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Abstract: Reinforced concrete slabs are widely used in building structures due to their economic,
durable, and aesthetic advantages. The determination of their ultimate strength often hinges on
punching shear strength. Presently, methods such as closed hoops, steel bending, and fiber reinforce-
ment are employed to enhance punching shear strength, with fiber reinforcement gaining popularity
due to its ease of implementation and efficacy in improving concrete durability. This study introduces
a novel approach employing six machine learning algorithms rooted in decision trees and decision
tree-based ensemble learning to predict punching shear strength in steel fiber-reinforced concrete
slabs. To overcome experimental data limitations, a data augmentation approach based on the
Gaussian mixture model is employed. The validation of the data augmentation is conducted through
“synthetic training—real testing” and “real training—real testing”. Additionally, the best machine
learning model is analyzed for explainability using Shapley Additive exPlanation (SHAP). Results
demonstrate that the proposed data augmentation method effectively captures the original data
distribution, enhancing the robustness and accuracy of the machine learning model. Moreover, SHAP
provides better insights into the features influencing punching shear strength. Thus, the proposed
data enhancement model offers a reliable approach for modeling small experimental datasets in
structural engineering.

Keywords: punching shear capacity; steel fiber-reinforced concrete; Gaussian mixture model; data
augmentation; SHAP

1. Introduction

Nowadays, reinforced concrete and its combined structures are widely used [1–3].
Reinforced concrete slabs are widely employed in construction for their superior structural
strength and excellent durability [4,5]. Compared to traditional construction materials
and methods, utilizing reinforced concrete flat slabs accelerates construction timelines,
diminishes uncertainties, and lowers risks during the construction process [6,7]. In addition,
utilizing these slabs offers greater flexibility in building design, empowering designers
to fulfill diverse innovative and functional requirements [8,9]. Studies indicate that the
ultimate strength of reinforced concrete flat slabs typically hinges on the punching shear
strength at the slab-column joint [10]. Following punching, the residual strength of the slab
significantly decreases compared to the punching load, potentially leading to progressive
building collapse if one column shears, causing adjacent columns to rapidly overload and
fail in punching shear [11]. Currently, several methods exist to enhance shear resistance,
including closed hoops, steel bending, shear studs, or post-shear reinforcement. Recently,
researchers have delved into leveraging fiber-reinforced concrete (FRC) to increase the
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punching shear resistance. Numerous studies affirm that FRC slabs exhibit improved
strength and ductility in punching shear. Among various fibers, steel fibers stand out for
their widespread application in reinforced concrete slabs, owing to their superior strength,
toughness, and punching shear resistance [12,13].

Current codes for slab-column connections, such as ACI 318-11, JSCE, and fib Model
Code 2010, were developed for plain concrete structures [14–17]. However, the cracking
and punching shear strength of steel fiber concrete (SFRC) structures diverge significantly
from that of conventional ones. Therefore, there is an urgent need to introduce a punching
shear strength prediction-tailored model for SFRC structures. Narayanan and Darwish
proposed a design equation considering various factors such as the compression zone
strength above the inclined crack, pull-out shear on the fibers along the inclined crack,
and shear forces from dowel pins and film action to evaluate punching shear strength [18].
Harajli et al. introduced a best-fit linear regression model for SFRC slab-column connections,
incorporating empirical design equations for punching shear strength based on concrete
and fiber coupling contributions [19]. Choi et al. conducted a theoretical study and
proposed a design equation based on the FRC failure criteria for thin slabs with large spans
and thicknesses. The equation considers the contribution of compressive and tensile zones
in the critical section and assumes that the punching shear strength of these two zones is
controlled by tensile cracking rather than compressive crushing [20]. Higashiyama et al.
proposed a design equation based on the JSCE to evaluate the punching shear strength of
plain concrete slab-column connections, considering factors such as fiber pull-out strength
and critical section perimeter based on fiber properties [21]. In addition, Maya et al.
proposed a design equation for SFRC punching shear strength based on the critical shear
crack theory and verified its superiority over existing models of Narayanan and Darwish,
Harajli et al., and Higashiyama et al. through experimental data analysis [22]. While these
models advanced SFRC punching shear strength studies, some issues persist. For example,
the empirical models by Narayanan and Darwish, Harajli et al., and Higashiyama et al.
lack consistency with the methodology adopted in the current code, and the model of
Maya et al. risks overestimating SFRC punching shear capacity with room for accuracy
enhancement. Recently, Hoang developed a shear capacity prediction model using multiple
linear regression and artificial neural networks based on experimental data [23], showcasing
machine learning’s potential in SFRC shear strength prediction. However, the model’s
generalization and explainability warrant improvement. Given these challenges, there is a
crucial need for a highly accurate, generalizable, and explainable model for SFRC punching
shear strength assessment.

