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Abstract: This work analyses the treatment of elements such as biases and their relationship with
disinformation in international academic production. The first step in this process was to carry out a
search for papers published in academic journals indexed in the main indexing platforms. This was
followed by a bibliometric analysis involving an analysis of the production and impact of the selected
publications, using social media techniques and a semantic content analysis based on abstracts. The
data obtained from Web of Science, Scopus, and Dimensions, relating to health, biases, and fake news
as well as post-truth, show how these works have multiplied in the last decade. The question relating
to this research is as follows: How have cognitive biases been treated in national and international
academic journals? This question is answered with respect to the scientific or research method. The
results, which date from 2000 to 2024, show a considerable academic dedication to exploring the
relationship between biases and health disinformation. In all these communities we have observed
a relationship between production with the field of medicine as a general theme and social media.
Furthermore, this connection is always tied to other subjects, such as an aversion to vaccines in
Community 10; disinformation about COVID-19 on social media in Community 5; COVID-19 and
conspiracy theories in Community 6; and content for the dissemination of health-related subjects on
YouTube and the disinformation spread about them. The community analysis carried out shows a
common factor in all the analysed communities—that of cognitive bias.

Keywords: health communication; misinformation; disinformation; types of bias; health investigation;
communication; social network analysis

1. Introduction and Theoretical Framework: A Conceptual Vision of
Disinformation/Misinformation and the Importance of Biases in Decision Making

The term ‘disinformation’ is understood as the action of inducing confusion in public
opinion through the use of false information. The Royal Spanish Academy defines it
as the action of giving intentionally manipulated information at the service of certain
ends. To give insufficient information or omit it. However, these concepts in English
contain important differences: misinformation refers to false or incorrect information,
while the term disinformation refers to information deliberately given with the aim of
creating confusion or fear among the population. In Spanish, we refer to both concepts
as ‘disinformation’ To quote Southwell et al. [1], misinformation is false or inaccurate
information regardless of intentional authorship, much discussion about misinformation
has focused on malicious acts with the intention of infecting social media platforms with
false information. Regarding misinformation and its effects, they pose a risk to international
peace; interfere with democratic decision making; endanger the well-being of the planet;
and threaten public health [2]. Thus, the concept of misinformation as a problem appears
prominently in recent academic literature and public discourse [1].

Thus, from semiotic and psychological perspectives, disinformation occurs when
what is communicated does not fit with the current reality of an object. Political science
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and public relations approaches see disinformation as an application of manipulation
techniques to the masses and public opinion, while a communication and information
science perspective considers it a natural characteristic of news media and of a clearly
oversaturated communicative ecosystem [3].

The digital ecosystem of social communication, saturated by the rise of social media
and the crisis within news media, is a fertile breeding ground for an increase in disinfor-
mation in our daily lives. The study of it must begin with a behavioural examination of
the symbolic elites that may be able to manipulate collective thinking in favour of their
own interests [4]. This structure of restricted information, in part, moves away from being
a clear expression of reality and becomes a prudent selection of a public agenda under
the triangulation of three fundamental elements of communicative research: discourse,
cognition, and society [4], in which a discursive and semiotic analytical focus is required
because the majority of disinformative content is spread via text, the spoken word, or image.
This takes place in a society that is increasingly incapable of accessing privileged data for
itself, which generates an avid demand for information via intermediaries as society strives
to understand its own shared realities [3].

Disinformation has developed exponentially with the COVID-19 pandemic, but its
effects started to increased exponentially since 2018 [5]. Three studies carried out in Spain
during the pandemic and post-pandemic time periods produced important conclusions
relating to disinformation: Salaverría et al. [6] developed a study about the fake news
generated in Spain during the first month of the State of Alarm, identified by Spanish
verification platforms. The research group discovered that these fake news items were
generally started on social media, mainly on WhatsApp. In addition according to fake news
about science and technology, a great degree of false content there were found relating to
political and governmental subjects [7]. Another study, by Noain-Sánchez, centred on the
disinformation generated in Latin America and Spain between 1st January and 1st June
2020 [8]. The study was carried out by observing accredited fact-checking platforms. The
conclusions indicate that most fake news was spread in text format, and that the most
common medium of dissemination was social media platforms: Facebook in Latin America
and WhatsApp in Spain. Disinformation in this case not only affected health but also
politics. The study by [9] was carried out a year after the start of the pandemic, when the
news was making reference to vaccines and the vaccination process. Our team found that
in this research too the diffusion of fake news focused on the political debate. In this case,
the dissemination was carried out via Twitter and WhatsApp [9].

