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Abstract: The current process of recovering lithium from wasted aluminum electrolyte mostly entails
extracting lithium from lithium-containing aluminum electrolyte by acid leaching and dissipation.
Aiming at the disadvantages of the existing treatment method, such as the long process flow, environ-
mental pollution, poor working environment, etc., we propose a new technology to extract lithium
from the wasted aluminum electrolyte and systematically investigate the effects of raw material
particle size, holding time, temperature and other factors on the recovery of lithium. The results show
that the better process conditions for the recovery of lithium are as follows: the raw material particle
size is 75~150 µm, the additive is CaCl2, the mass ratio of calcium chloride to lithium-containing
aluminum electrolyte is 3:5, the reaction temperature is 1473 K, and the holding time is 3 h. After the
product of the reaction is crushed and leaching is carried out by using deionized water (pH = 6.8),
the temperature of the leaching is 368 K, the leaching time is 3 h, and the solid–liquid ratio is 1/3, and
the leaching rate of Li can be up to 75.1%. In addition, the purity of the recovered AlF3 is more than
92.7%. This process realizes the comprehensive and efficient use of lithium-containing aluminum
electrolyte and provides a new idea for the development of lithium extraction technology from
lithium-containing aluminum electrolyte.

Keywords: wasted aluminum electrolyte; secondary resource recovery; lithium

1. Introduction

In 2023, China’s production of electrolytic aluminum reached 41.5 million tons, up
3.5% year on year, making China one of the world’s largest producers of electrolytic
aluminum. However, the bauxite used in China is of low grade and contains large amounts
of lithium salts [1,2]. The usage of this bauxite as a feedstock for alumina production
results in the formation of a lithium-rich, low-temperature aluminum electrolyte system [3].
The properties of this system include a low initial crystallization temperature, a high
conductivity, and a low solubility of alumina. Secondly, the lithium in the aluminum
electrolyte may also come from the aluminum electrolysis process. To reduce the melting
point of aluminum oxides, the temperature of electrolysis, and energy consumption, and
improve the conductivity of electrolytes [4–7], additional lithium fluoride is required,
resulting in lithium enrichment [8,9]. The effect of excessive lithium content on the stability
of the electrolyte becomes more and more obvious, and it readily leads to the generation of
alumina and aluminum–lithium compounds, which cause the stability of the electrolyte
to deteriorate. At the same time, excessive lithium content will also affect the electrolytic
deposition speed and quality of aluminum [10–13].
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Currently, the method of aluminum electrolysis waste disposal is still not perfect.
Many aluminum electrolysis enterprises usually grind the generated electrolyte into a fine
powder for reuse [14,15], and this practice may lead to the accumulation of a large number
of impurities inside the electrolytic cell, thus affecting the efficiency of its function. It also
increases the cost of production and reduces the service life of electrolytic cell greatly, which
also further increases the degree of resource consumption. Some aluminum electrolysis
companies also periodically draw from the smelter and add new low-concentration lithium
electrolytes [16]. This extracted spent electrolyte is no longer used for production but is
disposed of as solid waste, and the amount of spent aluminum electrolyte is increasing
every year. Due to the high fluoride content, the long-term stockpiling of spent aluminum
electrolyte can cause serious harm to the environment, crop yields, and human health [17–19].
Therefore, it is of great value to study a method of recovering and treating waste high-
lithium aluminum electrolyte. So, research on the extraction of lithium and aluminum
resources from the lithium-rich aluminum electrolyte is bound to be the focus of the
development and recycling of lithium and aluminum resources.

