
Citation: Manzi, S.; Molari, L.;

Bignozzi, M.C.; Masi, G.; Saccani, A.

Geopolymeric Composites Containing

Industrial Waste Reinforced with

Arundo donax Fibers. Buildings 2024,

14, 1191. https://doi.org/

10.3390/buildings14051191

Academic Editor: Jaroslav Pokorný

Received: 23 March 2024

Revised: 13 April 2024

Accepted: 16 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Geopolymeric Composites Containing Industrial Waste
Reinforced with Arundo donax Fibers
Stefania Manzi * , Luisa Molari, Maria Chiara Bignozzi , Giulia Masi and Andrea Saccani

Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28,
40131 Bologna, Italy; luisa.molari@unibo.it (L.M.); maria.bignozzi@unibo.it (M.C.B.);
giulia.masi5@unibo.it (G.M.); andrea.saccani@unibo.it (A.S.)
* Correspondence: stefania.manzi4@unibo.it; Tel.: +39-051-209-0329

Abstract: Traditional Portland cement-based composites have a great environmental impact. Alkali-
activated binders can offer an alternative, particularly if they can be obtained even partially from
waste. Two residuals derived from the finishing steps of the traditional ceramic industry have
been used as possible polymerizable sources mixed with metakaolin. Moreover, to contrast the
low dimensional stability of alkali-activated materials and their mechanical brittleness, natural
fibers derived from the Arundo donax plant have been added to the mortars. The use of renewable
natural fibers instead of synthetic ones can contribute a further environmental advantage. The fresh
(consistency) and cured (mechanical) properties of composite materials prepared with residuals and
metakaolin were analyzed here. For comparison’s sake, a reference set of composite materials not
loaded with fibers but with an identical binder/sand and liquid/binder ratio was cast. A room-
temperature curing condition was selected that, although inadequate to promote the short-time
reactivity of the wastes, has a minimal energy requirement and allows on-site applications. A small-
scale decrease in the properties in the compression mode tests was observed in the waste-modified
mortars, while the Arundo addition improved their flexural strength and dimensional stability.

Keywords: sustainable materials; alkali-activated mortars; tile-production residuals; Arundo donax
fibers; mechanical characterization

1. Introduction

Nowadays, climate change is recognized as a universal emergency that goes beyond
national borders. Environmental awareness concerning the necessity to eliminate the use
of non-renewable resources and the possibility of recycling different types of waste has
widened the search for alternative materials in the building industry.

Portland cement-derived mortars and concretes are considered as high impact materi-
als from an environmental point of view, on account of the huge carbon dioxide footprint
involved in the production of the binder. The cement industry, indeed, generates about
7% of global CO2 emissions through the calcination of limestone, burning fossil fuels to
produce thermal energy, transportation and energy usage [1–3]. Mitigating strategies are
presently being studied, trying to reduce to an as low as possible fraction the clinker used
to formulate the final binder [4]. It is, however, rather difficult to go below a certain clinker
fraction [5].

A different strategy concerns the use of completely alternative materials. Alkali-
activated materials or geopolymers can be considered valuable candidates for the substitu-
tion [6,7], in that they are derived from industrial or anthropogenic wastes [8–11] and they
can be activated at room temperature, in the same way as the traditional mortars/concretes.
Some wastes have been intensively studied, such as fly ash, blast furnace slags, bottom
ash, silica fume or red mud. Some concerns have, however, been expressed on the present
and future overall availability of these resources, since the amount of material employed
worldwide in the construction industry is huge and continually increasing. Accordingly,
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the search for other possible sources of activable wastes is an important topic. The required
characteristics for an eligible waste to be employed in geopolymerization are its amorphous
nature and its content of silica and alumina and possibly a low dimension. Therefore, glass
waste, construction and demolition waste (i.e., concrete, bricks) and even the residuals of
organic matter combustion such as rice husk ash or peat soil palm oil fuel ash (POFA) [12]
have been selected to produce alkali-activated binders.

In the present study, the possibility of exploiting the by-products of the tile industry
derived from the finishing steps of production, that is, the glaze lapping powders of
porcelain stoneware and the porcelain stoneware grinding powder, as partial substitutes of
metakaolin in the formulation of a multiphase binder have been analyzed. In the north of
Italy, a rough estimation accounts for an overall production of 70,000 tons/year of these
wastes [13]. According to their composition and microstructure, these wastes could become
reactive in alkaline conditions since they are mainly composed of silica and aluminum
oxide. Moreover, they do not necessitate any grinding process as they already have a small
dimension, suitable to be used as received and to be activated at low temperatures.