Disinformation can lead to so-called systematic error, which occurs when citizens select
or favour certain responses over others. This is when cognitive biases appear: shortcuts
taken by the brain when it processes information. These shortcuts can hinder decision
making and generate irrational and incorrect behaviour (Kahneman, 2011) [10]. In his
work about the cognitive biases generated in the COVID-19 pandemic, researcher Castro
Prieto posed an interesting question: Why do people sometimes show a tendency to take
steps that are not beneficial to them or to society? Faced with uncertainty, our brain resorts
more to these biases, generating quick and impulsive responses to decisions that require
evaluation. Bias analysis is connected to guidelines of social behaviour that are directly
related to decision making. Decisions are not always taken in a rational way [11], and, in
this sense, decision making can lead to erroneous situations. The minute that a relationship
is produced between the news, bias, and behaviour, this relationship should be studied
and analysed from scientific and academic perspectives.

The research draws on international literature sources to establish a list of biases to
be taken into account in the process. Focussing on the work of Kahneman and Tverski,
various research teams have centred their investigations on a series of biases that are worth
considering. It comes as no surprise that these authors conclude that human rationality is
affected by behavioural or cognitive heuristic biases. Similarly, the author Cerezo, aiming
to detect biases produced during the pandemic, gives a brief summary of these types of
cognitive bias: one of them is loss aversion, which forms part of prospective theory [12] and
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explains how humans give more importance to a loss than a gain; in the case of a pandemic,
a population will think more about what it is losing with the crisis than what it stands to
gain by following proposed health measures. According to the author, when this happens it
is those responsible for public health policy who should mitigate this overvaluation of losses.
Another suggested bias is the so-called carry-over effect, also known as the bandwagon
effect: this is doing what the majority are doing with no concern for the correction or
suitability of the action with regard to the circumstances. One example is how, in the first
stages of the pandemic, people bought more food than they needed. The way to deal with
this bias is by appealing to rationality. Another bias may come from the little value given to
long-term consequences. This bias violates the motivation to carry out certain actions when
the threat they pose is not observed in the short term. This is also known as present bias,
and shows that we prefer to enjoy the present than think about future consequences. The
authorities should promote hopeful messages to counteract this bias, showing the short-
term results of proposed measures. Optimism bias is based on our belief that it is unlikely
that we will experience a negative event. In terms of illness, this bias makes us see ourselves
as less vulnerable than other collectives. The solution to this is thought to be through
clear messages from health authorities and news media—emotional messages based on
sentiments (i.e., empathy, fear, and individual responsibility). Availability bias, which
caught Freudenburg’s attention (1993) following the research of [12], overestimates the most
accessible or closest information and can be mitigated by reinforcing the idea that citizens
are responsible and obey rules. Good image bias translates to the continuity of habitual
dynamics, paying no attention to advice involving a change of attitude or behaviour. In
some way, those who develop this bias think that not doing what is recommended shows
them in a more favourable light since it makes them more attractive than the rest. It can
be combatted by appealing to and involving leaders in the promotion of recommended
behaviour. Confirmation bias evaluates information from a position of existing ideas and
beliefs, which means we always find reassurance for our own arguments. Thus, the search
for information centres on looking for news that supports our own points of view; only
supporting information that is of interest. This bias is related to post-truth theory and
fake news or conspiracy theories. In this case, it is necessary that both health authorities
and news media, along with opinion leaders, neutralise them (Cerezo, 2020) [11]. Authors
such as Helena Matute (2019) [13] suggest other types of bias, such as that of familiarity,
which leads the brain to trust what it knows and mistrust what is new, or that of the
illusion of causality. Table 1 summarises these biases, quoting those authors who have had
the strongest relationships with them, highlighting Kahneman and Terverski [12], among
others like Leibenstein [14], Freudenburg [15], Lewicki [16] and Nickerson [17], the pioneer
being Leibenstein in 1950 with the carry over bias.

Table 1. The most Notable Cognitive Biases and its authors. Source: own production from authors’
literature.

