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Abstract: This study explores the deposition of an Fe-MnCrSi/TiC coating on 45 steel surfaces using
high-velocity arc spraying technology, examining the microstructure and hot corrosion behavior of
the resultant layer. The microstructure of the FeMnCrSi/TiC coating primarily consists of an α-Fe
(BCC) solid solution, composed of Fe, Mn, Cr, Si, C, and other elements, with a minor presence of
β-Fe (FCC) solid-solution phase and unmelted TiC particles. Following 100 h of cyclic 900 ◦C hot
corrosion, Mn on the coating surface preferentially oxidizes, forming a manganese-rich oxide layer.
This process reduces the oxygen partial pressure (O2) within the coating, prompting the formation
of a dense Cr2O3 layer on the inner side of the oxide layer. Concurrently, the rapid diffusion of Mn
and Cr elements triggers the generation of Mn- and Cr-deficient regions at the metal/oxide layer
interface, inducing the transformation of the coated metal primary matrix from an FCC + BCC dual
phase to an α-Fe (BCC) single phase. After the reaction, the hot corrosion weight gain of the coating
reached 12.43 mg/cm2, approximately one-fourteenth of the weight gain of the 45 steel substrates.
This weight gain adheres to the parabolic law, suggesting that the FeMnCrSi/TiC coating exhibits
excellent corrosion resistance under the given conditions.

Keywords: high-velocity arc spraying; microstructure; hot corrosion; Fe-Mn-Cr system coating

1. Introduction

Metallic materials are the cornerstone of modern industrial development and manufac-
turing [1]. However, the escalating problem of metal corrosion poses significant challenges.
Baorong Hou et al. [2] reported that corrosion-related failures in China result in an annual
loss of approximately RMB 2.1 trillion, or 3.34% of GDP. Thermal corrosion stands out
as one of the primary contributors to these losses [3–5]. The formation of salt deposits
on the surface of metals and alloys leads to the creation of a molten salt film at elevated
temperatures, thereby accelerating surface corrosion in metallic materials. This process not
only incurs substantial economic losses but also poses considerable safety risks [1,6,7].

Simultaneously, the implementation of appropriate corrosion mitigation methods
can effectively decelerate the thermal corrosion reaction of metallic materials [8]. For
instance, the utilization of cost-effective coatings with exceptional corrosion resistance
through thermal spraying has demonstrated a potential to reduce thermal corrosion costs
by 15% to 35%, establishing it as one of the most efficacious surface protection methods
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currently available [9]. Amongst the various thermal spraying technologies, high-velocity
arc spraying (HVAS) technology stands out due to its remarkable spray efficiency and
suitability for industrial automation applications [10], resulting in coatings characterized
by a superior bond strength and minimal pores [11]. HVAS is widely used to improve the
surface properties of steel components. In China, alloy materials are utilized in over 85% of
coatings, with Fe-Ni stainless steel and Fe-Cr stainless steel being particularly prevalent
coating materials [12–14]. Considering that nickel holds an expensive and strategic status
as a metal, there is a critical need to develop novel iron-based alloy coatings, aimed at
reducing the use of nickel.

Fe-Mn-Cr system alloys, renowned for their exceptional mechanical properties and
high-temperature oxidation resistance below 600~900 ◦C, are cost-effective alternatives
to Ni-based alloys in certain industrial sectors [14–18]. Extensive research has been
conducted on the mechanism of high-temperature oxidative corrosion in Fe-Mn-Cr
system alloys. Generally, elements such as Cr and Al can form corrosion-resistant oxides
within the oxide layer of the alloy surface. Conversely, Mn typically reduces the oxidative
corrosion resistance of the coating [19]. Therefore, recent studies suggest that increasing
the Mn content in Fe-Mn-Cr system alloys can accelerate the formation of a Mn-rich oxide
layer on the alloy surface under elevated temperature conditions and can facilitate rapid
development of a dense Cr2O3 oxide film within the alloy [15,20,21]. Simultaneously,
an increase in Mn content can alleviate stress at the metal/oxide interface, thereby
mitigating cracking of the oxide layer [21]. In a separate study [22], an FeMnSiCrNi alloy
was treated in a vacuum under the temperature of 1050 ◦C and preferential oxidation of
Mn was observed, leading to the formation of gaseous-phase oxides. The alloy surface
underwent a transformation resulting in the generation of oxides such as MnCr2O4
and Cr2O3. Concurrently, the parabolic constant (kp) derived from the squared change
curve for weight gain exhibited a significant decrease by two orders of magnitude from
2.2 × 10−9 kg2/m4·s to 2.2 × 10−11 kg2/m4·s when compared to the untreated sample.

