play an important part in melanin
formation at infection sites [63]. In some parasitic systems, such as S. frugiperda–Microplitis
manila, Pseudaletia separate–M. mediator, and P. rapae–P. puparum, the PPOs in infected hosts
were suppressed post wasp parasitization, allowing the parasitoids to overcome the host
melanin-based immune defenses [34,64,65]. However, in other parasitic systems, like Aso-
bara tabida–D. melanogaster and A. citri–D. melanogaster, PPOs were activated in parasitized
host larvae [66]. Our results showed that the expression levels of three PPOs were signif-
icantly altered after parasitization. While PPO1 and PPO2 were suppressed, PPO3 was
upregulated. Previous studies suggested that PPO3 alone may not be sufficient to produce
adequate melanization without the help of PPO1 and PPO2 [63,67,68]. This could be a
potential reason why L. myrica can successfully evade the host immune response. Simul-
taneously, antimicrobial peptides, including IM4, IM14, IMPPP, Mtk, Dro, and AttB, were
upregulated after parasitization, indicating an increased resistance of the Drosophila hosts
against infection by bacteria and fungi [69–73]. These findings thus expand our knowledge
on the parasitic strategy of balancing the immune status in the parasitized hosts to benefit
the parasitoid wasp larvae.

5. Conclusions

In summary, we performed a comparative transcriptome analysis using RNA-seq to
investigate the changes in hosts post parasitization. Our findings provide novel insights
into host metabolism and immunity alterations after parasitization by parasitoid wasps,
which will not only broaden our knowledge on the coevolutionary adaptations in this
parasitic relationship but also contribute to developing sustainable pest management
strategies harnessing the power of natural enemies.
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and non-parasitized larvae; Figure S3: Validation of RNA sequencing data by qRT-PCR; Table S1: Primers
used for quantitative real-time PCR (5′-3′); Table S2: The list of 16,941 unigenes assembled across all
6 samples; Table S3: The list of 445 DEGs in P vs. non-P; Table S4: GO analysis of identified DEGs.
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