Most Notable Cognitive Biases Definition

Loss aversion More importance is given to a gain than to a loss [12].

Carry-over effect (bandwagon) Actions are taken in line with the majority, with no reflection about the
action carried out [14].

Present bias The preference for enjoying the present without worrying about future
consequences [11].

Optimism bias The tendency for a person to think that it is unlikely that negative things
will happen to them [12].

Availability bias Underestimates the nearest and most available information [12,15].

Good image bias Habitual behaviour and conduct are reinforced without considering the
need for change [16].

Confirmation bias Information is accepted or rejected based on the existence of preconceived
ideas [17].

Familiarity Makes people trust what they know and mistrust what they donot [11].
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Disinformation campaigns do not usually limit themselves to the dissemination of
fake news but aim to create a malicious narrative, largely based on the idea of post-truth.
It has become the scourge of our times, infringing deontological codes and undermining
democracies. Therefore, it presents a challenge for the information professionals fighting
against it, but also an opportunity since it is necessary to confront it with the veracity of
facts, rigour, and ethics.

The Oxford Dictionary defines post-truth as the consequence of a political climate in
which objective facts are less influential in shaping public opinion than appeals to emotion
and personal belief [18]. Thus, post-truth arises when what is important is not the truth but
perception, and so the conflict between your facts and mine is resolved without worrying
about which of these is based on truth [19,20]. The problem is that inaccurate information,
rumours, and conspiracy theories can seriously impair people’s ability to make health,
environmental, political, social, and economic decisions that are crucial to their lives [21].

News media, along with politics, are also responsible to some extent for the construc-
tion of post-truth via the propagation of fake news.

The endorsement of disinformation has negative consequences for public health
since there is a tendency to believe that the official information exaggerates the risks
of COVID-19 [22]. The conclusion of this work highlights the effect that the disinforma-
tion from conservative news media had on public health; an example is the tendency of
consumers of these media to think that politicians were exaggerating the importance of
COVID-19 [22], a misconception that had serious consequences. At the present time, it
seems that post-modernity and post-truth proclaim an end to the desire for the search for
truth; what is sought nowadays is the legitimisation of ideology. The truth or lie behind
what is alleged is no longer important; what matters is the willingness to give it the cate-
gory of truth [23]. The concept of fake news is prior to that of post-truth, but the two go
hand-in-hand.

2. Methodology

The methodology for the bibliometric analysis based on the semantic content of
abstracts is articulated around several fundamental steps (i.e., Figure 1), aimed at exploring
and visualising research trends as well as thematic patterns in the academic literature:
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Step 1
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them.

• Essential metadata: abstract.
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• Insertion of the queries that offer the best results.
• Publication download.
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• Data analysis and visualisation.

Figure 1. Workflow of the production and impact bibliometric analysis model.
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For this purpose, data collection was carried out using three sources: Scopus, Web of
Science (WoS), and Dimensions, to ensure a broad and diversified dataset, in addition to
creating quantitative and qualitative variables that would then be used in the subsequent
analyses. The queries performed in the search were ‘health AND disinformation AND
bias’ and ‘health AND misinformation AND bias’. The first query resulted in a total of
102 publications, while the second resulted in 680 publications. No filters of any kind were
used in the queries. The research areas of the publications were acquired. Therefore, the
initial corpus consists of 782 publications from the three data sources.

The next step was the standardisation of categories across databases to unify the
analysis. Standards in bibliometric research understand that the ideal practice is to use a
single type of database where indicators are already standardised [24]. In our case, this
was not possible due to the high atomisation and specialisation of the databases; however,
no relevant metadata gaps were found, and differences in metadata were mitigated by
selecting higher-quality metadata, such as the number of citations of a publication (cited or
cited count).

Data cleaning was carried out in different phases: Firstly, we eliminated those publica-
tions that did not contain an abstract, those publications whose typology corresponded to
preprint, letter, note, or survey, and duplicate publications, considering the title, abstract,
and DOI, after standardising spelling and punctuation marks. In the event that the same
publication was found in two or more data sources, priority was given to maintaining the
highest number of citations. On the other hand, the research areas were standardised in
their nomenclature, assuming the Scopus classification to be valid (i.e., the Dimensions and
WoS areas were translated into the Scopus ones), as it is the most generic and inclusive.
The final dataset was reduced to 374 publications.