These results validate the distinctive oxidation mechanism and exceptional high-
temperature oxidation corrosion resistance of the Fe-Mn-Cr alloy, indicating its potential
to partially substitute Fe-Ni or Ni-based coatings. However, limited research has been
conducted on the microstructure and high-temperature hot corrosion mechanism of Fe-
Mn-Cr alloy coatings. Therefore, in this paper, metal and metallic compound powders
such as Fe, Mn, Cr, Si, and TiC were introduced to prepare powder core wires, which
could improve the high-temperature corrosion (hot corrosion) properties. To combine the
thermal stability and wear resistance of ceramic particles with the superior toughness of
the metal matrix [23–25], TiC particles were incorporated into the coating material through
HVAS onto 45 steel surfaces. The resulting composite coatings (FeMnCrSi/TiC) contained
approximately 20 wt.% Mn. The hot corrosion of the FeMnCrSi/TiC coatings after HVAS
were studied. Additionally, the role of Mn on the hot corrosion behavior and the corrosion
mechanism of the FeMnCrSi/TiC coatings was investigated specifically.

2. Materials and Methods

The present study involved the fabrication of 430 stainless steel strip cored wires
with a thickness of 0.5 mm and a width of 12 mm, which were cored with a mixture
of Fe, Mn, Cr, Si, and TiC ranging in granularity from 80 to 100 mesh. The filler was
a mixture of 99.9% pure metal and metallic compound powder, and the mass share of
the filler in the whole powder core wire material was about 35 wt.%. Table 1 lists the
proportions of the elements in the cored wires; Table 2 lists the specific compositions of
the 430 steel strips and 45 steels used. Figure 1 briefly shows the process of preparing
the coated samples. The substrate used for the spraying experiments was 45 steels
with dimensions of 50 mm × 50 mm × 10 mm, and the spraying surface was one of
the 50 × 50 mm square areas. A coating of almost 1 mm thickness was then sprayed
onto one of the 45 steel surfaces (the 50 × 50 mm area) using an SX-600 supersonic
arc spraying system. Before spraying, the specimen underwent ultrasonic acetone
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cleaning to remove oil residues. Subsequently, sandblasting was performed using a
small, environmentally friendly box-type manual sandblasting machine (Shenzhen
Baiyao Automatic Sandblasting Equipment Co., Ltd., Shenzhen, China, model 6F6050B,
Carestream Health, Inc., Rochester, NY, USA). The sandblasting process parameters
included a silicon carbide abrasive with a mesh size of 16, gas pressure ranging from
about 0.6 to 0.75 MPa, and a distance between the nozzle and specimen surface varying
from approximately 160 to 180 mm. The optimized spray parameters are outlined
in Table 3.

Table 1. Composition of core wire materials of powder ratio (wt.%).

FeMnCrSi/TiC
TiC Mn Cr Si Fe

5% 20% 15% 11% 47%

Table 2. The composition ratio (wt.%) of 403 stainless steel strips and 45 steels.

Steel Cr Mn Si C P S Fe

430 steel strips (Saky Steel, Shanghai, China) 16% ≤1.00% 0.5% ≤0.12% ≤0.03% ≤0.04% Bal.
45 steels ≤0.25% 0.6% 0.25% 0.45% ≤0.035% ≤0.035% Bal.

Table 3. Arc spraying process parameters.

Voltage/V Current/A Atomized Air Pressure/MPa Spray Distance/mm

30~35 220~240 0.65~0.75 160~180
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Figure 1. The process of preparing the coated samples.