In recent years, ensemble learning combined with SHapley Additive exPlanation
(SHAP) has been widely used in structural engineering due to its high accuracy and
explainability. Wang et al. used four standalone learning models and two ensemble learning
models to predict the bond strength between steel sections and concrete. The results show
that the ensemble learning model is much better than the standalone model [24]. Cakiroglu
et al. used Extreme Gradient Boosting, Light Gradient Boosting Machine, Random Forest,
and Categorical Boosting to predict the splitting tensile strength of concrete reinforced
with basalt fibers [25]. Feng et al. predicted the creep behavior of recycled aggregate
concrete using ensemble learning combined with SHAP and performed feature importance
analysis [26]. Nguyen et al. predicted the compressive strength of cement-based mortar
containing metakaolin using Categorical Gradient Boosting and investigated the features
using SHAP [27].

The above study demonstrates the power of ensemble learning and SHAP in structural
engineering. The aim of this study is to develop a model that accurately predicts the
punching shear strength of SFRC slabs while ensuring generalizability and explainability.
To achieve this objective, data are sourced from the published literature and augmented
using the Gaussian mixture model (GMM). Subsequently, SFRC punching shear strength
prediction models are developed employing six machine learning algorithms rooted in
decision trees and decision tree-based ensemble learning. The efficacy of the augmented
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data in enhancing the robustness and accuracy of the models is evaluated through the
“synthetic training-real testing” and “real training-real prediction” methodologies. Finally,
the SHAP technique is employed to delve into the explainability of the top-performing
algorithms within the ensemble learning model. This research not only aims to deliver
precise predictions of SFRC punching shear strength but also underscores the potential of
data augmentation techniques, particularly GMM, in machine learning modeling using
small experimental datasets in structural engineering.

2. Workflow

The workflow for this study, as depicted in Figure 1, consists of the following four
main components:
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Figure 1. Workflow of the study.

Data collection: It involved gathering 140 instances, comprising the following features:
slab depth (h), the effective depth of the slab (d), length or radius of the loading pad or
column (bc), concrete strength (f’c), the reinforcement ratio (ρ), the fiber volume (ρf), and
punching shear strength (V).

Data augmentation: The GMM is utilized to generate 500 datasets. The distribution
of the generated data is evaluated based on the probability density curve to ensure it
accurately captures the distribution of the original data.

Model development and evaluation: Six machine learning algorithms are employed
to develop modes for punching shear strength in steel fiber-reinforced concrete slabs. The
models are evaluated using metrics such as goodness of fit.

Model explainability: SHapley Additive exPlanations is employed to provide global
and local explanation.
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3. Methodology
3.1. Gaussian Mixture Model

The Gaussian Mixture Model (GMM) operates under the assumption that multiple
multivariate normal distributions exist, each with a probability of generating a data point,
and collectively their probabilities sum up to 1. The process of solving the GMM essentially
involves estimating the likelihood of observing the data. The model assumes the existence
of several multivariate normal distribution generators, each with an associated weight, and
the total weights sum up to 1. Based on this data generation process and the observed
sample set, the likelihood equation can be formulated. The unknown parameters in this
equation include the mean vector and covariance matrix of each multivariate normal
distribution, and the probability associated with each generator producing a sample. After
solving for the model parameters, it becomes possible to discern from which multivariate
normal distribution the samples were likely generated [28].