Next, the semantic analysis of the abstracts was carried out using the LaBse model
(i.e., language-agnostic BERT sentence embedder [25]) for sentence embedding, a deep
learning-based natural language processing (NLP) technique that converts sentences into
vectors based on prior training. These vectors represent the semantic features of sentences
in multidimensional space (i.e., matrices). After applying this process of vectorising the
sentences in the abstracts, those abstracts with similar meanings are placed close to each
other in this multidimensional vector space, while abstracts with different meanings were
placed further away.

In order to minimise the loss of semantic information in the vectors, the distances
between them were calculated from the cosine similarity, a calculation commonly used in
the context of sentence embeddings because of its ability to deal with multidimensional
data [26]. Then, a graph of semantically similar abstracts was constructed based on the
highest values obtained in the previous calculation: those with a cosine similarity equal
to or greater than 0.9. The threshold was calculated in conjunction with modularity (see
below) to obtain a graph partition that would allow for the observing of relevant differences
between communities without decomposing the graph into isolated subgraphs. With this
process, a mathematical object was created to analyse the different narratives in the corpus
of abstracts. Additionally, cosine similarities greater than 0.99 were used to identify and
eliminate previously undetected duplicate publications from the network. Finally, the
abstract network consisted of 366 nodes and 4394 edges.

The graph was transformed into an undirected network with the Python library
NetworkX [27]. The modular structure of the network was then identified with the Louvain
algorithm [28]. This is a procedure that identifies communities in networks based on
modularity optimisation, which is a measure that quantifies the structure of modules,
clusters, or communities within a graph [29]. In this case, the modularity value achieved
was 0.203: a low value that places us before a set of poorly differentiated narratives
(i.e., which is congruent with a methodology such as the one used to study a very specific
and delimited scientific field), but which derives from the methodological decision of the
0.9 threshold. At all times we will bear in mind that the communities we are analysing
have many more elements in common than distinctive ones, which also accounts for the
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particularities of the empirical object we are dealing with. Next, the weighted degree of the
nodes of the graph was calculated (i.e., the number of neighbours of each node multiplied
by the power of the links). All of these data were exported and added to the initial dataset.

With the aim of deepening the semantic analysis of the communities created with
the previously calculated modularity, a bigram calculation was carried out with the ab-
stracts of the publications to capture contextual relationships between words. These
are pairs of consecutive elements taken from a sequence of elements, such as the co-
occurrence of two words in a text, which are calculated after having removed the stop
words (i.e., function words) from the texts. Two different bigram calculations were carried
out: one on the abstracts—on the one hand, a bigram for each community, and, on the other
hand, two bigrams for all communities based on pre-and post-2020 time spans—and the
other focusing on specific terms of interest, specifically on the word bias. Thus, as we will
see below, each community has a bigram cloud related to the contexts of the abstracts of
the publications of that community, and then two general bigrams specific to the periods
before and after 2020 are analysed. Finally, two separate bigram analyses were carried out
to examine the bigrams created based on the word bias.

To visualise the data, Gephi was used to synthesise the graph using Force Atlas 2, a
brute force algorithm that moves linked nodes closer together and away from unlinked
ones [30]. The rest of the visualisations were made with Python in the case of the bigram
clouds for each cluster—both those describing the co-occurrences in the abstracts of the
publications of each cluster and the bigram clouds containing the word bias in one of the
two n-grams—and PowerBI for the rest of the visualisations.

The exploration of results was carried out in two stages: Firstly, bibliographic pro-
duction and impact were analysed on the basis of general indicators. Secondly, a detailed
analysis of each community in the graph was carried out. The methodology includes a
detailed examination of topics within specific research communities based on the iden-
tified communities, as well as a collective analysis of topics outside these communities
(i.e., communities isolated from the graph; not exceeding the threshold of 1% of nodes).

3. Results
3.1. Production and Impact per Community
3.1.1. Number of Publications per Year

The production of the topics analysed (i.e., the queries ‘health AND disinformation
AND bias’ and ‘health AND misinformation AND bias’) starts to grow from 2016, before
the COVID-19 pandemic, and an exponential trend can already be observed between
2018 and 2020 (i.e., Figure 2); despite the drop in production in 2022, in 2023 it grows again,
surpassing that of 2021. This suggests a great scientific interest in the topic, which also
concerns several research areas, as we will see in the cluster analysis.