At present, the comprehensive utilization of electrolytic aluminum slag and the recov-
ery process of the lithium-containing electrolyte by-products of electrolytic aluminum is
relatively backward, resulting in a large amount of waste of expensive resources [20–22].
There are three main existing methods: one is to add acid to dissolve the lithium-containing
aluminum electrolyte to obtain soluble lithium salt and hydrofluoric acid solution [23]
and then use calcium hydroxide to adjust the value of the precipitation of fluorine in the
leaching solution; the second is to add calcium chloride to obtain the leaching of lithium
chloride solution and calcium fluoride slag [24]; the third is to directly add a calcium
hydroxide conversion [25] to obtain lithium hydroxide solution and calcium fluoride slag.
The three methods have their advantages and disadvantages [26]. Regarding the use of acid
dissolution and then adding calcium hydroxide to remove fluoride, the process producing
hydrogen fluoride and other gases causes the serious corrosion of metal equipment and
also makes the operating environment worse. The health of the workers is affected [27,28].
However, this method has a high lithium recovery rate; the advantage of using calcium
hydroxide to prepare lithium hydroxide solution is that the leaching solution of lithium
hydroxide solution is strongly alkaline, and there are very few impurities in the solution,
so the subsequent cost of removing impurities is low. However, calcium hydroxide is
slightly soluble in water. At the same time, in strong alkaline reaction conditions, lithium
fluoride in an aqueous solution is also difficult to ionize lithium ions and fluoride ions, so
the reaction speed is very slow and requires a very high reaction temperature, while the
lithium leaching rate is very low, and due to the high cost and low operational efficiency, it
is difficult to be realized in the actual production. Using calcium chloride leaching alone,
the operation method is simple and the process flow is short, but the lithium leaching
rate is still low, At the same time, the impurity calcium ions in the leaching solution were
higher [29,30].

How to choose effective chloride additives was the first problem we faced. We found,
in the exploratory experiments, that when sodium chloride or aluminum chloride is used
to chlorinate lithium aluminum electrolyte, the lithium leaching effect was not good;
the lithium leaching rate was less than 30%. Regarding the use of calcium chloride in
lithium-containing aluminum electrolyte chlorine roasting, lithium leaching achieved
better results. Secondly, the lithium content in the lithium-containing aluminum electrolyte
raw material used in this experiment was 1.8%, which was low and increased the difficulty
of the subsequent extraction and detection. Finally, the reaction conditions were an even
more momentous part of the chlorination roasting experiment, which required continuous
research and the improvement of the lithium extraction process.

Therefore, this paper attempted to chlorinate lithium aluminum electrolyte by adding
calcium chloride under different reaction conditions, extracting Li at the same time to
achieve the recovery of Al in lithium-containing aluminum electrolyte. Lithium-containing
aluminum electrolyte lithium extraction technology provides a new way of thinking.



Metals 2024, 14, 460 3 of 16

2. Experimental
2.1. Experimental Raw Materials
2.1.1. Mineralogical Analysis of Lithium-Containing Aluminum Electrolyte

The semi-quantitative analysis of the components in the lithium-containing aluminum
electrolyte was carried out using X-ray fluorescence spectroscopy (XRF) (SciAps, Inc.,
Woburn, MA, USA), and the results are shown in Table 1. From the results in Table 1,
it can be initially judged that the lithium-containing aluminum electrolyte contained a
large amount of aluminum and sodium, and due to the small atomic radius and light
atomic mass of lithium, XRF could not quantitatively analyze the lithium element. The
use of inductively coupled plasma atomic emission spectrometry (ICP-AES) was adopted
to quantitatively analyze the components in the lithium-containing aluminum electrolyte,
and the results are shown in Table 2, in which the lithium element accounted for 1.82%.

Table 1. Elemental content of lithium-containing aluminum electrolyte measured by XRF.

Element Al Na O Ca F The Rest

content (wt.%) 21.08 19.27 8.92 2.37 45.44 2.91

Table 2. Elemental content of lithium-containing aluminum electrolyte measured by ICP-AES.