Although they are more environmentally sustainable and able to develop good me-
chanical properties in shorter times than the traditional Portland cement-based composites,
geopolymers suffer from extreme brittleness and low dimensional stability. To overcome
these drawbacks and increase their toughness and flexural strength, they can be modified
by adding fibers like steel, polyvinyl alcohol (PVA), polyethylene (PE), polypropylene (PP),
glass or basalt [14–19]. Recently, attention has been focused on natural [20–29], virgin [30]
or recycled [31] carbon fibers. Natural fibers are renewable, low-cost and low-energy
demanding materials with low density and interesting mechanical properties. They may
suffer from some drawbacks related to the incomplete reproducibility of the previously
cited mechanical properties deriving from the different environmental conditions that the
plant may face during its growth. Moreover, natural fibers can be porous, hydrophilic
and their surface can be covered by uncoherent, waxy matter that can compromise fiber–
matrix adhesion. Nevertheless, a chemical or thermal pretreatment can largely reduce
these drawbacks. One of the possible sources of natural fibers is grass plants and reeds in
particular [32,33].

In the present research, small-length Arundo donax fibers randomly dispersed were
used to modify metakaolin mortars containing the two different wastes previously de-
scribed (i.e., glaze lapping powders from porcelain stoneware production and porcelain
stoneware grinding powder). Arundo is a fast-growing plant, largely available in the
Mediterranean region [34]. As to its chemical composition, Arundo has a high amount of
cellulose (about 70 wt%) and a low amount of hemicellulose (about 15 wt%). Consequently,
it shows good mechanical properties (elastic modulus of about 40 GPa [35]) provided by
the cellulose fraction, even if lower than those of some species of bamboo, and a reduced
hydrophilicity on account of the reduced hemicellulose content. So far, Arundo has been
employed in the formulation of polymer matrix composites (both thermosetting, i.e., epoxy,
polyester and thermoplastics such as PE, PP and polylactic acid (PLA)) [34,36–39] but its
use in inorganic matrix has still to be thoroughly investigated.

2. Materials and Experimental Procedures
2.1. Materials
2.1.1. Wastes

Glaze lapping powders from porcelain stoneware production, hereafter defined as LP
(around 20,000 tons/year), and porcelain stoneware grinding powder, hereafter defined
as GP (around 50,000 tons/year), from Sassuolo/Fiorano (Italy) industrial district were
used. Table 1 shows their chemical composition obtained by inductively coupled plasma
optical emission spectrometry (ICP, ICP-OES Serie Optima 3200 XL, PerkinElmer (Waltham,
MA, USA)) while Table 2 shows their size and density. The size was determined by
laser granulometry (Malvern Mastersize 3000, Worcestershire, UK) while the density was
obtained by water pycnometry (ISOLAB, Laborgerate GmbH, Eschau, Germany). GP
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powders had almost the same composition as the studied metakaolin, while LP showed a
lower amount of silica and a higher amount of calcium oxide. Both wastes had a higher
content of alkaline oxides than metakaolin. Figure 1a shows the X-ray diffraction pattern
(investigated by a PANalytical Empyrean diffractometer with copper anode material,
detector PIXcel1D, Almelo, The Netherlands) of metakaolin while Figure 1b shows those
of both wastes. The presence of an amorphous fraction, which plays a fundamental role
in alkaline activation, is evident in both the powders from the hump present at low theta
values (15◦ < 2θ < 35◦). Crystalline phases such as quartz and mullite are also present,
particularly in GP waste, while in LP alumina and calcium carbonate diffraction peaks are
present but their intensity is extremely low.
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Table 1. Chemical composition (wt%) of metakaolin (MTK) and selected wastes (GP and LP).

Oxide SiO2 Al2O3 CaO MgO TiO2 K2O Na2O LOI

MTK 72.0 22.1 0.4 0.1 1.0 0.3 0.04 2.4
GP 73.2 17.5 1.5 0.5 0.8 1.9 2.9 0.4
LP 53.5 15.2 11.7 1.1 0.1 3.9 4.7 6.2
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Table 2. Size dimension (µm) and density (g/cm3) of metakaolin (MTK) and selected wastes (GP
and LP).

Sample D10 D50 D90 Density

MTK 106 43 5 2.50 ± 0.02
GP 89 22 4 2.46 ± 0.01
LP 20 5 2 2.43 ± 0.02

2.1.2. Binder

Flash calcined metakaolin, hereafter defined as MTK (ARGECO Development, Toulouse,
France), was used as the main component of the matrix. It is derived from a low-energy
process that minimizes the energy request. The powder dimension (determined by laser
granulometry, Malvern Mastersize 3000, Worcestershire, UK) is reported in Table 2, as
well as its density (obtained by water pycnometry, ISOLAB, Laborgerate GmbH, Eschau,
Germany).

2.1.3. Aggregates

As aggregates, natural silica sand with a fixed grain size distribution (dmax = 2 mm;
SiO2 > 96 wt%) was employed according to EN 196-1 Standard [40].

2.1.4. Fibers

Arundo donax fibers, 5 ± 1 mm long (Figure 2), were derived from the culms by
mechanical methods (36 h in a NaOH 0.1 M solution, then a compression molding technique
was used at 20 kN) partially following previous studies [41], and finally treatment with
NaOH 1M solution for 2 h to remove waxy material and washing with distilled water. The
density of the fiber measured by water pycnometry (ISOLAB, Laborgerate GmbH, Eschau,
Germany) was 1.50 ± 0.08 g/cm3.
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2.1.5. Activators

As activators, a Na2SiO3 (SS, Ingessil, Verona, Italy) solution (ρ = 1.53 g/cm3; SiO2/Na2O
ratio = 2.07) and an 8 M molar solution of NaOH (Merck, Darmstadt, Germany) were
employed in a 1:1 ratio.

2.2. Mix Design and Sample Preparation

First of all, the two alkaline activators were put together and left to cool down to room
temperature. Then, metakaolin and GP or LP were added to the activators and blended
with water in a Hobart mixer. Natural silica sand was included after 6 min. Finally, as
the last component, Arundo donax fibers were added and mixed. In line with a previous
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investigation [22], in the final matrix the proportion between MTK, activators, and H2O
was regulated to obtain a liquid/solid ratio of 0.48 and SiO2/Al2O3 and Na2O/SiO2 ratios
of 3.60 and 0.22, respectively. The liquid/solid ratio, as well as the ratio and amount of
activators (NaOH and silicate), was kept constant in the mortars containing both wastes.
In all the mortar mixes, the volume of Arundo was around 1.4%. In all the samples, the
aggregate/binder ratio was 1:1, and the water/binder ratio was 0.13. Table 3 shows the
composition of the investigated binders as well as the amount of fibers and the tags that
were used afterwards in the text to identify them. Various samples were cast from the
fresh composite materials: (a) 40 × 40 × 160 mm prismatic specimens for mechanical and
physical characterization; (b) cylindrical specimens (diameter = 35 mm, height = 100 mm)
for water absorption by capillary and durability investigations; and (c) 25 × 25 × 280 mm
prismatic specimens for dimensional stability analysis.

Table 3. Mortar binder and fiber composition (grams) and mortar tags.

Sample MTK GP LP Fibers

MTK 100 0 0 0
MTK AR 100 0 0 3
MTK GP 85 15 0 0

MTK GP AR 85 15 0 3
MTK LP 85 0 15 0

MTK LP AR 85 0 15 3

2.3. Methods
2.3.1. Consistency

Following EN 1015-3 Standard [42], immediately after the procedure of mixing, the
composite materials were cast in a truncated conical mold with a circular base (bottom
diameter = 100 mm, top diameter = 70 mm, height = 60 mm). Finally, after the mold was
removed and shaken, two perpendicular diameters of the collapsed mortar were measured,
and the standard consistency (C) was thus determined following Equation (1)

C = 100·(dm − d0)/d0, (1)

where dm is the average diameter of the two perpendicular diameters and d0 is the lower
diameter of the mold (i.e., 100 mm) (Figure 3).
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2.3.2. Physical Characterizations

The bulk density of the composite materials was obtained at 28 curing days following
the EN 772-13 Standard [43].

2.3.3. Mechanical Characterizations

Both three-point flexural strength and compressive strength investigations were per-
formed at 20 ± 1 ◦C and 65 ± 10 RH% using a Wolpert 100 kN test machine (Wolpert, Neu
Ulm, Germany) with a speed rate of 5 mm/min. At the end of 28 curing days at 22 ± 2 ◦C
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in sealed plastic bags, in the flexural condition, at least 5 specimens were tested, while
in the compressive condition, 8 specimens were tested. With the only exception of these
specifications, the method complied with the recommendations of the EN 196-1 Standard
for Portland cement composite materials.

The flexural strength was determined according to EN 196-1, following Equation (2)

Rf = (1.5·Ff·l)/b3, (2)

where Rf is the flexural strength (MPa), b is the side of the square section of the prism (mm),
and Ff is the load applied to the middle of the prisms at fracture (N).

The compressive strength was determined according to EN 196-1, following Equation (3)

Rc = Fc/A, (3)

where Rc is the compressive strength (MPa), Fc is the maximum load at fracture (N), and A
is the area (mm2) of the platens or auxiliary plates (40 × 40 mm).

2.3.4. X-ray Diffraction Analysis

To investigate the mineralogical composition of the composite materials, XRD analysis
was carried out. An Empyrean Malvern Panalytical diffractometer, with detector PIX-
cel1D equipped with Cu radiation operating at 40 kV and 20 mA, was used to obtain the
diffraction patterns. Samples were previously pulverized and scanned between 0◦ and
90◦ 2θ.

2.3.5. Mercury Intrusion Porosimetry

In order to estimate qualitatively and quantitatively the open porosity of the mortars,
samples were fractured after 28 days of curing and chunks, whose weights were about
1 g, were submitted to mercury intrusion porosimetry (MIP, Pascal 140 and 240 Mercury
Porosimeters instruments (Thermo Fisher Scientific, Waltham, MA, USA). A contact angle
value of 141◦ and a surface tension value of 0.48 N/m were used for mercury. Samples were
degassed for 30 min and a vacuum condition of 0.03 KPa was reached. A maximum pressure
value of 200 MPa was achieved in MIP equipment. Every evaluation was reiterated at least
twice. The S.O.L.I.D. software (v3.0, SOLver of Intrusion Data, Thermo Fisher Scientific,
Waltham, MA USA) was used to manage all the MIP determinations. Due to the small
volume that can be tested in the instrument, as well as the low fiber content, fiber-modified
sample results are too scattered and consequently unreliable. Only data referring to the
unmodified fiber samples, i.e., MKT, MKT GP and MKT LP, are reported.

2.3.6. Microstructural Analysis

SEM XL20 scanning electron microscopy (FEI, Hillsboro, OR, USA) was used to
investigate the microstructure on non-perturbed fractured specimens attained after the
flexural tests. Quorum 150R ES (Quorum Technologies Ltd., Judges House, Lewes, UK)
was used to metallize specimens under vacuum. Throughout all SEM measurements, an
accelerating voltage of 20 kV was adopted.

2.3.7. Water Absorption

According to EN 15801 Standard [44], the water absorption by the capillary of the
mortars was determined on 3 cylinders (diameter = 35 mm, height = 100 mm) after 28 days
of curing at 22 ± 2 ◦C. To determine moisture absorption in the function of time, a balance
(Model CP225D, Sartorius, Gottingen, Germany) was employed. Formula (4) was used to
calculate the amount of water absorbed in this way.

Qi = (mi − m0)/A, (4)
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where m0 is the weight of the sample in dried conditions (kg), mi is the weight of the
sample at time ti (kg), A is the absorption area in contact with water (m2), and Qi is the
amount of absorbed water at time ti (kg/m2).

2.3.8. Dimensional Stability

Following the ASTM C1012/C1012M Standard [45], the dimensional stability perfor-
mance was tested on 3 prismatic specimens (25 × 25 × 280 mm) cured at 45 ± 3 RH % and
22 ± 2 ◦C.

3. Results and Discussion

The physical characterization of the composite materials is summarized in Table 4.
Consistent changes took place in the diameter of the collapsed composites (dm) and the
consistency (C) of the fresh mortars. GP and LP had opposite effects. On account of
the smaller dimension, LP decreased the consistency of the mortars while GP, having
dimensions closer to metakaolin, slightly increased the flow value of the mortar possibly
on account of the initial inertness of the powders. As could be expected, also the addition
of Arundo donax decreased the diameter of the collapsed composites and the consistency of
the composites. The extent of this effect was the same in the three matrices. Nevertheless,
it was possible to cast all the samples without creating undesired porosities in the final
specimens. This observation is supported by the bulk density data reported in the same
table. A slight decrease took place as both ceramic wastes and fibers were added. In the
latter case, this could be predicted on account of the lower density of the organic phase.
However, experimental values were quite close to the theoretical ones derived by the
single-phase contribution in the fresh state (2.00 g/cm3 for MTK), a feature that implies the
absence of macrovoids in the specimens.

Table 4. Physical and consistency properties of composite materials.

Sample Density (g/cm3) dm (mm) C (%)

MTK 2.01 ± 0.03 194 ± 8 94
MTK AR 2.00 ± 0.06 183 ± 10 83
MTK GP 1.97 ± 0.05 202 ± 6 102

MTK GP AR 1.95 ± 0.07 190 ± 9 90
MTK LP 1.98 ± 0.05 179 ± 7 79

MTK LP AR 1.97 ± 0.06 168 ± 9 68
dm = average diameter measured during the standard consistency test; C = consistency.

The flexural and compressive strength of the composite materials (Figure 4) at 28 days
of room temperature curing are displayed in Figure 5a,b, respectively. In all samples, the
flexural strength was increased (about +18% on average) by the Arundo addition and the
negative effect of the wastes was limited (about −3% for GP). Compared to other fibers,
i.e., Moso bamboo, kenaf and hemp at almost the same relative volume amount [22], the
strengthening effect on the metakaolin sample was close to that found for kenaf fibers
and lower than the one obtained with Moso bamboo. The 18% increase in flexural strength
agrees with other research (+15%) [46] but was lower than in [32] (about +30%), where,
however, a higher fiber amount (5%wt) was used. As to the aspect of the fracture surface
derived from the flexural tests, the presence of both waste and fibers did not alter the
brittle morphology of the matrix failure. The fracture ran almost perpendicularly to the
main axis of the tested specimens without the formation of multiple macrocracks and
a pull-out process of the fibers was observed (Figure 4). A stronger negative effect was
instead evident in compression mode. In GP mortar, the strength was 18% lower while a
−10% was recorded for LP. Fiber addition had a negligible effect (−5% in the worst case,
MTK) on this property which was much lower than what was found in other research [32].
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The only peaks that appeared on the diffractogram were those of silica, while no other
phases were recorded. The presence of silica is derived from the crystalline phase already
present in metakaolin (Figure 1a) and, to a limited extent, from the smaller natural aggregate
particles that could not be completely separated from the matrix. The disappearance of
other phases previously detected in GP and LP derives both from their low amounts in the
matrix but could also derive from a partial reactivity of these phases. At the same time, it is
noteworthy to underline the absence of peaks related to sodium hydroxide and silicate in
all samples. This feature implies that the activating reagents are involved in the formation
of crosslinked structures, albeit with different compositions, even in the waste-modified
mortars.

The results concerning the mercury intrusion porosimetry tests are summarized in
Figure 7. As reported previously, they only refer to the samples without fibers.
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Figure 7. MIP results on the three investigated mortars without fibers after 28 days of curing.

The high dimension porosity fractions, that is, pores having a dimension above 1 µm,
were relatively small. MTK had the lowest values but both LP and GP modified mortars
did not exceed 10 mm3/g. This agrees with the density results that showed close values
among the samples and close also to the theoretical ones. Substantial differences were
instead found at lower dimensions (<1 µm). MTK has the lowest overall open porosity
with an average pore size of about 0.05 µm. The LP powders increase both the overall open
porosity and shift the average pore size to a value of about 0.07 µm. The same effect takes
place with GP powders but with a further shift of the average pore size to about 0.1 µm.
These results support the results of the mechanical tests (Figure 5): the higher porosities
led to lower compressive strength in LP and, more consistently, in GP samples compared
to the unmodified MTK samples.

The microstructure of the samples derived from the fractured surfaces after 28 days
of curing is reported in Figure 8. All the matrices showed a compact morphology with
well-dispersed GP and LP powders. A close examination revealed the presence of some
unreacted GP particles with dimensions higher than 30 µm (see Figure 8d) which, on
account of their close chemical composition, were well embedded in the metakaolin matrix.
Figure 8e,f show the aspect of the Arundo fibers in the composites. Although no porosities
are present at the interphase, their surface is smooth and uncovered by matrix residuals,
a feature suggesting that a different surface treatment could further improve the flexural
strength as performed with polymeric matrix [47,48].
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Water absorption by capillary test can be considered as a tool to predict the long-term
durability of the mortars. A high rate of capillary absorption implies the faster diffusion
of ions in the composite possibly leading to undesired chemical reactions. Figure 9 shows
the effect of the addition of GP and LP to the metakaolin binder. While LP waste slightly
increases the rate of absorption, GP waste has a more negative effect on the process.
Figure 10 shows the experiments relative to the fiber-modified mortars. Two points can
be underlined: (a) the presence of fibers does not increase the rate of absorption in all the
samples. This means that no preferential paths are generated either by the fiber itself or by
the fiber–matrix interphase, a feature that seems to support what is observed in Figure 8.
(b) A decrease is instead observed in the rate of absorption, particularly for the MTK GP
AR sample. A possible explanation is the substitution of a porous matrix fraction with the
Arundo donax fiber, which is a less porous phase. The effect is thus more intense in the case
of GP-modified paste that, also on account of the lower compressive strength (Figure 5),
should have the highest porosity. In Table 5, the coefficients of capillary water absorption
are reported.

Table 5. Coefficient of capillary water absorption (kg/(m2s1/2)) of the investigated mortars.

Binder No Fibers Fibers

MTK 4.2 × 10−3 3.6 × 10−3

MTK GP 10.3 × 10−3 7.7 × 10−3

MTK LP 6.3 × 10−3 6.0 × 10−3
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Figure 10. Water absorption by capillarity of composite materials modified by fibers.

Finally, Figure 11 shows the dimensional variation in the different samples after 14 days
of curing. Waste additions have almost no influence on shrinkage, while Arundo fibers
manage to increase the stability of the bare metakaolin mortar. The effect is comparable
in pure metakaolin and waste-modified binders. The constraining effect of the fibers,
increasing the dimensional stability of the composite, is usually dependent on the fiber–
matrix interaction. In our case, the presence of waste, also on account of the low amounts,
did not affect the friction between the two phases. This feature seems to support the
observation derived from the previous experiment, that the increased porosity affects the
bulk of the matrix and not the fiber–matrix interphase.
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4. Conclusions

In the present research, an attempt to introduce industrial waste with potential reac-
tivity to alkaline activators in an alkali-activated metakaolin matrix was performed. The
main results can thus be summarized:

- A room temperature curing process was selected, a condition that does not promote
the waste dissolution but on the contrary, would enable on-site application of the
materials. Moreover, since the reactive fraction of the different wastes is unknown,
the same activator amount and ratio was considered for the modified mortars, thus
unavoidably leading to an unbalanced ratio among the different oxides (Na2O/SiO2
and Al2O3/SiO2 ratios).

- X-ray analysis performed on the cured mortars, however, did not show the presence
of unreacted activators. Therefore, it can be supposed that the presence of the waste
alters the final composition of the reacted gels leading to less developed networks but
it does not hinder their formation.

- At the investigated fraction, only a slight detrimental effect was recorded on the
compressive strength that remained above 25 MPa, which would allow its use in
structural repairs.

- A slight reduction in consistency was also recorded but the value still enabled us
to cast specimens without macroscopical porosities as revealed from the density
measurements and morphological investigations.

- LP, on account of the lower dimensions and higher amorphous character, provides higher
mechanical properties hinting at a limited but effective reactivity. This is also reflected
by the decrease in porosity derived by MIP as well as the decrease in water absorption
by the capillary action of the mortar when compared to the GP-modified sample.

- The addition of Arundo managed to increase the flexural strength and the dimensional
stability of the mortars, slightly affecting the compressive strength.

- A positive effect from the use of natural fibers was also found in the rate of water
absorption.

A reliable quantitative evaluation of the effective reactivity of the wastes at higher
temperatures, enabling the development of an optimized-mix design or a targeted treatment
of the fibers, could lead to higher mechanical properties but would then suffer from
environmental and logistical drawbacks. Indeed, in these conditions, it is possible to
formulate materials with helpful properties in the simplest conditions that could be applied
on-site.

Author Contributions: Conceptualization, A.S.; methodology, S.M., L.M., M.C.B., G.M. and A.S.;
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