The hot corrosion test was conducted by the GB/T 29037-2012 standard [26] ti-
tled “Thermal spray protective coating against high-temperature corrosion and oxi-
dation”. The coated sample used for the hot corrosion test was a sheet that was cut
from the 45 coated steel substrates. And then the coating was polished into the size
of 20 × 20 × 0.8 mm3, ensuring that it consisted solely of an FeMnCrSi/TiC coating
without any original substrates of the 45 steels. The coated sample preparation process is
shown in Figure 2. During the hot corrosion test, a Na2SO4 + K2SO4-saturated aqueous
solution with a 7:3 molar ratio was applied onto the stripped coated specimen’s surface
with a salt content ranging between 4 and 6 mg/cm2, which ensured that the whole
coated sample was submerged in the solution. Subsequently, the coated specimen un-
derwent drying at 200 ◦C for two hours using a muffle furnace followed by cooling and
weighing on an accurate scale with precision up to 0.01 mg, before being subjected to
heat treatment at 900 ◦C for ten hours within another muffle furnace. After cooling down
to room temperature, reweighing took place and was recorded as part of the completion
of one cycle of the testing procedures. This cycle included the processes of salt coating,
drying, weighing, heat treatment, and reweighing until reaching a cumulative duration
of hot molten salt corrosion equaling or exceeding 100 h. Concerning statistics, the hot
corrosion test was carried out five times. The surface morphology and energy spectrum
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before and after hot corrosion were analyzed using a Zeiss Sigma 300 field emission scan-
ning electron microscope (FESEM) (ZEISS, Oberkochen, Germany). A physical-phase
analysis was conducted with a Rigaku D/MAX 2500 V X-ray diffractometer (Rigaku
Corporation, Tokyo, Japan), employing a scanning range of 20~80◦, a scanning speed of
6 ◦/min, a tube voltage of 40 kV, and a tube current of 40 mA. Finally, the cross-sectional
morphology of the coated samples was observed utilizing a Leica DM2700 metallurgical
microscope (Leica, Berlin, Germany).
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3. Results
3.1. Microstructure and Phase Analysis of Coating

The SEM images in Figure 3a,b illustrate the initial surface microstructure of the
FeMnCrSi/TiC coating. The coated surface is predominantly composed of overlapping
flattened flake particles, formed by high-speed droplets of molten powder impinging on
the substrate. Due to the substrate’s uneven surface, a sputtering phenomenon occurs,
resulting in the generation of a limited number of spherical particles. Figure 3c,d illustrate
the cross-sectional SEM image of the coating, revealing a characteristic laminar arrangement
in its microstructure. This laminar microstructure is formed during the arc spraying process
when high-velocity molten liquid strikes the substrate’s surface, spreading into flakes and
rapidly condensing. These flake droplets stack on top of each other, forming a distinctive
ripple-layer microstructure.

Despite the overall uniform and dense microscopic morphology of the coating, a
small number of pores and microcracks are present, particularly at the coating–substrate
interface. This is likely due to the limited mobility of oxide and unfused particles at the
interface, resulting in a suboptimal mechanical bond between the coating and the substrate.
Using Image Pro Plus 6.0 image processing software, the coating porosity is calculated
by randomly selecting five SEM images of its section, with specific values presented in
Table 4. The FeMnCrSi/TiC coatings exhibit an average porosity of less than 5%, indicating
successful application of process parameters during spraying, effective flattening of droplet
particles upon impact with the substrate, and close particle bonding.

Figure 3d displays distinct variations in the deposition degree within the coating,
primarily comprising two regions—a grey-white metallic crystalline phase and a dark grey
oxide phase. The EDS energy spectrum analysis of points A and B in Figure 3d, as detailed
in Table 5, reveals that the metallic crystalline phase at point A mainly consists of Fe, Mn,
Cr, Si, C, and other elements, with notably low levels of Ti. This suggests an absence of
hard TiC particles within the metallic crystalline phase. Conversely, the oxide phase at
point B has a higher oxygen content and primarily consists of Ti, C, Mn, O, and Si, along
with traces of Fe and Cr elements.

Table 4. The porosity of FeMnCrSi/TiC coating.

Coating Porosity (%) Average Value (%)

FeMnCrSi/TiC 5.55 4.43 4.55 4.94 4.82 4.86
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Table 5. The phase composition at points A and B of FeMnCrSi/TiC coating.

Coating Point
Element (at%)

Fe Mn Cr Si Ti C O

FeMnCrSi/TiC
A 61.62 20.32 11.29 3.95 0.37 2.45 0.01
B 0.79 11.73 0.35 2.09 51.88 7.60 25.56

To gain a more comprehensive understanding of the elemental distribution within
the coating, a scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS)
analysis of elemental distribution scanning was conducted on the cross-section of the
coating. The results of this investigation are presented in Figure 4. It is observed that Fe and
Cr exhibit homogeneity within the grey-white metallic matrix phase, while being noticeable
in the dark oxidation phase. Conversely, the elements Mn, Si, C, and O are predominantly
concentrated within this dark oxidation phase. Furthermore, the Ti elements primarily
manifest in the dark-grey oxide phase.

This observed distribution may be a consequence of the rapid solidification of
the molten droplets during the arc spraying process. Considering that TiC has an
exceptionally high melting point of 3140 ◦C, significantly higher than that of Fe (1538 ◦C)
and Cr (1857 ◦C), Fe and Cr elements are difficult to combine with TiC particles.

The X-ray Diffraction (XRD) analysis conducted on the surface of the FeMnCrSi/TiC
coating is presented in Figure 5. The analysis reveals that the primary constituents of the
coating consist of an Fe-based solid solution α-Fe (body-centered cubic, BCC), β-Fe (face-
centered cubic, FCC), and TiC particles. These findings are consistent with the previous
EDS energy spectrum analysis and elemental surface distribution analysis. The presence of
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a solid-solution structure potentially enhances both the hardness and phase stability of the
material. The formation of this structure can be attributed to the high mixing entropy of
the components designed for this coating material, which facilitates the rapid generation of
a stable solid-solution structure [27,28].
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3.2. Hot Corrosion Kinetic Analysis

The changes in unit weight (mg/cm2) of the FeMnCrSi/TiC coating and 45 steel
samples during the hot corrosion process are shown in Figure 6a. After 100 h of hot
corrosion, the FeMnCrSi/TiC coating and 45 steels exhibited weight gains of 12.43 mg/cm2,
while the 45 steels sample showed a weight gain of 178.4 mg/cm2, indicating the superior
corrosion resistance of the FeMnCrSi/TiC coating. Additionally, a significant reduction and
stabilization in the weight gain rate of the FeMnCrSi/TiC coating were observed at 10 h,
suggesting the formation of a protective oxide film on its surface that reduces oxidation and
corrosion reaction rates. Figure 6b demonstrates an excellent linear relationship between
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the squared weight gain variation (∆M/h)2 for the FeMnCrSi/TiC coating material and the
thermal corrosion time. The calculated parabolic rate constant (kp = 9.1 × 10−1 mg2/cm4·h)
and degree of fit (R2 = 0.98) indicate that this coating material follows parabolic law kinetics
during hot corrosion.
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3.3. Surface Morphology and Phase Analysis of Coating after Hot Corrosion

The surface morphology of the FeMnCrSi/TiC coating after 10 h of hot corrosion is
illustrated in Figure 7a,b. The coating surface exhibits a granular accumulation of spinel,
interspersed with occasional cracks and pores among the corrosion products. Additionally,
some particles exhibit a mushy film enveloping their surfaces and cracks. An energy
spectrum analysis of points A and B, which exhibit distinct morphologies, as shown in
Figure 7b, is detailed in Table 6. Granular oxidation products at point A primarily consist of
Fe, Mn, Cr, and O elements, while the mushy films at point B comprise Fe, Mn, Cr, O, and Ti
elements. XRD analysis (Figure 8a) reveals that point A predominantly produces FeMn2O3,
and point B, with a higher Ti element content than point A, is presumed to generate
two kinds of oxides, MnFe2TiO4 and Fe2TiO4. Figure 7c,d depict the morphology of the
FeMnCrSi/TiC coating after 100 h of hot corrosion. The oxide layer’s structure remains
intact and free of spalling or cracking. The grain size of certain granular corrosion products
is significantly increased and the coverage area of the paste-like film is expanded, leading
to a reduction in the number of cracks and pores on the coating surface. These observations
suggest that the presence of the paste-like film enhances the coating’s corrosion resistance.
The EDS analysis of points C and D in Figure 7d (Table 6) reveals that point C primarily
contains Fe, Mn, Cr, O, etc., while point D mainly comprises Fe, Mn, Cr, O, Ti, etc. Further
examination using XRD, as depicted in Figure 8b, suggests that the granular oxide at point
C is predominantly Mn2O3, while the mushy film oxide at point D contains FeMn2O3,
Fe2TiO4, MnFe2O4, and other oxides.

Table 6. EDS analysis results of FeMnCrSi/TiC coating after hot corrosion for 10 h and 100 h (wt.%).

FeMnCrSi/TiC Point
Element (wt.%)

Fe Mn Cr Si Ti C O S Na K

10 h A 33.29 39.41 1.29 0.31 0.56 0.87 22.67 — 1.52 —
10 h B 35.84 38.1 1.28 0.48 2.77 0.66 20.17 — 0.66 —
100 h C 31.87 36.24 0.15 — 0.23 1.36 29.81 — — —
100 h D 32.25 30.68 0.13 — 0.92 1.52 34.39 — — —
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The transformation of the primary phase In the oxide film surface could be correlated
with the rapid diffusion of Mn elements within the surface oxide layer [29]. Initially,
oxidation on the coating surface generates Fe and Mn oxides. As the oxide layer thickens,
the rapid diffusion of Mn towards the surface triggers the formation of Mn2O3 particles,
which preferentially nucleate in the voids of the oxide layer. This reduces the activity of
O2 within the overall oxide layer and promotes the generation of stable Cr2O3 oxides at
the oxide layer/metal interface. The comparison of the elemental content at points C and
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D with that at points A and B (Table 6) reveals an increase in the O content. This finding
suggests an exacerbation of coating oxidation during thermal corrosion, spanning from
10 to 100 h. The TiC particles in the coating undergo decarburization reactions at high
temperatures, leading to the continuous diffusion of the internal C element to the surface
and thereby elevating the surface C elemental content [30,31]. Concurrently, an increase in
the thickness of the coating oxide layer is accompanied by a decline in the Cr diffusion rate
within the oxide layer [32]. Simultaneously, the reduction in the oxygen partial pressure
within the coating stimulates the formation of a more stable oxide layer like the Cr2O3 layer,
on the inner side of the oxide layer, thereby reducing the surface Cr content accordingly.

3.4. Cross-Sectional Morphology and Phase Analysis of Coating after Hot Corrosion

The cross-sectional SEM-EDS elemental distribution of the FeMnCrSi/TiC coating after
100 h of hot corrosion is presented in Figure 9. The color differentiation within the figure
represents the distribution of each element in the coating. After 100 h of hot corrosion, the
internal microstructure of the coating has undergone considerable modifications compared
to its initial state. Notably, an oxide layer, approximately 100 µm thick, has formed on the
coating surface, primarily composed of Fe, Mn, and Cr. This layer exhibits a layered band
structure, with a pronounced enrichment of Cr elements on the inner side of the oxide layer,
as depicted in Figure 9d.
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Figure 9. SEM-EDS element distribution of FeMnCrSi/TiC coating after corrosion at 900 ◦C for 100 h:
(a) cross-sectional morphology after corrosion; (b) Fe distribution; (c) Mn distribution; (d) Cr element
distribution map; (e) Ti element distribution map; (f) O element distribution map; (g) Si element
distribution map; (h) S element distribution map; (i) Na element distribution map.
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Both Mn and Cr elements tend to diffuse into the oxide layer, which results in the
formation of a region at the oxide layer/metal interface that is enriched in Fe elements
and has reduced Mn and Cr content. To further explore the formation mechanism of
the oxide layer/metal interface, the surface of the corroded coated sample was thinned.
Initially, the same sample was thinned to approximately 100 µm (reaching the inner side of
the oxide layer) for XRD inspection, followed by thinning to about 140 µm (reaching the
unoxidized layer) for further XRD inspection. The thickness of the sample was measured
using image analysis, and the results are shown in Figure 10. The outer side of the oxide
layer predominantly consists of FeMnO3 and Mn2O3, which are oxides of Fe and Mn
elements. Conversely, a dense Cr2O3 film deposits to form the inner side of the oxide
layer. This film impedes ion exchange during oxidative corrosion, thereby bolstering the
anti-oxidation corrosion resistance of the Fe-based material [33]. Fe becomes the principal
element at the metal/oxide layer interface, where Cr and Mn are deficient. As illustrated
in Figure 9b, this region predominantly comprises a BCC solid solution of Fe, with minor
amounts of Fe2TiO4 and TiC. Previous research [21,34] indicates that Mn can act as a
stabilizer for the FCC phase, and its substantial depletion triggers the transformation of the
coating from a dual-phase structure to a single BCC phase. Figure 9g distinctly indicates a
degree of Si element enrichment in this region. According to Huntz et al. [35], Si serves as a
stabilizer of the BCC structure of Fe, reducing the oxidation rate of Fe without significant
loss during oxidation. This effect partially compensates for the voids created due to the
extensive diffusion of Mn.
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Figure 9h reveals that the S element traverses the oxide layer and infiltrates the coating
interior. It reacts with Cr and Fe elements in the sulfidation and oxidation processes,
generating loosely structured, non-protective sulfides such as CrS and FeS. This indicates
that the coating undergoes a hot corrosion reaction. As the reaction proceeds, the initially
formed sulfides undergo decomposition. The generated S2− can form new sulfides along
the grain boundaries or diffuse into the grain interior as a solid solution [36,37].

4. Discussion of Hot Corrosion Behavior

The findings of this study reveal that the FeMnCrSi/TiC coating experiences a hot
corrosion reaction at 900 ◦C under molten salt conditions. A dense Cr2O3 layer forms
on the inner side of the Mn-rich oxide layer, and concurrently, an Mn-deficient zone,
primarily composed of an Fe-based BCC solid solution, emerges at the metal/oxide inter-
face. This structure equips the coating with the ability to safeguard the substrate under
high-temperature salt corrosion conditions, providing robust resistance to hot corrosion.
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The high-temperature hot corrosion process of the coating consists of two primary stages
(illustrated in Figure 11): the initial stage and the developed stage.
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Figure 11. Diagram of hot corrosion of coating: (a) molten salt state of the coating; (b) initial stage of
hot corrosion of the coating; (c) developed stage of hot corrosion of the coating.

During the initial stage of hot corrosion, S2− and O2− are generated through the
decomposition of the molten salt medium, leading to the sulfidation and oxidation of
Fe, Cr, and Mn in the coating. Selective oxidation of Mn and Fe elements [38,39] and the
high diffusion rate of Mn in both the coating metal and the oxide layer [40,41] facilitate
the preferential formation of FeMn2O3, MnFe2O4, and other Fe-Mn spinel products on
the coating’s surface. Furthermore, as the oxide layer continuously thickens under the
deposited sulfate, the partial pressure of oxygen is reduced, which weakens the oxidation
reaction of the Fe and Mn elements, favoring the formation of oxides of the Cr elements.
The Mn element diffuses more rapidly than Cr, leading to the absence of Mn at the interface,
which in turn forms a protective and more continuous Cr2O3 layer. Throughout this
stage, the ongoing decrease in O2 movement at the oxide/molten salt interface enhance
the activity of S. According to the Rapp–Goto criterion [42,43], this establishes a negative
solubility gradient at the oxide/molten salt interface.

The S element from the oxide layer diffuses into the coating interior and generates
sulfides beneath the oxide film. Simultaneously, the alkalinity of the sulfate augments,
leading to alkaline melting at the oxide/molten salt interface, which results in the formation
of structurally loose oxides. The molten salt layer can migrate to the alloy’s surface through
the accessible oxide layer, persistently degrading the inner Cr2O3 film and accelerating the
coating’s corrosion.

At a temperature of 900 ◦C, the 70% Na2SO4 + 30% K2SO4 mixed salt corrosion
medium reaches a molten state, and the thermodynamic equilibrium reaction proceeds
as follows:

2Na2SO4 = 2Na2O + S2 + 3O2 (1)

O2 + 4e− = 2O2− (2)

S2 + 4e− = 2S2− (3)

In the initial stage:
M2+ + O2− = MO (4)

2M3+ + 3O2− = M2O3 (5)

M + MO = M·MO (6)

M + M2O3 = M·M2O3 (7)

M2+ + S2− = MS (8)

2M3+ + 3S2− = M2S3 (9)

In the developed stage:
M + MO = M·MO (10)

2M3+ + 3O2− = M2O3 (11)
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M + MS = M·MS (12)

M + M2S3 = M·M2S3 (13)

M·MS +
1
2

O2 = MO + MS (14)

2M·M2S3 +
3
2

O2 = M2O3 + 2M2S3 (15)

Na2SO4 + 3MS = 4S + 3MO + Na2O (16)

Na2SO4 + M2S3 = S + M2O3 + Na2O (17)

As the reaction proceeds, the developed stage of hot corrosion is reached, characterized
by the exacerbation of oxidation and sulfidation reactions. The high-temperature molten
salt medium fosters the decomposition of sulfur and metal cations, which readily react
with the oxygen in the system, thereby accelerating the oxidation process of surface Mn
and Cr elements.

Compared to Cr, Mn exhibits preferential oxidation and a higher diffusion rate [44],
triggering the preferential formation of Mn-deficient regions beneath the oxide layer. This
promotes the transformation of the coated metal from an FCC + BCC dual phase to a BCC
single phase. With the formation of the Mn-deficient region, the partial pressure of O
decreases, favoring the formation of a stable Cr2O3 phase. Simultaneously, owing to the
high diffusivity of Cr in BCC [20,45], Cr near the oxide layer continuously migrates to the
oxide layer. This results in the Mn-deficient region rapidly becoming Cr deficient, with
Cr enriched at the metal/oxide interface to form a continuous, dense Cr2O3 layer with
O [1,33] and reducing the rate of oxidative corrosion. Furthermore, the Cr cations in the
coating have a stronger oxygen affinity than the cations of Fe and Mn. They displace the Fe
and Mn ions in the Cr2O3 layer, forming localized iron- and manganese-depleted bands
(Figure 9b,c). This reduces their content in the Cr2O3 layer and enhances the oxidation
corrosion resistance of the coating.

5. Conclusions

(1) After high-velocity arc spraying, the FeMnCrSi/TiC wire generates a wavy, layer-
like coating on the substrate’s surface, characterized by a uniform and dense microstructure.
The primary metal phases are α-Fe (BCC) solid solutions, which are formed by Fe, Mn, Cr,
Si, C, and other elements. Additionally, the coating contains minor amounts of β-Fe (FCC)
solid-solution phase and unmelted TiC particles.

(2) The FeMnCrSi/TiC coating, when exposed to molten salt conditions at 900 ◦C,
experiences a high-temperature hot corrosion reaction triggered by the selective oxidation
of Mn. This results in a significant increase in coating mass in a relatively short period,
with the subsequent weight gain curve adhering to the parabolic law. This indicates that
the coating exhibits robust corrosion resistance under these conditions. As the diffusion
of the Mn and Cr elements persists, the lower part of the oxide layer becomes depleted
of these elements, leading to the transformation of the coating metal from an FCC + BCC
dual phase to an α-Fe (BCC) monophase. The rapid growth of the Mn-rich oxide layer
reduces the activity of O2 and prompts the formation of a dense Cr2O3 layer at the oxidation
layer/metal interface. This structure grants the coating with the capability to protect the
substrate from high-temperature molten salt corrosion.
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