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Abstract: Due to the unique characteristics of sandy soil layers, there is often a coupling effect
of multiple grout diffusion patterns in the grouting process, and different slurry diffusion modes
may lead to different responses of soil structures. In this study, laboratory grouting model tests
were conducted with homogeneous sand under different water-to-cement (w/c) ratios to reveal the
temporal variations in grouting pressure, soil stress fields, and displacement fields during the grout
diffusion process. The results show that, during the grouting process in the fine sand layer, the grout
mainly exhibited a compaction–splitting diffusion mode. The farther away from the grouting center,
the more pronounced the hysteresis effect of soil pressure caused by grout diffusion. Meanwhile, as
the w/c ratio increased, the diffusion mode between the slurry and the soil was in a transitional state.
At w/c > 1.2, the primary pattern changed from the fracture–compaction pattern to the permeation–
fracture–compaction pattern and fracture–permeation pattern. And the overall trend of the grouting
pressure curve was similar under all of the w/c ratio conditions, showing a trend of increasing to the
maximum value of the pressure first and then decreasing. With the increase in the water–cement
ratio, the overall value of the grouting pressure curve showed a decreasing trend, the pressure value
increased more slowly with time before reaching the maximum value, and the more obvious the
influence of water–cement ratio was when w/c > 1.2. Additionally, the surface displacement also
exhibited an overall decreasing trend, and it had no obvious lifting value under the condition of
w/c = 1.6.

Keywords: grouting in homogeneous sand; water-to-cement ratio; stress fields; displacement fields;
temporal variations; grout–soil interaction effects

1. Introduction

Grouting is a cost-effective geotechnical engineering technique that has been exten-
sively applied and developed in the field of foundation treatment in recent decades. It is one
of the most commonly used methods in the reinforcement of sandy soil foundations, which
and can effectively enhance the mechanical properties and waterproofing performance of
sandy soil foundations [1–4].

Due to the porous nature of sandy soils, the injectability of the sand layer and the
grouting pressure determine the diffusion and reinforcement modes of sand grouting [5–
7]. As a result, various diffusion patterns, such as permeation, compaction, and fracture,
may occur during the grouting process. Currently, most of the experimental studies on
sand grouting concentrate on the diffusion pattern of permeation grouting, which initially
involved the characterization of effects of grout properties (e.g., particle size and w/c
ratio), sand layer properties (e.g., particle size distribution and permeability), and grouting
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pressure on grout diffusion and reinforcement [8–12]. And then, the studies delved into
the time-varying viscosity for different grout flow regimes, the filtration effect in porous
sandy media, and the diffusion mechanism of the grout for grout diffusion paths [13–17].
The above studies mainly focused on the diffusion of grout in the pore space of sandy soil
stratum, during which the grout had no obvious effect on the sand skeleton.

For the compaction and fracture diffusion patterns, the sand skeleton deforms under
grouting pressure and slurry, which is commonly used for controlling ground settlement,
raising structures, and soil compaction reinforcement [18–22]. Through laboratory simula-
tion experiments, Zhang et al. experimentally revealed the effect of the w/c ratio on the grout
diffusion patterns, and they demonstrated that the grout diffusion pattern changes from
compaction-dominated to fracture-dominated with increasing w/c ratio [23]. On this basis,
Wang et al. investigated the effects of w/c ratio and soil saturation on the grout diffusion
pattern in sandy soil under pressure grouting conditions [24]. The experiments performed
by Ye et al. further demonstrated that the initial soil saturation significantly affected the in-
jectability of sandy soil, and thus the formation of grout bubbles [25]. Practical experiences
indicate that the fracture–compaction grouting pattern plays an important role in sand
grouting engineering [26]. For this grouting pattern, Li et al. conducted experiments using
a three-dimensional simulation test system to study the grout diffusion patterns during
repeated fracturing grouting in fault fracture zones and revealed the characteristics of the
stress field response during the grouting process [27]. In addition, Zhang et al. established
a theoretical model of fracture grout diffusion that considers the nonlinear compression
characteristics of the sandy soil and conducted grouting experiments on the compaction
characteristics of sandy soil to analyze the fracture–compaction grout diffusion process
from the perspective of the sand skeleton [28–30]. Qin et al. studied the compaction proper-
ties of sandy soil by adjusting the clay content and initial water content, and analyzed the
influence of clay content on fracturing grout diffusion [31]. The aforementioned research
initially focused on the analysis of the diffusion process of injected slurry and gradually
developed to consider the mutual interactions between soil and injected slurry. However,
the grouting process is a dynamic process of soil–grout interaction, which often involves
the combined action of multiple modes (especially in sandy soils). Available studies have
not systematically explored this aspect, and there is a need for a further detailed exploration
of the dynamic response of the grout–soil interaction process in sandy soil grouting.