Let the GMM contain M multivariate normally distributed generators, then the proba-
bility that this GMM generates a sample x is:

p( xi|θ) = ∑M
m=1 αm∅(x|θm),

∑M
m=1 αm = 1, αm ≥ 0,

∅(x|θm) =
1(√

2π
)n

|Σm|
1
2

exp
(
−1

2
(x − µm)

T ∑−1
m (x − µm)

)
,

where αm is the probability that the mth multivariate normal distribution generates a
sample, and ∅(x|θm) is the probability density function of the mth multivariate normal
distribution θm = (µm, ∑m), where µm denotes the mean vector of the mth multivariate nor-
mal distribution component, and ∑m denotes the covariance matrix of the mth multivariate
normal distribution.

To ascertain from which multivariate normal distribution a given sample originates
in the model, the parameters of the GMM need to be computed from the dataset, and the
model must effectively fit the training set to make the most accurate determination. GMM
is inherently a probabilistic model, and the typical approach to solving for its parameters
involves maximizing the likelihood function. For a data set with m samples, the likelihood
function of a Gaussian mixture model is:

L(θ) = L(x1, . . . , xm; θ) = ∏m
i=1 p( xi|θ),

where x1, . . . , xm are m data in the sample, p( xi|θ) is the probability that the model gener-
ates a given sample, and θ denotes all the parameters of the model. Due to the complexity
of the likelihood equation, directly solving the optimal parameters is challenging and is
typically addressed through the expectation-maximization method.

3.2. Ensemble Learning

The study employed ensemble learning techniques, utilizing decision trees as the
foundational model. In this field, two main approaches are prominent: bagging and
boosting. Bagging, short for Bootstrap Aggregating, entails training multiple instances
of DTs on various subsets of the training data, employing bootstrap sampling where
some instances may be selected multiple times while others may not be chosen at all.
The predictions from each model are then combined, typically through averaging for
regression tasks or voting for classification tasks, to reduce variance and mitigate overfitting,
particularly beneficial for complex models like decision trees. On the other hand, boosting
sequentially trains decision trees, with each subsequent model focusing on correcting
errors made by its predecessors. Initially, each data instance is assigned equal weight, but
misclassified instances receive higher weights in subsequent iterations, allowing subsequent
models to prioritize them. By iteratively refining the model’s fit to the data, boosting aims
to reduce bias and improve overall predictive performance [29]. In this study, DT and
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DT-based ensemble learning methods are utilized, including Random Forest from bagging,
GBDT, XGBoost, LightGBM, and CatBoost from boosting [27,29–33]. These methods are
adopted for solving complex civil engineering problems [34,35].

3.3. SHAP

SHAP (Shapley Additive explanation) is one of the most popular model-agnostic meth-
ods available for enhancing the explainability of machine learning models [36]. Grounded
in cooperative game theory, SHAP assigns feature importance using Shapley values. The
Shapley value for a feature ∅j(val) is computed as the weighted sum of its marginal
contributions across all possible feature subsets as shown in the equation below:

∅j(val) = ∑S⊆{1,...,p}∖{j}
|S|!(p − |S| − 1)!

p!
(val(S ∪ {j})− val(S)),

where S is a feature subset, x is the feature vector, and p is the number of features. valx(S)
represents the prediction for feature values in set S marginalized over features not included
in set S:

valx(S) =
∫

f̂
(
x1, . . . , xp

)
dpx/∈S − Ex

(
f̂ (x)

)
.

Averaging the absolute Shapley values across various instances, as illustrated in
the equation below, yields a more dependable measure of feature importance (Ij). This
approach offers a thorough assessment of each feature’s impact on the model’s predic-
tions, emphasizing features with higher absolute Shapley values as more impactful in the
prediction process.