Element Li Al Na K Ca

content (wt.%) 1.82 20.77 19.52 1.59 2.63

2.1.2. Lithium-Containing Aluminum Electrolyte Mineral Phase Analysis

The raw material used in this experiment was a lithium-containing aluminum elec-
trolyte provided by a Shanxi electrolytic aluminum plant. The XRD analysis of the lithium-
containing aluminum electrolyte was carried out, and the X-ray diffraction pattern is
shown in Figure 1. From the figure, it can be seen that the raw material mainly consisted
of lithium cryolite (Na2LiAlF6), cryolite (Na3AlF6), potassium cryolite (K2NaAlF6), fluo-
rite (CaF2), and alumina (Al2O3). Lithium was present in the form of lithium cryolite by
isomeric substitution.
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Figure 1. XRD pattern of lithium-containing aluminum electrolyte.

Based on the quantitative analysis of the main chemical elements in the lithium-
containing aluminum electrolyte in Table 2 combined with the main phases in the lithium-
containing aluminum electrolyte shown in Figure 2, it was assumed that the feedstock was
a mixture of the main chemical elements.
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Figure 2. SEM-EDS analysis: (a) SEM image of Li-containing aluminum electrolyte, (b) element
distribution, (c) elemental analysis.

According to the quantitative analysis results of the main chemical elements in the
lithium-containing aluminum electrolyte in Table 2 and the main phases in the lithium-
containing aluminum electrolyte shown in Figure 2, assuming that all the lithium in the raw
material came from Na2LiAlF6, it could be deduced inversely that the content of Na2LiAlF6
in the lithium-containing aluminum electrolyte used in the experiment was 50.84%.

To further verify the chemical composition of each element of the above XRD character-
ization, SEM-EDS was used to analyze the distribution of the lithium-containing aluminum
electrolyte from a microscopic point of view, and the results are shown in Figure 2a for
the randomly selected region under the scanning electron microscope, from which it can
be seen that the morphology of the main substances in the lithium-containing aluminum
electrolyte was an irregular block, and an EDS analysis was carried out on the region, and
the results of the distribution of the elements of the F and Ca were as shown in the figure.
The distribution of elements F and Ca coincide, and the percentage of Ca: F atoms at point 1
is 26.78:67.38, which was consistent with the stoichiometric ratio of 1:2 for CaF2. In addition,
Al2O3 (point 2), Na3AlF6 (point 3), and K2NaAlF6 (point 3) were also detected. The SEM
results were consistent with the XRD analysis.

2.2. Additive Analysis

According to the XRD detection, most of the Li in the raw aluminum electrolyte
exists in the form of Na2LiAlF6, and the structure is shown in Figure 3, where lithium
atoms replace some of the sodium atoms in the cryolite by isomorphic substitutions to
form a lithium-containing cryolite structure (Na2LiAlF6). Since aluminum in aluminum
electrolytes mainly exists in the form of cryolite, the crystal structure of lithium-containing
cryolite consists of isolated octahedral AlF6

3− combining with Li+ and Na+ at six vertices
to form a regular octahedron with good stability, which is difficult to decompose in gen-
eral [31]. The extraction of lithium from lithium-containing aluminum electrolytes requires
breaking the stable structure of lithium cryolite.
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Liu Fengqin et al. [32] showed that when aluminum electrolyte and calcium car-
bonate are mixed and roasted, the highly reactive calcium oxide produced by the de-
composition of calcium carbonate reacts with cryolite to produce Al2O3, CaF2, and NaF.
Zhang Yinli et al. [33] showed that under the condition of 9.9 × 10−5 atm, the decomposi-
tion of Na3AlF6 produces AlF3 and NaF at 1028 K. It can be seen that given certain reaction
conditions, the stabilizing conditions of AlF6

3− can be broken, thus releasing the Li element
in Na2LiAlF6.

Without introducing new elements, the Li elemental product should be in soluble
form, and the rest of the product should preferably be in insoluble form for the subsequent
extraction of the Li element. CaCl2 with lithium-containing aluminum electrolyte can be
selected for this purpose. The selected CaCl2 is analytically pure CaCl2 produced by Tianjin
Windship Chemical Reagent Technology Co. (Tianjin, China).

2.3. Evaluating Indicators
2.3.1. Lithium Leaching Rate

ηLi =
V1 × CLi
ωLi × m1

× 100% (1)

ηLi is the leaching rate of lithium, ωLi is the mass fraction of the Li element in the
raw material, m1 is the weighed mass of the raw material (g), m2 is the weighed mass of
the additive CaCl2 (g), m3 is the mass of the product added to the water by roasting and
grinding (g), V1 is the volume of the aqueous solution used in the leaching (mL), and CLi is
the concentration of the Li element in the filtrate (g/mL).

2.3.2. Aluminum Direct Yield

βAl =
ωAl2 × m2
ωAl1 × m1

× 100% (2)

βAl is the direct yield of Al, ωAl1 is the mass fraction of the Al element in the feedstock,
m1 is the weighed mass of the feedstock (g), m2 is the mass of the condensate (g), and ωAl2
is the mass fraction of the Al element in the feedstock.
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3. Results and Discussion
3.1. Thermodynamic Analysis

Since it is difficult to find thermodynamic data for Na2LiAlF6, a thermodynamic
estimation of Na3AlF6 and Li3AlF6, which have similar structure and properties, were
used. Reactions (3)–(15) are the reactions that may occur when calcium chloride is used
for roasting.

Li3AlF6 = 3LiF(g) + AlF3(g) (3)

Li3AlF6 + CaCl2 = 3LiCl(g) + 1.5CaF2 + AlF3(g) (4)

2Li3AlF6 + 3CaCl2 = 6LiF(g) + 3CaF2 + Al2Cl6(g) (5)

2Li3AlF6 + 6CaCl2 = 6LiCl(g) + 6CaF2 + Al2Cl6(g) (6)

Na3AlF6 = 3NaF(g) + AlF3(g) (7)

Na3AlF6 + 1.5CaCl2 = 3NaCl(g) + 1.5CaF2 + AlF3(g) (8)

2Na3AlF6 + 3CaCl2 = 6NaF(g) + 3CaF2 + Al2Cl6(g) (9)

2Na3AlF6 + 6CaCl2 = 6NaCl(g) + 6CaF2 + Al2Cl6(g) (10)

LiCl = LiCl(g) (11)

NaCl = NaCl(g) (12)

AlF3 = AlF3(g) (13)

CaF2 = CaF2(g) (14)

2AlCl3 = Al2Cl6(g) (15)

Based on the above equation, the Gibbs free energy versus temperature was calculated
for the reactions (3)–(14) at 1 atm, and the results are shown in Figure 4. According to
Figure 4, the initial reaction temperature of each reaction under the 1 atm condition can
be calculated, and the results are shown in Table 3. From Table 3, it can be seen that the
initial temperature of (3) is 2117 K and the initial temperature of (7) is 2318 K under the
1 atm condition, which indicates that it is difficult to decompose the reaction of Li3AlF6
and Na3AlF6 under low temperature. The initial temperature of (5) is 2510 K and that
of (9) is 2819 K. This indicates that the chlorination of Li3AlF6 and Na3AlF6 with CaCl2,
respectively, can produce LiF and NaF only at higher reaction temperatures. When the
reaction is increased to 1730 K, the first reaction that occurs for Li3AlF6 may be reaction (4),
which produces a Li-containing compound mainly in the form of LiCl, and the generated
Al is mainly in the form of AlF3. When the reaction is increased to 1637 K, the first reaction
of Na3AlF6 may be reaction (8), and the resulting Na-containing compounds mainly exist in
the form of NaCl, and the resulting Al mainly exists in the form of AlF3. As the chlorination
roasting reaction temperature increases, the chlorine in CaCl2 combines with the Al in
Li3AlF6, and likewise with the Al in Na3AlF6, and then the reaction yields Al2Cl6. The
initial reaction temperatures of reactions (11)–(13) are between 1650 and 1787 K. However,
other substances in the lithium-containing aluminum electrolyte may cause the (11)–(13)
initial reaction temperatures to decrease, while the initial reaction temperature of (14)
is at 2871 K, which is essentially impossible at lower temperatures. The initial reaction
temperatures of reaction (14) is 454 K. However, the reactions that produce AlCl3 all have
high initial reaction temperatures.
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Table 3. Initial reaction temperatures of reactions (3)–(14) at 1 atm.

Reaction Equation Initial Reaction Temperature at 1 atm/K

(3) 2117
(4) 1730
(5) 2510
(6) 2007
(7) 2318
(8) 1637
(9) 2819

(10) 1896
(11) 1700
(12) 1787
(13) 1651
(14) 2871
(15) 454

3.2. Experimental Programs

Firstly, a planetary ball mill was used to grind the bulk lithium-containing aluminum
electrolyte into powder form with different particle sizes of 150–250 µm and 75–150 µm,
then CaCl2 was added to the lithium-containing aluminum electrolyte raw materials in
a certain proportion, which was mixed uniformly, and then a high-temperature smelting
furnace was used as the heating equipment. Figure 5 shows the schematic diagram of the
high-temperature melting furnace used in the experiment. According to the experimental
requirements, under the standard condition, the specimen was thermally chlorinated and
roasted in the high-temperature smelting furnace for a certain chlorination roasting time
and at a certain temperature, and the specimen was cooled down to room temperature with
the furnace after the heating was completed. Then, the product after chlorination roasting
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was crushed, leached with ionized water (pH = 6.8), kept warm, and then filtered to obtain
the aqueous solution containing Li and the filter residue.
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3.3. Effect of Reaction Conditions on Li Leaching Rate
3.3.1. Effect of Chlorination Roasting Temperature on Li Leaching Rate

A lithium-containing aluminum electrolyte with particle sizes in the range of 75~150 µm
was used, and the mass ratio of calcium chloride to the lithium-containing aluminum
electrolyte was 3:5. The residue obtained after holding for 3 h was completely pulverized
in a planetary ball mill under the temperature conditions of 1073~1573 K. The purpose of
grinding was for subsequent leaching experiments and the related detection. The residue
obtained was subjected to XRD analysis, and the results are shown in Figure 6. From the
figure, it can be found that in the temperature range of 1073~1573 K, the physical phases
of the roasting products obtained from various experiments were the same, which were
mainly the incompletely reacted LiCaAlF6 phase, NaCl. The appearance of the LiCaAlF6
phase was due to the reaction between CaCl2 and Na2LiAlF6 in the lithium-containing
aluminum electrolyte, and the Ca element replaces the Na element in Na2LiAlF6, which
was still insufficient at this reaction temperature. The reaction temperature at this time
was not enough to break the stable structure of lithium cryolite, so the LiCaAlF6 phase
was generated. The reason for the decrease in NaCl content with increasing temperature
may be that NaCl will volatilize in the form of gaseous NaCl and a small amount of
gaseous Na2Cl2 near 800 ◦C and finish volatilizing near 1100 ◦C [34], which was consistent
with thermodynamic calculations. When the temperature was increased to 1473 K, the
diffraction peaks of LiCaAlF6 completely disappeared, accompanied by the enhancement of
the intensity of the diffraction peaks of CaClF and CaF2. The diffraction peaks of LiCaAlF6
completely disappeared, while the diffraction peaks of Al-containing compounds did
not enhance, and the ICP-AES detection of the Al element in the product of the chlorine
roasting at 1473 K gave the mass fraction of the Al element to be 17.89%, while after the
volatilization of NaCl, the theoretical mass fraction of Al should be 24.75%, which was
about 6.9% lower, probably generating gaseous AlF3 or Al2Cl6, which was in line with the
results of the thermodynamic calculations, so the enhancement of the diffraction peaks of
Al-containing compounds was not detected. The generated Li-containing compounds were
not detected in the XRD images of the residue at 1473 K and 1573 K. Combined with the
thermodynamic analysis, it can be seen that this may have been due to the generation of
gaseous LiCl volatilization, or it may have been due to the low content of Li in the raw
material, which resulted in the content of Li in the roasting product being lower than the
lower limit value of detection.
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The condensate under the conditions of 1473 K and 1573 K was subjected to XRD
detection, and the results are shown in Figure 7, which shows that the main components
of the condensate under the conditions of 1473 K and 1573 K for chlorine roasting were
LiCl, AlF3, and NaCl, but the result of the XRD detection was LiCl·H2O, and the reason
for the generation of LiCl·H2O may be that LiCl is extremely water-absorbent and may
have absorbed water from the air during the process. The reason for the generation of
LiCl·H2O may be that LiCl is very easy to absorb water and may have absorbed water in
the air during the process of grinding and being sent for the inspection so that it existed in
the form of LiCl·H2O. After the ICP-AES detection of lithium in the residue of chlorination
roasting at 1473 K and 1573 K, it was calculated that the Li in the residue accounted for
1.31% and 1.28% of the Li in the raw material, and only a small amount of lithium still
existed in the residue, so it can be seen that most of the lithium existed in the condensate
after chlorination roasting with CaCl2.
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The residue after chlorination roasting was pulverized together with the condensate
and leached using deionized water at a leaching temperature of 368 K, a leaching time
of 3 h, and a solid–liquid ratio of 1/3, and the stirring rate was 300 r/min. The leaching
experiments were carried out under these conditions, and it can be seen in Figure 8 that
when the chlorination roasting temperatures ranged from 1073 to 1373 K, the leaching
rate of Li was lower than 37% in all cases. When the chlorination roasting temperature
was increased to 1473 K, the leaching rate of Li reached 75.1%. It can be seen that the Li
compounds generated under the condition of 1473 K were transformed into soluble lithium
salts. When the temperature was further increased to 1573 K, the Li leaching rate did not
increase, and the leaching rate decreased by 0.2%. The leaching rate of Li reached 75.0%. It
can be seen that the generated Li-containing compounds mainly existed in the condensate
in the collection tray.
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From the use of calcium chloride on the lithium-containing aluminum electrolyte for
chlorine roasting and the effect of the Li leaching rate, it can be determined that the optimal
temperature for the experiment is 1473 K under the condition of a chlorine roasting time of 3 h.

3.3.2. Effects of Chlorination Roasting Temperature and Holding Time on Li Leaching Rate

Using the lithium-containing aluminum electrolyte with the particle size of 75~150 µm,
the mass ratio of calcium chloride to lithium-containing aluminum electrolyte is 3:5. The
holding time is 2~4 h under the temperature condition of 1373~1573 K. The 5 g condensate
is crushed and then leach with deionized water. The leaching temperature is 368K, the
leaching time is 3 h, the solid–liquid ratio is 1/3, and the stirring rate is 300 r/min. Figure 9’s
experimental results show that under the same holding time, the leaching rate of Li increases
with the increase in the temperature of chlorine roasting. When the chlorine roasting
temperature is less than 1473 K, the reaction temperature has not yet reached, and increasing
the temperature of chlorine roasting has a greater impact on the leaching rate of Li; when the
temperature of chlorine roasting is greater than 1473 K, the leaching rate of Li is unchanged.
At the same chlorination roasting temperature, the leaching rate of Li increases with the
increase in holding time. When the holding time is less than 3 h, part of the Na2LiAlF6
has not fully reacted, resulting in a low leaching rate of Li. At this time, the extension
of the holding time has a greater impact on the recovery of lithium from Na2LiAlF6, and
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the leaching rate of Li increases faster. When the holding time is greater than 3 h, the
growth of the leaching rate of Li by extending the holding time becomes slow. Under the
present experimental conditions, the optimum temperature for the experiment is 1473 K,
the holding time is 3 h, and the leaching rate of Li is 75.1%.
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of Li.

3.3.3. Effects of Raw Material Particle Size and CaCl2 Ratio on Li Leaching Rate

Using the lithium-containing aluminum electrolyte with the particle size of 75~150 µm
and 150~250 µm, the mass ratios of CaCl2 and lithium-containing aluminum electrolyte
used in the experiment were 2:5, 3:5, and 4:5, respectively, and the temperature of chlori-
nation roasting was kept at 1473 K and held for 3 h. The condensate was pulverized and
then used to be leached with deionized water with the temperature of leaching at 368 K,
and the time of leaching was 3 h, the solid–liquid ratio was 1/3, and the stirring rate was
300 r/min, and the results of leaching experiments under these conditions are shown in
Figure 10. It can be seen that when the same amount of CaCl2 is added, the smaller the
particle size of the raw material, the higher the leaching rate of Li, but too high a particle
size will increase the time of processing raw materials and increase the cost of extracting Li,
so choosing the appropriate particle size is conducive to the comprehensive recovery of Li.
When the mass ratio of added calcium chloride to lithium aluminum electrolyte is less than
3:5, it is not enough to react with all of the Na2LiAlF6, resulting in a lower leaching rate
of Li. At this time, increasing the addition of CaCl2 has a greater impact on the recovery
of lithium from Na2LiAlF6, and the leaching rate of Li increases faster. When the mass
ratio of added calcium chloride to lithium–aluminum electrolyte is greater than 3:5, the
added CaCl2 has less effect on the leaching rate of Li, indicating that when the mass ratio
of calcium chloride and lithium-containing aluminum electrolyte used in the experiment
is 3:5, the added calcium chloride is sufficient to react with lithium-containing aluminum
electrolyte. Therefore, under the present experimental conditions, the optimal particle size
of the experimental raw materials is 75~150 µm, the optimal mass ratio of calcium chloride
and lithium-containing aluminum electrolyte is 3:5, and the leaching rate of Li is 75.1%.
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3.3.4. Effect of Leaching Temperature and Leaching Time on the Leaching Rate of Li

The condensate after chlorination roasting was leached under the conditions of select-
ing the chlorination roasting temperature of 1473 K, the holding time of 3 h, the particle
size of raw materials of 75~150 µm, and the mass ratio of calcium chloride to the lithium-
containing aluminum electrolyte of 3:5, with the leaching temperature of 328~368 K, the
leaching time of 1~4 h, and the stirring rate of 300 r/min. The leaching rate of Li is shown
in Figure 11. The experimental results showed that at the same leaching temperature, the
leaching rate of Li increased with the increase in leaching time. However, when the reaction
temperature was increased to 368 K, the leaching time was greater than 3 h, which has
little effect on the leaching rate of lithium. Appropriately increasing the leaching temper-
ature and leaching time was favorable to the leaching of Li, but too long a leaching time
increased the cost of recovering lithium. Therefore, the optimum leaching temperature for
this experiment was selected as 368 K, the leaching time was 3 h, and the leaching rate of Li
was 75.1%.

Under these conditions, the ICP-MS detection of Li in the residue of chlorination
roasting and leaching residue showed that the mass fraction of Li in the residue was
0.21%, the mass fraction of Li in the leaching residue was 0.56%, the volatilization rate
of Li was 90.3%, the leaching rate of Li was 75.1%, the chlorination efficiency was 68.7%,
and the reason for the lower leaching rate of Li was due to the insufficient condensation
collection system of the experimental equipment, resulting in a small amount of LiCl cannot
be collected.
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3.3.5. Analysis of Leach Residue

After drying the leaching slag, it was subjected to XRD testing and elemental analysis,
and the XRD results are shown in Figure 12. At the same time, the obtained products were
compared with the standard composition of GB/T4292-2017 [35] implemented in China’s
aluminum fluoride industry, and the specific results are shown in Table 4.
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Table 4. Elemental content of leaching residue.