In this paper, the dynamic interaction between slurry and soil during the diffusion
of slurry with different water–cement ratios was investigated using homogeneous sandy
soil as the experimental object. Considering that it is difficult to maintain stable pressure
conditions during the actual grouting process, the grout flow rate was controlled in the
experiments. A self-developed laboratory grouting model was used to conduct grouting
tests under different w/c ratios on sandy soil layers. The study recorded and analyzed
the stresses and strains in the sandy soil, and clarified the diffusion patterns of the slurry
during the grouting process. Temporal variations of the soil stress and displacement fields
under corresponding grouting pressure conditions were obtained, and the influence of
different w/c ratios on the grout diffusion process as well as the corresponding stresses and
strains in the sand layer was analyzed.

2. Experimental Apparatus and Test Methods
2.1. Grouting Test Apparatus

The test device consisted of a power and circulatory system, a soil-simulation system,
and a monitoring and recording system, as presented in Figure 1. The test involved injecting
the slurry into the sandy soil layer during the grouting process using a flow-controlled
grouting pump with a consistent grout flow rate.

The grouting power system of the apparatus utilized a flow-controlled grouting pump
with an operating pressure range of 0–10 MPa and an operating flow rate of 8.5 mL/s.
The purpose of the cyclic test system was to evacuate air from the conduit before the test
and to test the grouting pressure gauge for proper operation. The soil simulation system
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was a visualized cylindrical model test bucket with an inner diameter of 350 mm and
a height of 700 mm, which was connected to a grouting pipe with an inner diameter of
20 mm at the bottom. The data measurement and recording system consisted of measuring
instruments (pore water pressure sensor, soil stress sensor, and displacement sensor) and
data acquisition instruments (data dynamic recorder, CCD camera, and PC recording
terminal). The measurement instruments and their locations are illustrated in Figure 2.
The measurement instruments were attached by means of rigid steel rods with a diameter
of 5 mm and a length of 460 mm, which could be fixed to the bottom of the bucket. The
relevant test parameters and the corresponding numbers of each measurement instrument
are shown in Table 1 below.
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Figure 1. Schematic diagram of the experimental apparatus and flow process (red arrows represent
the slurry flow path and blue arrows represent the data flow path).

The power circulatory system and soil simulation system were connected by pipelines,
and the power circulatory system and soil simulation system were connected to the data
measuring system by data lines. The final whole setup is depicted in Figure 3. Since the
test soil was a sandy soil layer, the loose characteristics of the soil could not guarantee
the normal grouting test process from top to bottom, so the slurry injection position was
set at the bottom of the bucket. The grouting pipe with an inner diameter of 20 mm was
connected to the bottom of the bucket, and the bottom-up slurry-injection method was
adopted to carry out the grouting test.

Table 1. Parameters of each measuring instrument.

Name of Instrument Corresponding
Number in Figure 2 Range Accuracy

1⃝ Grouting pressure gauge - 02.5 MPa 0.5%FS
2⃝ Displacement sensor W1-W4 0–20 mm 0.3%FS

3⃝ Soil stress sensor T1-T9 0–0.2 MPa 0.3%FS
4⃝ Pore water pressure sensor Y1-Y9 0–0.1 MPa 0.5%FS
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figure correspond to those in Figure 1).

2.2. Experimental Materials and Methods
2.2.1. Grouting Material

Ordinary Portland cement P·O42.5 was adopted for the test. Its initial and final setting
times were 185 min and 234 min, respectively; and its 3-day and 28-day compressive
strengths were 27.6 MPa and 46.7 MPa, respectively.