Ij =
1
n ∑n

i=1

∣∣∣ϕ(i)
j

∣∣∣.
4. Parameter Selection and Database Construction
4.1. Data Collection and Analysis

A total of 140 sets of experimental data were collected from seven studies [37–43], en-
compassing the following features: slab depth (h), the effective depth of the slab (d), length
or radius of the loading pad or column (bc), concrete strength (f’c), the reinforcement ratio
(ρ), and the fiber volume (ρf) and punching shear strength. The punching shear strength
(V) is designated as the target feature, while the other features serve as input features for
analysis. The distribution of each input feature is shown in Table 1, and the correlation
coefficients between the parameters are shown in Figure 2. The Pearson correlation coeffi-
cient is used to measure the degree of linear correlation between continuous variables, and
the Spearman correlation coefficient is used to measure the degree of monotonic correlation
between two variables. Figure 2 indicates that the correlation between the input features
and the target feature is generally weak, with the exception of h and d, which exhibit
relatively strong correlations with the target variable. Despite their strong correlations, h
and d are retained as significant parameters influencing V.

Table 1. Statistical distribution of parameters.

h d bc f’
c ρ ρf V

Min 55 39 60 14.2 0.37 0 58.3
Max 180 150 225 108 2.53 2 530

Average 110.8 87.05 131.96 41.65 0.99 0.71 228.19
Skew −0.37 −0.3 0.31 1.92 0.81 0.24 0.60
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4.2. Data Augmentation

The distribution of each parameter before and after enhancement is shown in Figure 3.
The statistical characteristics of the generated data are shown in Table 2. It is evident from
Figure 3 that GMM has learned the distribution of the original parameters well, with the
distribution of the augmented data closely resembling that of the data before augmentation.
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Table 2. Statistical distribution of the augmented parameters.

h d bc f’
c ρ ρf V

Min 40 25 72 5.6 0.42 0 43.2
Max 180 150 225 108 4.87 4 530

Average 107.46 84.18 128.22 42.10 1.03 0.75 216.51
Skew −0.23 −0.15 0.37 1.86 1.01 0.45 0.60
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5. Model Construction and Evaluation
5.1. Model Construction

Both the original data and the augmented data were utilized for modeling, employing
two distinct approaches: M1 and M2. In M1, 80% of the original real values were utilized
for the training set and 20% were allocated for testing. On the other hand, M2 utilized the
generated values for training and real values for testing. The machine learning algorithms
were trained using the six models rooted in the decision tree and decision tree-based
ensemble learning introduced in Section 3.2, with the optimal hyperparameters of each
algorithm determined through grid search with five-fold cross-validation.

5.2. Data Augmentation Validation

The training and test performance of all the models under M1 and M2 are depicted in
Figures 4 and 5, respectively.
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From Figure 4, it can be noticed that there is a large difference in the performance
of the model on the training and test sets. Conversely, Figure 5, highlights a significant
improvement in the R2 of each machine learning model on the test set under M2. Figure 6
presents the distribution of the deviations of each algorithm under M1 and M2, offering
insights into their robustness. In general, a deviation centered at 0 and normally distributed
indicates a model with good robustness. In Figure 6A, it is evident that under M1, DT,
GBDT, and XGBoost models exhibit robustness on both training and test sets, with a more
uniform deviation distribution. RF, LightGBM, and CatBoost show better robustness on the
training set, but their deviation distribution is less stable on the test set, indicating poorer
robustness. Conversely, Figure 6B, illustrates the six machine learning models demonstrate
good robustness on both the training and test sets, with deviation distributions approxi-
mating normality. In addition, DT and GBDT outperform the other models significantly
on the test set. This figure underscores the improvement in model robustness with data
augmentation (M2).

To further evaluate the model accuracy, Figure 7 examines the models under M1 and
M2 using standard deviation and coefficient of variation. In Figure 7a, for the training set,
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the standard deviation of each model under M2 is lower than M1, except for DT. Similarly,
for the test set, the standard deviation of all machine learning models under M2 is lower
than M1. In Figure 7b, for the training set, the coefficients of variation of all machine
learning models under M2 are lower than M1, except for LightGBM. In addition, for the test
set, the coefficients of variation of all models under M2 are lower than M1. In conclusion,
the data augmentation method proposed in this work enhances the robustness and accuracy
of the machine learning models.
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5.3. Model Performance Evaluation