Although there are publications before 2000, the following graph has been filtered
to show publications from 2000 onwards, which is when most of the activity starts
to accumulate.

3.1.2. Number of Publications and Average Number of Citations per Publication
and Community

The following bar chart (i.e., Figure 3) shows, on the left vertical axis, the number of
publications per community identified in the graph (i.e., 0, 10, 2, 5, 6, and the rest of the
communities, as we will see in the next section), and, on the right axis, the average number
of citations per publication in each community. To analyse the success of each community
based on the number of publications and the average number of citations per publication, it
is understood that the lower the number of publications and the higher the average number
of citations per publication, the more successful the community will be.
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Therefore, the community that stands out the most is Community 0 (i.e., the fifth
according to the number of nodes), as it has the lowest number of publications (11) but
the highest average number of citations per publication (38), as well as the highest impact.
On the other hand, Community 2 (i.e., the first according to the number of nodes in the
graph) has the highest number of publications (113), but its average number of citations
per publication (18.10) is not as high as that in the previous community. This indicates that
it is a community with a lot of production, but with a relatively low impact in comparison
to this production.
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3.2. Community Analysis

The following undirected graph (i.e., Figure 4) is made up of 366 nodes and 4394 weighted
edges (i.e., taking weights between 0.9 and 0.99 according to the cosine similarity value
between abstracts). After the application of the Louvain algorithm for the identification of
communities, the result was 71 communities and a modularity of 0.203. Of the 71 commu-
nities, the most relevant ones were selected for the analysis, which are those that exceed 1%
of the nodes: 5 communities in total.
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The above graph has a relatively low modularity value, suggesting little differentiation
between communities. Its relatively high density of 0.066 reinforces this notion, as the
volume of links between nodes—denoting similarity relationships—is relatively abundant.
On a visual level, we can highlight that Communities 2, 5, and 6 are part of the same
node set, while Communities 10 and, above all, 0 remain structurally separate. This, in the
interpretative context of the Force Atlas 2 algorithm, means that a greater differentiation
from the rest of the communities can be expected from these two.

To analyse each community in the graph, a dashboard was developed with PowerBi
and a series of visualisations with the Wordcloud and Matplotlib libraries for Python [31,32]
(i.e., Figure 5). The indicators shown for each community are as follows: (1) the total
sum of publications and citations for each community, (2) the top five publications with
five citations or more ordered by prototypicality (i.e., the sum of the edge weights with
regard to the other nodes of the graph, i.e., the weighted degree), (3) a timeline of the
number of publications per year, (4) a word cloud with the most important bigrams of
the abstracts (i.e., the higher the co-occurrence of the words that make up the bigram, the
larger they appear in the visualization), and (5) the top five research areas by number of
publications, considering that there are publications with more than one research area.

3.2.1. Community Analysis—Com. 2—30.87% of Nodes (Health Literacy in Pandemics)

As we saw earlier in the bar chart analysis (i.e., Figure 3), Community 2 (i.e., Figure 5)
is the least successful community in terms of the number of publications and the average
number of citations per publication. Most of the publications are in the fields of medicine
and computer science. The most frequent bigrams are social media, public health, health
information, and health misinformation, which indicates that the central theme of this
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community is social media and the dissemination of public health information and misin-
formation, and, most probably, disinformation too. From the presence of health literacy,
fake news, and conspiracy theories in the bigram cloud and also from the timeline as well
as publication dates of the most prototypical works, it can be intuited that the scientific
production that stands out has, above all, the aim of making the population literate in order
to combat misinformation and disinformation about health concepts in a pandemic context.
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3.2.2. Community Analysis—Com. 10—16.39% of Nodes (Social Media and Vaccine Hesitancy)

Most of the publications in Community 10 are from the medical field. The central
topic of this community is social media and the delay or refusal of vaccination despite
the availability of vaccination services. Also noteworthy is the role of cognitive biases
in the processing of health-related information on the Internet, especially during the
COVID-19 pandemic.