2.2.2. Experimental Soil

Sandy soil layers were selected as the research subject. To control the properties of
the soil to be grouted, standard sand was used for the test. The particle size distribution
of the standard sand is displayed in Figure 4, with a uniformity coefficient (Cu) of 6.92
and a curvature coefficient (Cc) of 1.97, which indicated that it was fine sand with good
grading. The specific gravity (Gs) of the sand was 2.635 g/cm3, and its water content was
mixed to 6%. To ensure the relative uniformity of the soil, a specific mass of sand was
loaded into buckets in layers and compacted to 50 mm per layer to control its density to
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1.65 g/cm³ and porosity to 0.693. The surface of each layer was roughened before adding
the next layer, increasing the surface roughness and bonding between layers until the
final height was 650 mm. Geotechnical tests indicated that the cohesive strength (c) of the
prepared experimental sand was approximately 10 kPa and the internal friction angle (φ)
was approximately 38◦.
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2.2.3. Regulation of Grouting

The tests were conducted using a flow-controlled method, and the measured grouting
flow rate output from the grouting pump was 8.5 mL/s. Grouting was performed using
grout with different w/c ratios, which were set at 0.8, 1.0, 1.2, 1.4, and 1.6. The basic physical
properties of the grout with different w/c ratios are summarized in Table 2.

Table 2. Basic physical properties of grout with different w/c ratios.

w/c Ratio Density (g/cm3) Stone Rate (%)

0.8 1.55 83
1.0 1.47 76
1.2 1.39 61
1.4 1.36 59
1.6 1.33 51

3. Evolution of Stress and Displacement Fields in Sand Layer
3.1. Variations in Grouting Pressure and Surface Displacement with Grouting Time

The grouting pressure–time curve (P-t) and the surface uplift displacement versus
time curve (u-t) (i.e., the P-u-t curve) plotted in Figure 5 for the low-w/c-ratio condition
(w/c = 0.8) indicated that the grouting process can be divided into three phases.

3.1.1. Early Stage: Initial Uplift Phase Dominated by Compaction

In the early period of this phase within 0 to 40 s, the grout filled the grouting hole. At
this time, the grouting diffusion resistance was not significant, resulting in little change in
grouting pressure and no surface displacement.

In the middle period of this phase, from 40 to 80 s (duration of 40 s), under the
influence of grouting pressure, grout began to interact with the surrounding sand particle
skeleton. The diffusion resistance of the grout increased rapidly, leading to the compaction
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of the soil around the grouting hole. The density of the soil increased and its internal
skeleton deformed. At this point, the volume of grout injected into the soil was equal to the
volume of the compressed soil. The effect of the internal skeleton deformation could not be
transmitted to the upper surface of the soil, so the grouting pressure continued to increase
rapidly without significant uplift displacement.
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In the later period of this phase, from 80 to 115 s (duration of 35 s), grout continued
to compress the soil under the action of the grouting pressure. At this point, the volume
injected into the soil exceeded the volume of compressed soil. The surface soil was affected,
leading to deformations and an increase in surface displacement. During this period, the
grouting pressure continued to increase, and the uplift displacement at various surface
locations also increased until the grouting pressure reached a local maximum.

3.1.2. Medium Term: Sustained Uplift Phase of Fracture–Compaction

In the early period of this phase, from 115 to 117 s (duration of 2 s), the grouting
pressure decreased significantly after a local maximum and reached a local minimum.
There was a short plateau period in the surface displacement. It is evident that compaction
grouting was the primary diffusion pattern between the grout and the soil, as demonstrated
by the composition of the grout-solidified body in Section 4.1. The probable reasons for
the decrease in grouting pressure were as follows: (1) The presence of a weak structure
within the soil during grouting led to the slurry entering the weak structure while diffusing,
which resulted in a reduction in the force exerted on the soil, a decrease in grouting
pressure, and a plateau period in surface displacement. (2) Following the previous phase
of grouting, the slurry continued to exert pressure on the adjacent soil. The stress state of
the soil gradually transformed from compression to tension until the grouting pressure
reached the condition of soil fracture, resulting in soil fracture due to tensile damage. The
fracture surface occurred at the principal stress surface of least resistance. When the soil
fractured, the grout quickly filled the fracture channel, and stress concentration happened
at the front end of the fracture, resulting in the rapid development of the fracture. As a
result, the grouting pressure diminished until it reached a local minimum, and the surface
displacement yielded a plateau period.

In the later period of this phase from 117 to 175 s (duration of 57 s), the grouting
pressure rose again after the local minimum until the second local maximum and minimum
occurred. The surface displacement increased with increasing grouting pressure until the
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local extrema of grouting pressure, and then exhibited a plateau period during the extrema
period of grouting pressure, which was the same as the first phase of the local extrema of
grouting pressure. The extrema phase of the grouting pressure curve and the plateau period
of the surface displacement curve showed an inhomogeneous cyclic variation pattern in the
subsequent process from 175 to 230 s (duration of 55 s), with an increasing trend in the local
maximum of the grouting pressure. Examination of the solidified body (see Section 4.1),
grouting pressure, and ground displacement curve under the test condition of w/c = 1.0
(see Figure 6) revealed that compaction was the dominant pattern between the grout and
the soil. Meanwhile, the change patterns of the grouting pressure curve and the surface
displacement curve were similar to the non-uniform cyclic change pattern at w/c = 0.8,
and the local maximum of the grouting pressure also showed an upward trend, which
was judged to be the typical fracture–compaction pattern in the sand grouting process.
The reason why the grouting pressure rose again after the local minimum and showed
an increasing trend in the local maximum was as follows. As the fracture developed, the
grout continued to act on the soil on both sides of the fracture, at which point it entered
the expansion phase of the fracture channel. Since the soil had been compacted under
pressure in the previous phase, its overall resistance to deformation increased, and thus a
higher grouting pressure was required to widen the fracture channel or create new ones.
Therefore, the grouting pressure rose after the local minimum happened and exceeded
the previous local maximum until the subsequent soil-fracturing pressure condition was
attained, with a corresponding trend of increasing displacement.
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3.1.3. Late Stage: Accelerated Uplift Phase of Shear Damage

As the grouting process proceeded to a certain phase, the grouting pressure increased
from a local minimum to a certain value and then began to decrease. The final shape
and structure of the solidified body in Section 4.1 indicated that the grout continued to
exert pressure on the surrounding soil under the grouting pressure. The soil reached its
compression limit, and the overlying soil was unable to provide the stress conditions to
reach the fracturing pressure. Consequently, continued grouting led to shear damage
in the soil, resulting in a decrease in grouting pressure and a further increase in surface
displacement.

As shown in the P-u-t curve in Figures 5 and 6: (1) The grouting pressure curve re-
peatedly reached local extrema and the corresponding surface displacement curve entered
a plateau period, which suggested that grout diffusion channels were formed due to soil
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fracture and was a key indicator reflecting the occurrence of the soil fracture process. (2)
Both the grouting pressure curve and surface displacement curve in the fracture phases
exhibited a pulse-like pattern and were in the cyclic state of uneven changes, i.e., the mag-
nitude of the extremum of the grouting pressure, the time interval to reach the extremum,
and the duration of the extrema period were both different in each cycle. (3) During the
grouting process, the local maximum of the grouting pressure (fracture pressure) increased
with increasing grouting time.

3.2. Variation of Soil Pressure with Time

Since a relatively low pore water pressure was measured during the experiments, its
impact on the testing process was minimal. Therefore, an analysis of the soil pressure
within the soil was conducted, and the arrangement of sensors is depicted in Figure 2.

3.2.1. Radial Location

As shown in Figure 7, by comparing the soil pressures at the locations with the same
vertical heights (H) from the bottom of the bucket, it can be observed that the time at
which the soil skeleton experienced compression-induced soil pressures became later as
the radial distance (D) from the center of the grouting hole increased. This indicated that
the influence range of the grout on the soil mass in the radial direction gradually expanded
with increasing grouting time. Moreover, the overall soil pressures decreased with the
increase in distance D. This implied that the action of the grout led to the deformation
of the soil near the grouting holes, which, in turn, affected the soil around them and the
forces acting on the soil were dispersed. Consequently, the soil pressures decreased with
increasing distance from the grouting hole, and the soil was affected to an increasing range.
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3.2.2. Vertical Location

The soil pressures at the same radial distance (D) from the center of the grouting hole
are shown in Figure 8. The change rule was similar to that of the vertical direction, i.e., the
higher the H from the bottom of the bucket, the later the time point when the soil pressure
was generated, and the smaller the overall soil pressure.
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4. Influence of w/c Ratio on the Evolution of Stress and Displacement Fields in Sand
4.1. Differences in Grouting Patterns

The solidified bodies with different w/c ratios were compared in conjunction with the
injectability of the sandy soil. The pattern differences between the slurry and the sandy soil
during the grouting process are presented in Figures 9 and 10.
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It can be seen from Figure 9 that the overall homogeneity of the solidified body was
poorer with the increase in the w/c ratio. This indicated that the higher the w/c ratio of the
grout, the more unevenly the grout was stressed within the sandy soil during the grouting
process. Furthermore, when the w/c ratio reached 1.6, a completely solidified body cannot
be formed during the grouting process.

As can be seen from the overall situation of the solidified body and the profiles at A and
B presented in Figures 9 and 10, when the w/c ratios were 0.8 and 1.0, the solidified body was
relatively uniform and mainly consisted of the pure grout, with no significant sand–grout
mixture layer on the outer surface. In the case of w/c ratio = 1.2, a small portion of the sand–
grout mixture layer with a certain thickness appeared near the grouting hole at location C1,
indicating the occurrence of penetration during grouting. However, it is clear from cross-
section C that the pure grout was still the primary component of the solidified body. In the
case of a w/c ratio of 1.4, the thickness of the sand–grout mixture at location D1 increased
significantly, but cross-section D still showed a predominantly pure grout solidified body.
This indicated a significant penetration effect during grouting, suggesting a change in the
primary interaction mode from a fracture–compaction pattern to a permeation–fracture–
compaction pattern. When the w/c ratio increased to 1.6, the solidified body failed to form
a complete solid in the soil. It is evident from cross-section E that the sand–grout mixture
became the main component of the solidified body, which indicated that permeation played
a major role in the grouting process. Pure grout constituted a smaller portion of the
solidified body and appeared in the form of grout veins within the solidified body, with
a thickness of approximately 3–5 mm. These grout veins primarily developed radially,
indicating that the permeation process during grouting was accompanied by a fracturing
process.

In summary, as the w/c ratio increased, the proportion of the sand–grout mixture in
the solidified body increased. This suggested that the higher the w/c ratio, the less densely
the grout particles were packed and the less likely they were to aggregate. When the
micro-aggregates of formed grout particles were smaller than the pore size of the sandy soil,
the grout could infiltrate the sandy soil. Moreover, the higher the w/c ratio, the smaller the
grout particle micro-aggregates were, the lower the possibility of accumulation in the pore
of sandy soil, the smaller the obstruction to its flow, and the more obvious the permeability.
Meanwhile, as the w/c ratio increased, the interaction mode between the grout and the soil
was transformed. The primary pattern shifted from the fracture–compaction pattern to the
permeation–fracture–compaction and fracture–permeation patterns.

4.2. Analysis of Grouting Pressure Curves

A comparison of the grouting pressure curves at different w/c ratios is plotted in
Figure 11, which shows that there were certain similarities and differences in the overall
grouting pressure–time curves.

Similarity: The pressure curves for grouting followed a similar pattern of increasing
to the maximum value and then decreasing. Prior to reaching the maximum, the pressure
did not consistently increase with grouting time, but rather fluctuated with an overall
upward trend. After reaching the maximum pressure value, the pressure maintained a
downward trend.

Discrepancy: As the test process controlled the flow rate of the slurry, under different
w/c ratios, the difference between the role of the slurry and the soil body caused the grouting
pressure to show a different pattern of change over time. As shown in Figure 11, with an
increase in the w/c ratio, the overall trend of the grouting pressure curve decreased, and
the longer the grouting time required to reach the maximum value of the pressure, i.e.,
the slower the rate of change of the grouting pressure with time. And when w/c > 1.2, the
overall value of the grouting pressure curve was obviously decreased, indicating that, due
to the increase in the w/c ratio, the smaller the effect of the agglomeration of grout, the
lower the formation of grout particle micro-aggregates, the smaller the blocking effect that
the micro-aggregates pass through the pores of sandy soil, the smaller the resistance in the
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process of slurry diffusion, which correspondingly showed the overall trend of decreasing
grouting pressure, and the slower the increase in grouting pressure over time.
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In addition, at the beginning of grouting (about 0–120 s), compared with the grouting
pressure curve under the condition of w/c ≤ 1.2 that showed the general trend of upward
change process, when w/c > 1.2, the pressure value was relatively stable without an obvious
upward trend. Combined with the information in Section 4.1 within the grout-solidified
body, it is judged that, in this low-pressure stage, when w/c > 1.2, the grout particle micro-
aggregates could pass through the pores of the sandy soil. Therefore, the grouting pressure
in this stage was relatively stable without an obvious increase. And due to the infiltration
process accompanied by the filtration effect, when the pores of sandy soil were blocked
by the filtration effect to form a blocking arch so that the subsequently injected grout
particle micro-aggregates were blocked, the value of the grouting pressure started to show
a continuous increase in the trend, as shown in the case of grouting pressure under the
condition of w/c =1.4. Meanwhile, under w/c = 1.6, combined with the consolidation body
situation in Section 4.1, it can be seen that infiltration in the grouting process played a major
role and the size ratio of the difference between the grout particle micro-aggregates and the
pore of sandy soil was large, so the filtration effect was not obvious. Thus, the grouting
pressure curve and the other water–cement ratios under the conditions of the change trend
were obviously different.

4.3. Variation of Surface Displacement with Time

Figures 12–15 are plotted based on the surface displacements recorded during the
tests. As shown in Figures 12 and 13, in the same test, the surface displacement value
exhibited a pattern of decreasing from the center of the grouting hole to the surrounding
edge, i.e., the farther the horizontal distance (D) from the center of the grouting hole, the
smaller the surface displacement value. Meanwhile, with the increase in grouting time, the
uplifting speed of the surface displacement value was faster. And the farther the horizontal
distance (D) from the center of the grouting hole, the slower the uplifting speed of the
surface displacement value.
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As depicted in Figures 14 and 15, in experiments with different w/c ratios, an increase
in the w/c ratio led to smaller uplift displacement values at the same location on the
ground’s surface within the same time period. In addition, the rate of increase in uplift
values was slower, and the initiation of uplift displacement occurred later. Similarly, a
longer grouting time and a larger volume of grout were required to achieve the same uplift
displacement value. It can be seen from Figure 15 that the surface displacement value at
the same position exhibited the maximum variation when the w/c ratio ranged from 0.8 to
1.0 during the same grouting time. As the w/c ratio exceeded 1.0, the changing trend of the
surface displacement value slowed down obviously and became slower with the increasing
w/c ratio, i.e., the decreasing change trend with the increase of w/c ratio slowed down with
the w/c ratio increasing in the same grouting time. The reason for this is consistent with
Section 4.1 above, and is related to the transition in the interaction mode between the grout
and the sandy soil. The increase in the w/c ratio led to the occurrence of infiltration during
grouting process in sandy soil, and the infiltration effect is more obvious in higher w/c ratio.
Consequently, the effect of the grout on the skeleton structure in sandy soil mass decreases,
leading to smaller deformations within the soil and, hence, smaller uplift displacement
values at the ground’s surface.

5. Conclusions

• In the grouting process with a low w/c ratio in the fine sand layer (under the condition
of w/c ≤ 1.0 for the test soil), when the grouting pressure curve repeatedly reached
local extrema and the corresponding surface displacement curve entered a plateau
period, grout diffusion channels were formed due to soil fracture; this state was a key
indicator reflecting the occurrence of the soil fracture process. The fracture–compaction
grouting pattern was the main mode of the slurry diffusion process, in which the
fracturing process exhibited a cyclic and non-uniform variation.

• With the advancement of grouting time, the farther away from the central grouting
hole, the more pronounced the lag effect of soil pressure generated by the action of the
slurry, and the larger the radius of the action of the grout on the soil. The overall soil
pressures exhibited a diminishing trend with increasing distance from the grouting
hole.

• As the w/c ratio increased, when w/c ≥ 1.2, the grout could penetrate the sand soil
when the particle size of the grout particle micro-aggregates was less than or equal
to the pore size of the sandy soil. Smaller grout particle micro-aggregates were
more likely to pass through the pores of the sand, resulting in a more pronounced
permeation effect. Therefore, the interaction mode between the grout and the soil
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shifted from a fracture–compaction pattern to a permeation–fracture–compaction
pattern and fracture–permeation pattern. The overall trend of the grouting pressure
curve was similar under all of the w/c ratio conditions, showing the trend of increasing
to the maximum value of the pressure first and then decreasing. With the increase in
the water–cement ratio, the overall value of the grouting pressure curve showed a
decreasing trend, the slower the pressure value increased with time before reaching
the maximum value, and the more obvious the influence of water–cement ratio was
when w/c > 1.2. In addition, as the w/c ratio increased, the resistance encountered
by the grout particle micro-aggregates passing through the pores of the sandy soil
decreased and the sand body became smaller due to the slurry deformation effect,
leading to a reduction in the effect of the grout on the sandy soil mass. As a result, the
surface displacement also exhibited an overall decreasing trend, and it had no obvious
lifting value under the condition of w/c = 1.6.
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H vertical height from the bottom of the bucket,
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