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Abstract: Tibetan pig is a unique pig breed native to the Qinghai–Tibet Plateau. To investigate
viral communities associated with porcine respiratory disease complex (PRDC), 167 respiratory
samples were collected from Tibetan pigs in the Ganzi Tibetan autonomous prefecture of Sichuan
province. Following library construction and Illunima Novaseq sequencing, 18 distinct viruses
belonging to 15 viral taxonomic families were identified in Tibetan pigs with PRDC. Among the
18 detected viruses, 3 viruses were associated with PRDC, including porcine circovirus type 2 (PCV-2),
Torque teno sus virus (TTSuV), and porcine cytomegalovirus (PCMV). The genomic sequences of
two PCV-2 strains, three TTSuV strains, and one novel Porprismacovirus strain were assembled by
SOAPdenovo software (v2). Sequence alignment and phylogenetic analysis showed that both PCV-2
strains belonged to PCV-2d, three TTSuVs were classified to TTSuV2a and TTSuV2b genotypes, and
the Porprismacovirus strain PPMV-SCgz-2022 showed a close genetic relationship with a virus of
human origin. Recombination analysis indicated that PPMV-SCgz-2022 may have originated from
recombination events between Human 16,806 × 66-213 strain and Porcine 17,668 × 82-593 strain.
Furthermore, the high proportion of single infection or co-infection of PCV2/TTSuV2 provides insight
into PRDC infection in Tibetan pigs. This is the first report of the viral communities in PRDC-affected
Tibetan pigs in this region, and the results provides reference for the prevention and control of
respiratory diseases in these animals.

Keywords: porcine respiratory disease complex; metagenomics; viral community; Tibetan pig

1. Introduction

Porcine respiratory disease complex (PRDC) is the most common and costly problem
in the global swine industry, accounting for 10 to 40% of morbidity and 2 to 20% of mortality
in intensive pig farms [1]. PRDC is characterized by retarded growth, increased mortality
and costs due to production failure and the associated medicinal/vaccination needs [2].
The primary respiratory viruses are porcine reproductive and respiratory syndrome virus
(PRRSV), porcine circovirus type 2 (PCV-2), porcine pseudorabies virus (PRV), swine
influenza virus (SIV), and African swine fever virus (ASFV) [3–5]. Recent studies have
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suggested that parvoviruses, bocaviruses and torque teno sus virus (TTSuV) are identified
as the novel pathogens associated with PRDC [6–8].

Tibetan pig is a unique Chinese indigenous pig breed that lives on the Qinghai–Tibet
Plateau at elevations of over 3000 m above sea level [9]. These animals live in this harsh
and cold highland environment and usually graze freely. They are typically in close
proximity to other livestock such as yaks, Tibetan sheep and goats, providing opportunities
for cross-species viral transmission [10]. Tibetan pigs are also kept in close contact with
local herdsman, with risk of zoonotic transmission [11,12]. Due to the remote location
and extremely harsh environmental conditions of the Tibetan plateau, few studies have
examined viral respiratory diseases in Tibetan pigs.

With the recent development of high-throughput sequencing and viral metagenomic
analytical methods, efforts have been made to characterize the complex viral communities
in clinical samples [13,14]. To date, this approach has been applied to study viral commu-
nities in serum, plasma, feces, respiratory secretions, and tissue samples [15–18]. Deep
sequencing, multiplex PCR, and microarray have been used to examine PRDC-related
viruses in domestic pigs [6,8,19–21]; however, little work has been carried out to character-
ize these viruses in Tibetan pigs. The pig industry is one of the largest agricultural sectors
of the Ganzi Tibetan autonomous prefecture economy, with approximately 100 thousand
Tibetan pigs currently being raised. To investigate the respiratory viral communities in
Tibetan pigs, 167 respiratory samples including 66 nasal swabs were collected from clinical
healthy Tibetan pigs and 101 nasal swabs, lung tissues and alveolar lavage fluids were
collected from Tibetan pigs with PRDC. These samples collected from 23 pig farms were
used to investigate the detection rates for viruses identified in animals with PRDC to
determine the main cause of PRDC by PCR/RT-PCR method.

2. Materials and Methods
2.1. Ethics Statement

This study was approved by the Institutional Animal Care and Use Committee
(IACUC) of the College of Animal & Veterinary Sciences, Southwest Minzu University,
China (12 October 2020, Certification No.: SYXK2020-178).

2.2. Sample Collection

From 2021 to 2022, 167 respiratory samples were collected from 23 Tibetan pig farms
in four counties (Luding, Kangding, Daocheng, and Xiangcheng) from Ganzi Tibetan
autonomous prefecture of Sichuan province. Among these samples, 66 nasal swabs were
collected from asymptomatic Tibetan pigs from 6 pig farms, and 101 samples were collected
from Tibetan pigs (in 17 pig farms) that had been associated with PRDC (i.e., rhinorrhea,
cough, shortness of breath, dyspnea, and depression), with nasal swabs (n = 70), lung
tissues (n = 23) and alveolar lavage fluids (n = 8) collected. The animals were selected as
either PRDC cases or asymptomatic pigs based on the assessment by a local veterinarian.
The major pathological lesions observed in the lungs were characterized by diffuse bleeding,
edema, hyperemia and interstitial thickening. All collected respiratory samples were added
to viral transport medium (VTM, hopebio, Qingdao, China) and stored at −80 ◦C.

2.3. Sample Treatment and Nucleic Acid Extraction

The samples were subjected to a series of pre-treatments before extraction of nucleic
acids. Briefly, VTM supernatants from nasal swabs, lung tissues and alveolar lavage fluids
were collected. Two pooled samples were assembled using 50 mL of each supernatant
from the respiratory samples. The mixed pooled samples were passed through a 200 nm
filter (Millipore, Billerica, MA, USA), and the resulting filtrates were concentrated using
an Ultra 50K ultrafiltration tube (Millipore, USA). The 2 mL filtrates were incubated at
37 ◦C for 90 min in a cocktail containing DNase and RNase enzymes (TaKaRa, Dalian,
China). Total viral DNA was prepared from the samples using QIAamp Viral DNA Mini Kit
(QIAGEN, Hilden, Germany). Total viral RNAs were extracted from three pooled samples
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using a QIAamp Viral RNA Mini Kit (QIAGEN, