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Abstract: In order to reveal the melting–dropping property of a charged blast furnace (BF) and the
mechanism of its slag formation, such as the temperature interval of slag formation, the pressure
drop during the reduction process, and the K value of each sample, the soft melt drop experiment
was tested in a large-capacity melting–dropping furnace. The results show that a positive linear
relationship exists between the slag melting behavior and the melting–dropping property of the
corresponding charge. The results indicate that owing to their poor melting–dropping property,
single iron ores are not suitable for BF production and the charging mix can improve slag formation
as well as the melting–dropping property when the temperature is increased. Chemical composition
is the key factor that will affect slag formation. An excessive amount of lump ore in the charging
mix favors the formation of a high-fusion point slag phase such as spinel at low temperatures. The
charging mix containing fewer lump ore has high FeO content in the slag, decreasing fluidity at
increased temperature. Consequently, the gas path is choked and permeability is reduced.

Keywords: melting–dropping property; formation behavior; furnace slag; mechanism

1. Introduction

Numerous studies have been conducted on blast furnaces (BF), both locally and
internationally [1–3]. Dissection of a BF [4] reveals that BF production is mainly affected
by the shape and position of the cohesive zone. Several researchers have confirmed that
the melting–dropping property of the BF charge significantly influences the formation of
a cohesive zone [5,6]. Wu and colleagues demonstrated that iron ores interact with one
another to improve the melting–dropping property of the BF charge [7–9].

Traditional BF production in China aims to achieve a high clinker rate, which can
improve BF smelting, decrease the fuel ratio, and improve the reduction behavior of the
BF charge, thus facilitating BF production [10–12]. In recent decades, the quality of iron
ores has increasingly worsened because of rapid consumption by ironmaking industries
and insufficient productivity in large-scale mining. Consequently, some iron and steel
operations have increased the proportion of lump ore in BF charge, causing the melting–
dropping property of iron ores to fluctuate markedly [8,13,14]. Thus, the primary cause of
this occurrence needs to be investigated.

Current research on melting–dropping properties is limited to the performance of BF
charge and the formation behavior of primary slag [7,9,15,16]; studies on the relationship
between the melting–dropping property and slag formation of the BF charge are rarely
reported. In the present study, the melting–dropping property of the BF charge and its slag
formation behavior are evaluated by means of a large-capacity melting–dropping furnace.
The mechanism underlying the change in the melting–dropping property of the BF on the
basis of its slag formation behavior is investigated by scanning electron microscopy (SEM),
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X-ray diffractometry (XRD), X-ray fluorescence spectroscopy (XRF), and melting-point
tests (MPT). The thermodynamic software FactSage 6.3.1, (Thermfact/CRCT, Montreal, QC,
Canada) and GTT-Technologies (Aachen, Germany) is also used.

2. Materials and Procedures
2.1. Raw Material

Raw materials were used in the actual production, including two sinters of different
basicity (S-1, S-2), a flux pellet (P-1), an oxidized pellet (P-2), and a lump ore (O-1). The
chemical compositions of the iron ores and charging mixes are listed in Table 1, and the
proportions of constituent raw materials in the charging mixes are shown in Table 2. (H1
and H2 are the charging mixes containing sinter S-1 and S-2, respectively; A and B denote
the different ratios of lump ore.)

Table 1. Chemical compositions of the raw materials, %.

Sample T[Fe] FeO SiO2 CaO MgO Al2O3 R2

S-1 58.52 9.33 4.85 9.04 1.27 1.99 1.86
S-2 57.20 9.10 5.06 10.25 1.88 1.33 2.02
P-1 66.53 0.32 2.02 1.49 0.16 0.59 0.73
P-2 66.82 0.41 2.25 1.08 0.11 0.53 0.48
O-1 63.39 0.48 3.14 0.04 0.06 1.25 0.01

H1-A 67.36 6.25 4.30 6.24 0.88 1.69 1.45
H1-B 60.55 6.22 4.15 6.01 0.85 1.66 1.44
H2-A 59.85 6.06 4.23 6.87 1.26 1.20 1.62
H2-B 59.70 6.07 4.29 6.80 1.25 1.23 1.58

Table 2. Proportions of constituent raw materials in the charging mixes, %.

Sample S-1 P-1 P-2 O-1

H1-A 65 10 5 20
H1-B 65 5 5 25
H2-A 65 10 5 20
H2-B 65 5 5 25

With regard to the chemical compositions of the iron ores and charging mix iron grade,
pellets are considerably higher than the others while sinters are relatively low. Lump ore
exhibits the lowest basicity, with high SiO2 content and low CaO content. S-2 contains a
high proportion of CaO; hence, there is a higher basicity of S-2 over S-1.

2.2. Experimental Procedure

Experiments on the slag formation behavior were conducted in a large-capacity
melting–dropping furnace. A schematic diagram is shown in Figure 1. The apparatus
comprises a gas-flow controller, a heating element, and a reacting volume. The gas was
mixed and injected into the sample bed from the side. All data included the pressure
obtained by the pressure gauges. The temperature was measured with thermocouples, and
the sample-bed shrinkage rate was transmitted to the data logger. The sample bed, which
consisted of alternating layers of iron ore and coke, was set in the graphite crucible of the
reacting components. The molten iron and slag were collected in the mouth of the sample.
These devices were designed to simulate the condition of the BF interior and investigate
the interaction between the iron ores and slag formation behavior.
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Figure 1. Schematic drawing of large capacity melting-drop furnace.

For each test, iron ore with a layer thickness of 160 mm was placed in a graphite
crucible (Figure 2), the inner diameter of which was 120 mm; there was a graphite gasket
of the same size at the bottom on which samples could be placed; and there were 5-mm
holes evenly distributed on the graphite gasket, from which the drops will drop at high
temperature. Coke with a layer thickness of 10 mm was set above and below the iron
ore layer. All samples measured 8 mm to 12 mm in diameter. Each test followed a
preset program of temperature and gas flow (see Figure 3). In addition, to simulate the
conditions in the BF interior better and ensure that the charging mix was previously reduced
adequately, the sample was kept at 500 ◦C for 60 min. After a test was complete and slag
had formed, 5 L/min–1 N2 was injected to cool the sample.

Figure 2. Sketch of a vertical section through the sample holder.

Figure 3. Temperature and gas−flow profiles programmed for each test.
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Owing to the invisibility of the BF interior, the measured parameters are quantified to
evaluate the melting–dropping properties of the charging mix, as well as the slag formation
behavior [7,9]. In the current study, Ts is the temperature at which the pressure increases
sharply, reflecting the active slag formation behavior. Pmax is the highest value of the sample
pressure, and its temperature is defined as Tp, which is also regarded as the maximum
rate of slag formation. T10 and T40 are the temperatures when the packed bed shrinkage is
10% and 40%, respectively. The softening interval of the charging mix is (T40–T10). The K
value is introduced to quantify the permeability of the charging mix, which is the integral
of pressure drop over the slag formation behavior. The equation determining K is

K =
∫ Tp

Ts
(Pmax–Ps) dt, (1)

where Ts and Tp are the upper and lower boundary temperatures of the slag formation rate,
respectively, and Ps denotes the pressure drop at Ts.

To reduce the experimental error, each test was repeated. When the detection was
completed, the graphite crucible was dissected, and the slag was separated from the
nondropped. The chemical compositions of the nondropped slags were measured by X-ray
fluorescence spectrometry (XRF). The viscosities of the nondropped slags were calculated
from the XRF measurements with the viscosity module of FactSage. The phases in the slag
were identified by XRD. The melting points of slag samples were measured by RDS-04
automatic slag melting point and melting rate tester (MPT). Before MPT test, the sample
were machined to Φ 3 mm × 3 mm cylindrical and dried for 24 h under natural conditions;
In the technique, the samples were placed on a corundum plate and heated at 10 ◦C/min
under atmosphere of N2 and 3 tests for every sample. Figure 4 shows the change in the
shape of a sample during heating.

Figure 4. The changing shape of a sample during heating. The four transition temperatures: (a) de-
formation, (b) softening, (c) hemispherical fusion, (d) flow.
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3. Results and Discussion
3.1. Melting–Dropping Property and Slag Formation Behavior

The melting–dropping properties of each of the samples—i.e., the temperature interval
of slag formation, the pressure drop during the reduction process, and the K value of each
sampleare shown in Figure 5.

Figure 5. Melting–dropping properties of samples tested. (a,b) Cohesive zone pressure drops and K
values for single iron ore samples. (c,d) Cohesive zone pressure drops and K values for mixed iron
ore samples.

As shown in Figure 5, the samples S-1 and S-2 have relatively higher initial temper-
atures and final temperatures for slag formation than those of the other iron ores. This
finding reflects the BF charge position in the lower part of the BF. The lump ore O-1 starts
its slag formation at 1270 ◦C. Its corresponding charge position is in the upper part of the
BF, which can lead to hanging and easy slipping. The temperature intervals of the cohesive
zone of the pellets are the shortest of all the samples, the charge of which forms reduced
resistance on the gas flow; the fine permeability is likely to decrease the pressure drop, and
the K values of the pellets is less than those of the other iron-ore samples.

For the mixed samples, the cohesive zone lies between those of the sinters and the
pellets. In addition, the pressure drops of the mixed samples are less than those of the
sinters and the lump ore. The larger the proportion of lump ore in a mixed sample, the
larger the pressure drop, and the K value increases correspondingly. Compared with the
pressure drops of H1-A and H2-A, the higher basicity of the sinter can increase the effect of
the permeability of the charge. The K value of a mixed sample with a higher proportion
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of sinter S-2 is higher than that of a sample containing more S-1, with the basicity of the
former being higher.

3.2. Distribution of Iron and Slag in the Graphite Crucible

After testing, some nondropped material was found in the graphite crucible. The
crucible was dissected (see Figure 6). The visible light and dark phases can be distinguished
by SEM (Figure 7), and the two phases were identified as iron and slag, respectively.

Figure 6. Distribution of iron and slag in nondropped materials in the graphite crucible. The symbols
denote iron (I), slag (S), coke particles (C), and the graphite crucible (G). (a) H1-A; (b) H1-B; (c) H2-A;
(d) H2-B.

Figure 7. SEM observation of typical nondropped materials. (a) Appearance of typical nondropped
materials, (b) SEM scanning of point a, (c) SEM scanning of point b, (d) SEM scanning of point c.
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As shown in Figures 6 and 7, it can be seen that the slag–iron aggregation in the
nondropped material is relatively obvious in the charging mix, adding higher basicity to
S-2, which is consistent with the experimental results for the melting–dropping property of
the charging mix. In addition, the penetration of slag and iron in some nondropped material
can be clearly found in the gas pathway formed by the coke layer. The penetration depth of
the iron slag is measured at multiple points, the degree of penetration of slag–iron–coke
is shown in Figure 8. The figure indicates that under the same sintering condition, the
penetration of slag–iron–coke in Scheme B is more obvious than that in Scheme A. The
penetration average of H1-B is 14.52 mm, and that of H2-B is 15.12 mm. As can be observed,
the penetration of slag–iron–coke is aggravated after increasing the proportion of the lump
ore. In addition, the penetration of slag–iron–coke with high-basicity sinter is considerably
higher than that with low-basicity sinter. By comparing the penetration of H1-A and H2-A
as well as H1-B and H2-B, the penetration range of slag–iron–coke with high-basicity sinter
is obviously higher than that with low-basicity sinter.

Figure 8. Penetration among slag–iron–coke under different charging mixes.

3.3. Phase-Chemical Composition

As shown in Figure 9, the phases in the slag are affected by the chemical components,
such as Al2O3 and so on. The high-basicity sinters S-1 and S-2 are alike in the phases of the
slag. The main slag phases of the sinter are a dicalcium silicate and wüstite. Owing to the
high MgO and Al2O3 contents in the sinter, the eutectic phase in wüstite and Al2O3 occur
in the solid–solution reaction during slag formation, and excessive melilite and merwinite
form in the slag system. Both pellets are detected in the SiO2 component in the slag; most
SiO2 is found in free state, and other parts are formed as a complex mineral phase. The
pellet P-1 contains a large amount of CaO, causing some of the CaO to react with free-state
SiO2 and generating monocalcium silicate and dicalcium silicate; the remaining CaO reacts
with Al2O3 and SiO2 in the slag system, and the gehlenite phase is formed. In the slag of the
pellet P-2, the free-state SiO2, Ca2+, Mg2+, and wüstite reacted and generated complicated
mineral phase. The mineral phases fayalite and mullite are found in the slag of the lump
ore O-1 because of the reduced CaO and MgO contents in the slag formation. SiO2, Al2O3,
and FeO reacted with one another to generate a complex mineral.
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Figure 9. XRD analysis of single iron ore.

One charging mix is selected as a typical scheme, as analyzed based on the X-ray
diffraction energy spectrum of the slag of the typical charging mix. In Figure 10, the main
mineral phases are gehlenite and akermanite, and small amounts of dicalcium silicate and
mullite are accompanied by the main slag phase. The mineral phase constituents in the
slag are consistent with the findings in previous studies [7,9,15].

Figure 10. XRD analysis of slag in a typical mixed charge.

3.4. Melting Property and Mobility of the Slag

Table 3 shows that the melting temperatures of S-1 and S-2, which are all based on the
melting-point tester (MPT), are increased and that the flowing temperature of the sinters
are relatively high; the slag of S-2 is slightly higher than that of S-1. The slag sample of the
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lump ore O-1 begins to deform at a lower temperature (1088 ◦C) and completes the melting
process at 1123 ◦C. The melting behavior of the pellets are between lump ore and sinter ore
(P-1 1184 ◦C−1234 ◦C, P-2 1116 ◦C−1318 ◦C). The slags of the charging mix start melting
at 1218 ◦C, 1204 ◦C, 1224 ◦C, and 1210 ◦C and completely melt at 1324 ◦C, 1329 ◦C, 1345 ◦C,
and 1335 ◦C. A positive linear relationship exists between the melting behavior of the slag
and the melting–dropping property of the corresponding charging mix.

Table 3. The melting temperature of the slags with different furnace charged/◦C.

Sample Deformation Softening Hemispherical Fusion Flow

S-1 1312 1369 1388 1422
S-2 1337 1373 1396 1441
P-1 1184 1200 1222 1234
P-2 1116 1139 1234 1318
O-1 1088 1096 1109 1123

H1-A 1218 1311 1317 1324
H1-B 1204 1303 1312 1329
H2-A 1224 1324 1332 1345
H2-B 1210 1316 1323 1335

The combination of the XRD results with the melting properties of the slag indicates
that the single iron ore is not suitable for BF production because of the differences in the
mineral component and melting properties of the slag. During the reduction process, a
large number of high-fusion-temperature-slag phase, such as dicalcium silicate (with a
melting point of 2130 ◦C) and gehlenite (1590 ◦C), are generated in the slag system of
high-basicity sinters and flux pellets at high temperatures. The initial phase is fayalite
(1208 ◦C) in the slag of lump ores and oxidized pellets. The mullite (1870 ◦C) phase may be
formed with reduction reaction.

Two reactions occur among the FeO, CaO, and SiO2 of the reduced lump ore or sinter,
which are separately listed in Equations (2) and (3). The difference in fusion points in the
slag is attributed to fayalite and dicalcium silicate.

2FeO + SiO2 = 2FeO·SiO2 (2)

2CaO + SiO2 = β-2CaO·SiO2 (3)

However, in the charging mix, the concentration gradients of CaO, SiO2, Al2O3, and
MgO among the iron ores are caused by irregular mechanical distributions, which interact
with one another at high temperatures. Al2O3 and SiO2 in the lump ore diffuse freely to
the contact surface of iron ores when the temperature is lower than 1150 ◦C. This diffusion
behavior reduces the content of fayalite, and the initial phase in the slag mainly consists of
olivine and wollastonite. With an increase in temperature, the diffusion of CaO and MgO
is induced. The dicalcium silicate content decreases, and merwinite (1575 ◦C), akermanite
(1458 ◦C), and gehlenite (1590 ◦C) are generated in the slag, as shown in Equations (4)–(6).

2CaO + Al2O3 + SiO2 = 2CaO·Al2O3·SiO2 (4)

2CaO + MgO + 2SiO2 = 2CaO·MgO·2SiO2 (5)

2CaO·MgO·2SiO2 + CaO = 3CaO·MgO·2SiO2 (6)

In summary, blending iron ores is likely to improve slag formation, enhancing the
melting–dropping property of the charging mix. However, this improvement has limita-
tions, which may cause the pressure drop to deteriorate with the addition of excessive
lump ores, as shown in Figure 5.
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3.5. Theoretical Calculation by FactSage Software

In accordance with the chemical component of the mixed slag shown in Table 4, the
viscosity of the mixed slag is calculated using the viscosity module in FactSage. The
calculating conditions are as follows: standard atmosphere, temperature ranging from
1350 ◦C to 1560 ◦C, and temperature interval of 10 ◦C.

Table 4. The chemical component of the slag sample in nondropped/%.

Sample CaO SiO2 MgO Al2O3 FeO R2

H1-A 44.05 32.16 6.27 8.95 8.57 1.3
H1-B 43.05 35.09 6.50 8.70 6.66 1.2
H2-A 45.12 32.93 6.18 9.30 6.47 1.3
H2-B 42.75 36.65 6.48 8.35 5.77 1.2

The object of the calculation is the liquid molten salt in the viscosity module of
FactSage. The slag sample exists as a liquid phase and a solid precipitate phase in the range
1350–1560 ◦C by using the Einstein–Roscoe equation to simulate the viscosity of the slag
sample in this temperature range.

Viscosity(solid+liquid mixture) ≈ Viscosity(liquid)·(1–solid fraction)–2.5 (7)

The Equilib module in FactSage is used to calculate the liquid phase content and the
percentage of the solid phase precipitated under the corresponding temperature conditions.
The calculated results are imported into the Einstein–Roscoe equation, and the temperature–
viscosity curve in Figure 11 is generated.

Figure 11. The viscosity curves of different slag.

Figure 11 indicates that under the given conditions, the viscosity of the slag sample
decreases with an increase in temperature. The slopes of the viscosity–temperature curves of
H1-A and H2-A are similar; those of H1-B and H2-B are similar as well. Before the inflection
point of the temperature–viscosity curve appears, viscosity has a steep gradient of variation;
after the inflection point appears, viscosity tends to be stable. In addition, the temperature
of the inflection point of samples H1-B and H2-B is earlier than that of H1-A and H2-A,
which is also consistent with the melting–dropping property of the corresponding charged
structure. When the curves become steady, the viscosity of mixed Slag B is slightly higher
than that of mixed Slag A. The viscosity of slag is inversely proportional to the fluidity of
slag itself; thus, Slag A exhibits better fluidity than Slag B at the same temperature.

The viscosity of the slag reflects the friction coefficient between different flow layers.
During BF production, the permeability of the composite charge below the cohesive zone is
directly affected by the viscosity of the slag; the higher the viscosity of the slag, the poorer
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the flow-properties of the slag, which facilitates blocking of the gas–liquid path formed by
the coke layer. The porosity of the coke layer decreases, and the permeability of the charge
column is reduced. As shown in Figure 11, the sinter S-2 causes an increase in the viscosity
of the slag, thus decreasing the permeability of the charge. The peak value of pressure
drop in H-2 is higher than that in H-1. The distribution of nondropped iron and slag in the
graphite crucible in Figure 6 verifies this interpretation.

The calculation parameters and boundary conditions are set in accordance with the
chemical component of the slag in Table 4. The influence of the chemical component of the
slag sample on slag formation is examined using the phase diagram module in FactSage.
Figures 12 and 13 present the quinary phase diagrams of the slag at 1400 ◦C and 1500 ◦C,
respectively.

Figure 12. Quinary phase diagrams of slag at 1400 ◦C. (a) H1−A; (b) H1−B; (c) H2−A; (d) H2−B.
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Figure 13. Quinary phase diagrams of slag at 1500 ◦C. (a) H1−A; (b) H1−B; (c) H2−A; (d) H2−B.

The mainly solid–liquid components in the quinary phase diagrams are marked from
1© to 7©, which denote the following:
1© Fe(s) + Olivine + Slag-liq
2© Fe(s) + Slag-liq
3© Fe(s) + Monoxide + Slag-liq
4© Fe(s) + Monoxide + Olivine + Slag-liq
5© Fe(s) + Monoxide + Olivine + Slag-liq + Spinel
6© Fe(s) + Monoxide + Slag-liq + Spinel
7© Fe(s) + Olivine + Slag-liq + Spinel

The phase diagrams indicate that at 1400 ◦C, the area of Fe(s) + Monoxide + Slag-liq
+ Spinel in the quinary phase diagrams is larger for Slag A than Slag B, whereas the area
of Fe(s) + Monoxide + Slag-liq is smaller for Slag A than Slag B. This change leads to the
formation of more spinel phases during the formation of Slag A. The high fusion point
spinel phase causes Slag A to melt after Slag B in Figure 11. The chemical component is
the key factor causing the difference in slag melting at 1400 ◦C. The corresponding charge
of Slag B adds 25% of lump ore; an excessive amount of lump ore in the charging mix
causes the charge to contain more Al2O3, causing SiO2 and Al2O3 in the slag to absorb O2–
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to generate (SiO4)4– and (AlO4)5– in the slag system of CaO-SiO2-MgO-Al2O3-FeO. This
behavior is likely to form a high-fusion-point phase.

When the temperature increases to 1500 ◦C, the areas of Fe(s) + Monoxide + Olivine
+ Slag-liq + Spinel, Fe(s) + Monoxide + Slag-liq + Spinel, and Fe(s) + Olivine + Slag-liq +
Spinel narrowed distinctly, whereas the phases of Fe(s) + Monoxide + Slag-liq and Fe(s) +
Monoxide + Olivine + Slag-liq enlarged, as shown in the quinary phase diagrams of Slag
A. This behavior indicates that as smelting occurs, the spinel phase decreases significantly.
The quinary phase system consists mainly of melilite and fayalite phases, which have lower
fusion points; Slag A exhibits better fluidity than Slag B at high temperatures. Lump ores
can be reduced easily at lower temperatures. The charging mix containing fewer lump
ore still fails to complete the reduction reaction. Slag A contains more FeO than Slag B,
providing free-moving Fe2+ and O2– in the Si-O network. Al2O3 in the slag absorbs O2– to
generate (AlO6)5–, and the main mineral phases in the slag are feldspathic, which causes
variations in fluidity.

4. Conclusions

This study evaluates the melting–dropping properties of single iron ores and four
typical mixed BF charged with different proportions of lump ore and sinter basicity to
explore the relationship between the melting–dropping property of the BF charge and its
slag formation. The mechanisms underlying the change in melting–dropping property on
the basis of slag formation are studied by SEM, XRD, XRF, and MPT in addition to using
the FactSage thermodynamic software. The following conclusions are drawn:

• A positive linear relationship exists between the melting behavior of slag and the
melting–dropping property of the corresponding charge. Owing to their poor melting–
dropping property, single iron ores are not suitable for BF production.

• It is proposed that the effect is fundamentally dependent on the chemical; the mix
charge can result in a concentration gradient of the chemical components at the contact
interface, which can improve slag formation at high temperatures and enhance the
melting–dropping property of the charging mix.

• It is proposed that the self-softening and melting properties of the lump ores were
dramatically improved by interaction between sinters and lump ores; the collocation
pattern of lump ores and ratio between lump ores was also optimized, accordant with
the interaction. So, the chemical component is the key factor causing the difference
in slag formation behavior. An excessive amount of lump ore in the charging mix
results in a mix charge with higher Al2O3 content, which causes SiO2 and Al2O3 in the
slag to absorb O2– in order to generate (SiO4)4– and (AlO4)5–. In the CaO-SiO2-MgO-
Al2O3-FeO slag system, this behavior is likely to form a high-fusion-point phase such
as spinel.

• Lump ores are easy to reduce at lower temperatures. The mix charge containing
fewer lump ore retains more FeO, providing free-moving Fe2+ and O2– in the Si-O
network. Al2O3 in slag absorbs O2– to generate (AlO6)5–. The main phases in the slag
are feldspathic, causing variations in fluidity.
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