Element Al F Na

content(wt.%) 31.72 63.25 0.27
GB/T4292-2017(AF-0) [35] 31.5 61.0 0.30

As can be seen from Figure 12, through the physical phase analysis of the leaching
slag of the process, the diffraction peaks of the leaching slag are consistent with that of
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aluminum fluoride, and there are no other phases, which can indicate that the leaching slag
has a pure component. The content of the main elements in the leaching slag is shown in
Table 4, and its main components are Al, and F, and it also contains a small amount of O
and Na elements. Compared with the industrial aluminum chloride composition of the
national standard, it meets the standard of aluminum chloride. The mass fraction of the
Al element in the residue of chlorination roasting is 19.52%, the mass fraction of the Al
element in the leaching slag is 31.72%, the direct yield of Al is 32.39%, and the purity of AlF3
recovered after testing is 92.7%. The reason for the lower straight yield of the Al element
is that the raw material also contains a large amount of alumina, which is structurally
stable and not easy to react under neutral conditions, so it leads to a poor recovery of Al in
lithium-containing aluminum electrolytes.

4. Conclusions

(1) Thermodynamic calculations are carried out using HSC Chemistry 6.0 thermodynamic
software, and the results show that chlorination roasting using CaCl2 with Na2LiAlF6
reacts preferentially at 1630 K to produce LiCl, NaCl, and AlF3, while the decomposi-
tion produces LiF at temperatures above 2000 K, which suggests that the addition of
CaCl2 reduces the reaction temperature and improves the feasibility of the reaction.
Through the experiments, it is shown that CaCl2 reacts with Na2LiAlF6 to produce
CaLiAlF6 when the temperature is less than 1473 K. With the increase in the reaction
temperature, CaLiAlF6 is transformed into LiCl, which exists in the condensate, which
proves that it is feasible to prepare soluble lithium salts using CaCl2.

(2) From the experimental results, it can be seen that reducing the particle size of raw
materials, increasing the leaching temperature, and increasing the leaching time are
all conducive to improving the leaching rate of Li, but too high a temperature, too
long a reaction time, and the refinement of the particle size of the raw materials
will increase the cost of recovering lithium, so more appropriate reaction conditions
should be selected. The best experimental conditions for the recovery of lithium
from lithium-containing aluminum electrolyte by chloride roasting are as follows: the
particle size of lithium-containing aluminum electrolyte is 75~150 µm, the mass ratio
of calcium chloride to the lithium-containing aluminum electrolyte is 3:5, the reaction
temperature is 1473 K, and the holding time is 3 h. The product of the reaction is
crushed, and then it is leached using deionized water, the temperature of which is
368 K and the duration of which is 2 h. The solid–liquid ratio is 1/3, the stirring rate is
300 r/min, and the leaching rate of Li under the experimental conditions is as follows.
Under these conditions, the leaching rate of Li can reach 75.1%, and the purity of
collected AlF3 can reach 92.7%. From the lithium content in the residue of chlorination
roasting, it can be seen that 98% of the lithium is converted to a gaseous state after
chlorination roasting, and it should exist in the condensate. Theoretically, the leaching
rate of lithium should reach more than 95%. The condensation system under the
current process conditions is not perfect enough, resulting in part of the lithium
chloride vapor easily escaping and being difficult to collect effectively. Therefore, the
recovery of lithium can be enhanced in the future by improving the condensation
collection system, and the recovery of lithium chloride can also be enhanced by
simulating the variation in the thermal field in the furnace chamber to select a suitable
condensation interval.

(3) The disadvantage of chlorination roasting with CaCl2 is that the current process
conditions for optimal lithium extraction have a low direct yield of Al. This is mainly
because the lithium-containing aluminum electrolyte feedstock also contains a large
amount of stable alumina, which is not easy to react under neutral conditions.
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