Social media is a forum for public debate, and as such also for the dissemination
of information on vaccines; however, this has its downsides: while facilitating the wide
dissemination of information by experts, it can also be a platform for the spread of disinfor-
mation and conspiracy theories. The ease with which unsubstantiated opinions and data
can be shared on social media can contribute to the rejection of or doubts about vaccination,
despite its general availability.

Cognitive biases can influence how people evaluate information obtained from social
media. For example, confirmation bias may lead individuals to seek out and believe
information that aligns with their pre-existing beliefs, while ignoring or discrediting data
that contradict them. This phenomenon is especially relevant in a pandemic context, where
the urgency to make public health decisions may intensify the influence of such biases.

3.2.3. Community Analysis—Com. 5—15.85% of Nodes (Cognitive Bias and
Disinformation in Pandemics)

The publications of Community 5 focus on the research area of medicine, but also
areas such as the social sciences, psychology, and computer science. The central topic of this
community is social media and the COVID-19 pandemic. The cluster is mainly concerned
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with the role of cognitive biases in the search for and acceptance of (dis)information
in social media when (dis)informing oneself about public health issues and COVID-19
in the pandemic.

This community is specifically concerned with the flow of public-health-related infor-
mation on social media, as well as how disinformation can influence public perception and
social behaviour with respect to public health recommendations in pandemics. The volume
and speed of the information shared on these channels can lead to both the widespread dis-
semination of truthful data and the circulation of fake news as well as conspiracy theories
that undermine the preventive efforts of institutions regarding public health issues.

With respect to the role of biases, these may influence people to favour information
that confirms their prior beliefs (i.e., confirmation bias) or to have the perception that
nothing negative is likely to happen to them (i.e., optimism bias), in addition to affecting
the adoption of health practices.

3.2.4. Community Analysis—Com. 6—15.3% of Nodes (Social Media and Conspiracy Theories)

Most of the publications are in the field of medicine with an interdisciplinary approach,
including the social sciences and communication. The topic focus of this community is
on the interaction between social media and conspiracy theories in the context of the
COVID-19 pandemic. This cluster is mainly concerned with the role of cognitive biases
and social media (dis)information seeking in (dis)informing about public health issues
and COVID-19 in the pandemic. Furthermore, research in this cluster is oriented towards
understanding the psychological biases and social mechanisms that underlie the acceptance
of false narratives and how to address these in order to counteract disinformation and thus
also strengthen societal resistance to disinformation.

3.2.5. Community Analysis—Com. 0—3.01% of Nodes (Medicine Outreach on YouTube)

As we saw earlier in the bar chart analysis, this community is the most successful in
terms of the number of publications and the average number of citations per publication.
Most of the publications are in the field of medicine. The central topics of this community
are health content disseminated via YouTube and the issue of the misinformation as well
as disinformation associated with it. Studies in this community critically evaluate the
quality, bias, and accuracy of videos available on YouTube, covering topics as diverse as
treatments for common diseases and management options for specific health conditions
such as prostate cancer.

This community is also dedicated to understanding the impact that health content
on YouTube has on patients’ knowledge and decisions. Recognising that many users turn
to this social media platform as a primary source of information, the researchers seek to
identify how the variable and often biased quality of videos can lead to misunderstandings
and the adoption of potentially harmful health practices.

3.2.6. Community Analysis—Other Communities—18.58% of Nodes

Most of the publications belong to the field of medicine. The central topic of this com-
munity is the relationship between social media and the proliferation of disinformation in
the COVID-19 pandemic. This cluster is mainly about the role of news media and social me-
dia in creating and disseminating misinformation on health issues of different types and in
different contexts, not only in the COVID-19 pandemic, and how disinformation can affect
people’s willingness to get vaccinated, as well as other critical health-related decisions.