The robustness and accuracy of the data-augmented models were verified in Section 5.2.
The performance of the machine learning models is further evaluated in this section to
identify the most suitable algorithms for this research. The performance of each machine
learning model is assessed using standard deviation (SD), root mean square deviation
(RMSD), and goodness-of-fit (R2), visualized through a Taylor diagram, as seen in Figure 8.
The radial axis indicates the standard deviation of the model. The angle indicates the
correlation or agreement between the model predictions and the observations. A smaller
angle means that the model predictions are closer to the observations. In addition, a bluer
color indicates a smaller root mean square deviation.
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As depicted in Figure 8a, for the training set, XGBoost, GBDT, and CatBoost exhibit
significantly better performance compared to LightGBM, RF, and DT, with XGBoost having
the smallest SD and RMSD and the largest R2. In Figure 8b, on the test set, LightGBM
demonstrates the best performance, followed by CatBoost and XGBoost, while DT performs
the worst. Considering the performance of the models on both the training and test sets,
XGBoost emerges as the most suitable model for this study.

5.4. Model Explainability

As observed in Section 5.3, XGBoost demonstrates the most balanced performance
on both the training and test sets. Therefore, SHAP is employed for the explainability of
XGBoost. This plot combines feature importance with feature effects for each instance.
Each point on the plot represents a SHAP value associated with a feature and an instance.
The y-axis denotes the feature, while the x-axis represents the SHAP value. The color
of the points corresponds to the feature value, ranging from low to high. As observed
in Figure 9, the order of importance of the features on the punching shear strength of
steel fiber-reinforced concrete slabs is as follows: h, d, bc, f’c, ρf, and ρ. Additionally, it is
evident that for all features, except d and bc, higher magnitudes result in positive SHAP
values, indicating a positive impact on the prediction of punching shear strength of steel
fiber-reinforced concrete slabs. Conversely, lower magnitudes of these features adversely
affect the prediction.

In Figure 9, the global interpretation of features reveals the overall impact on punch-
ing shear strength, yet individual feature effects can vary across samples. For instance,
considering the fifth specimen with a real punching shear strength of 402 KN, the SHAP
waterfall plot in Figure 10 illustrates that the values of concrete strength (f’c), slab depth
(h), the effective depth of the slab (d), fiber volume (ρf), and reinforcement ratio (ρ) are all
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positive (shown in red), indicating that they have a positive effect on the punching shear
strength. Among them, the SHAP value of concrete strength is the largest, indicating that
it has the greatest effect for the fifth specimen, while the length or radius of the loading
pad or column (bc) has a negative impact (shown in blue). Notably, the minimal value
of bc for this specimen, as seen in Figure 10, correlates with more negative SHAP values,
indicating its adverse effect on prediction. Furthermore, the XGBoost model’s prediction of
399.412 KN for the fifth specimen aligns closely with its true value of 402 KN, showcasing
high prediction accuracy.
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6. Conclusions

This study introduces a data augmentation method employing the Gaussian mixture
model to expand small experimental datasets, with the goal of enhancing the performance
of machine learning models. Subsequently, SFRC punching shear strength prediction
models are developed using six algorithms rooted in decision trees and decision tree-based
ensemble learning models. The SHAP technique is then applied to comprehensively eluci-
date the significance and dependencies within the best-performing model. The following
conclusions were reached:
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(1) The adopted Gaussian mixture model effectively captures the distribution of features
in the dataset, with the probability density function curves of the generated data
closely aligning with those of the original data.

(2) When subjected to the “synthetic training-real testing” condition, the machine learning
models demonstrate significantly enhanced accuracy and robustness are compared
to the “real training-real prediction” scenario. Notably, XGBoost exhibits the most
balanced performance between the training and test sets.

(3) The SHAP analysis revealed that feature importance rankings are: h, d, bc, f’c, ρf, and
ρ. Most features demonstrate a positive correlation with punching shear strength. Ad-
ditionally, visualizing SHAP values through various plots provides a comprehensive
understanding of the overall feature importance in the model’s predictions.
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