The most impactful research from this community—the publications in this cluster could
not be ordered by prototypicality, so they have been ordered from highest to lowest impact,
i.e., number of citations—also focuses on strategies with which to combat misinformation in
social media, exploring how to develop methods to identify and rectify disinformation.
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3.3. Bigrams for all Communities: Before and after 2020

In addition to the previous analysis, another one was carried out focusing on a pair
of bigram clouds before and after 2020 in order to examine possible variations in the
discursive subject matter of the abstracts. The first cloud (i.e., Figure 6) shows bigrams for
all communities before 2020; it includes prominent bigrams such as social media, health
information, public health, and health care. This suggests that these topics were commonly
discussed before 2020 in the publications analysed here. The second cloud (i.e., Figure 7),
on the other hand, shows the bigrams for all communities after 2020. It shows a significant
prominence of pandemic-related bigrams, such as COVID-19 pandemic, COVID-19 vaccine,
public health, health misinformation, and vaccine hesitancy. It is notable that terms such
as fake news, spread misinformation, and conspiracy theories appear more frequently
in this cloud, implying that after 2020 scientific discourses were strongly influenced by
the pandemic and the circulation of false or misleading information. In other words,
concerns about public health disinformation are more apparent in scientific studies after
the COVID-19 pandemic than before.
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3.4. Bigrams Containing Bias per Each Community

Below, we explore the bigrams developed specifically for expressions containing
the word bias for each community (i.e., Figure 8), with the aim of identifying narratives
specialising in different types of bias, including psychological and cognitive biases that
affect disinformation processes based on the preference for information that validates the
beliefs of individuals, but also other types of bias explored in the literature:
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• Community 2 focuses on confirmation bias and other cognitive biases that affect
judgements and decisions; publication bias, which influences scientific literature; and
commercial bias, which can distort content for economic interests. These factors, espe-
cially the cognitive ones, are key to understanding and dealing with disinformation.

• In Community 10, risk bias, linked to how subjective perceptions can alter the as-
sessment of real risks, and publication bias, which is based on the non-publication of
research results depending on the direction of the research findings, stand out.

• Community 5 focuses on optimism bias, the tendency of people to believe that they
are less likely to experience negative events. Media bias (i.e., social media bias, for
the contexts of the communities analysed so far) also appears prominently, reflecting
concerns about how the media can influence public perception.

• Community 6 focuses on cognitive bias and unconscious bias, highlighting how
unconscious prejudices and reasoning errors affect the interpretation of information.

• Community 0 focuses on commercial bias; commercial interests can bias content and
information, affecting the objectivity and usefulness of the data presented, especially
regarding the dissemination of biased information and its impact on public perception.

• Finally, the other communities present a richer collection of types of biases, although
they focus on cognitive biases, those related to commercial bias, confirmation bias,
and disinformation bias.
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Not all biases found in the analysis coincide with those that appear in the literature.
The analysis shows new biases that have not been previously mentioned and that should be
taken into account: publication, commercial, risk, media, unawareness, and disinformation.
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3.5. Bigrams Containing Bias: Before and after 2020

In addition to the previous analysis of bigrams for all communities before and after
2020 period, another one was carried out focusing on a pair of bigram clouds containing
bias before and after 2020.The first cloud (i.e., Figure 9) shows bigrams containing bias
for all communities before 2020, the most prominent bigrams include confirmation bias,
misinformation bias, weight bias, risk bias, and cognitive biases. This suggests a focus on
discussions about certain types of cognitive biases and the quality of information in this
period. After 2020 (i.e., Figure 10), on the other hand, the terms that stand out are cognitive
biases, commercial bias, confirmation bias, media bias, and risk bias. In both bigram clouds
the prominence of cognitive and confirmation biases is prevalent, although in the case of
the post-2020 period media bias and risk bias stand out.
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In both figures, the recurrent presence of terms related to bias and misinformation may
indicate an ongoing concern with how cognitive biases and biased information can affect
understanding and decision making in various contexts, especially those with important
implications for society, such as public health and media consumption. These core terms
reflect relevant topics of discussion in academia, the media—probably social media—and
public conversations before and after 2020.

4. Discussion and Conclusions

Having observed the results obtained in the search and analysis process, this research
shows the existence of academic articles or papers that have dealt with biases and their
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relationship with how the world of academia has treated disinformation. Thus, in terms
of community analysis, the results show a considerable academic dedication towards the
existence of biases and disinformation. In all these communities we have observed a
relationship between production, with the field of medicine as a general theme, and social
media, with this connection always being tied to other subject matter, such as an aversion to
vaccines in Community 10; disinformation about COVID-19 on social media in Community
5; COVID-19 and conspiracy theories in Community 6; and material for the dissemination
of health-related subjects on YouTube, as well as the disinformation that exists about them.

This community analysis reveals a common factor in all of the communities
analysed—that of cognitive bias; however, it must be taken into account that, accord-
ing to various authors, there are significant relationships between different types of bias,
and this helps people to protect the image they have of themselves, leading them to analyse
information in a particular and partial way [38].

Precision about the type of cognitive biases treated in academic publications can be
found in the second synopsis of the Results section—the bigrams containing bias per each
community. Thus, Community 2 deals with confirmation bias, along with other cognitive
biases, such as publication and commercial. The first analyses and interprets information
from existing ideas and beliefs, giving preference to one’s own arguments. In this same
analysis, Community 10 refers to risk bias and also publication bias, focussing in this case
on those papers referring to the COVID-19 pandemic and which were accepted or rejected
depending on the results produced.

Other biases were taken into account in the preparation of this work, such as the bias
of optimistic self-perception, which appears in Community 5 and refers to the tendency
of one to think that bad things will not happen to them. This bias appears in the lifting
of information as optimism bias. Additionally, prejudices and errors of reasoning appear
in the analysis—they are cognitive and unconscious biases, which appear in Community
6. Similarly, commercial bias appears in Community 0, found in a relationship between
commercial interests and information bias.

Therefore, it can be seen how academic literature has treated the analysis of cognitive
biases present in the relevant published information. It is the analysis of information gener-
ated at one particular time, in one particular context, and in one particular circumstance
that finds common elements in the search for biases. A large number of those that had been
taken into account in this work appeared in the analysis. Others that had not been taken
into account refer to two elements that should generate special interest: commercial bias
and publication bias. The first favours an informative focus not based on objectivity but on
certain economic market interests. Publication bias is also particularly important since it
focuses on information—in this case academic—depending on the results of research. This
is highly damaging for the practice of academic research, since it causes it to lose objectivity
the minute publishing companies have a preference for some results over others, which
clearly shows a lack of objectivity in a sector that is based precisely on objectivity. Special
attention should also be paid to this bias and its existence since it tends to create a loop, a
spiral in the world of science, a sector in which every new academic production is based on
previous studies. Are we facing a spiral of disinformation generated by the publishers of
certain scientific journals? It is important to be aware of this subject in order to detect and
avoid the so-called ‘scientific fraud’ that has been reported in the press for years. What is
more, they are biases that have not been generated by the psychology of citizens in the form
of shortcuts to enable decision making—over and above the particular consequences that
these might have—but by communication companies that have an interest in publication
depending on what type of results are produced about health information.

It is also important to highlight the intentions of the research teams whose papers have
been analysed in the defence of communication for health education, centred on the predom-
inance of social media in the analysis that has revolutionised the way of accessing informa-
tion about medicine and health [39]. In short, the importance of information and knowledge
in the development of processes of political—or even economic—democratisation [40] indi-
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cates that communication is the central axis of this development. But this axis should not
be limited; health education plays an important role in the development of healthy, capable,
free, and empowered societies.

Beyond the comments made on academic production in the mentioned fields, our
research shows that there is a relationship between biases and disinformation when it
comes to people’s decision-making processes, including for health-related decisions. It also
confirms that the existence of cognitive biases generates effects such as those mentioned
in this article: interference in decision making, danger to the well-being of the planet,
and a threat to public health. At the same time, it underlines the WHO’s position by
referring to an infodemic and the impossibility of addressing health problems—among
others—without first solving the issue of disinformation.

This study has been conducted to identify the biases used in the era of misinformation
related to health topics. Misinformation is not simply bad or false information, but rather
selective information that circulates even among isolated and disconnected groups. Dis-
information is not simply bad or false information directed at communities of users, but
also selective information circulating among isolated and disconnected groups. One of the
important contributions of this study is that it has worked with a novel and innovative
methodology, through a methodology with a bibliometric approach that also combines
social network and discourse analyses of abstracts of international academic literature. The
great contribution is that it sheds light on the relationship between cognitive biases and
health, exploring topics of interest to society such as vaccine hesitancy and the COVID-19
pandemic. Future research will focus on understanding and analyzing what makes com-
munities and individuals less susceptible to manipulation. We will rely on data that can
help mitigate mass manipulation.

Beyond the search for this relationship between biases, it is clear that the academic
literature has dedicated space to articles or papers that have observed how these subjects
have developed during times of pandemic.
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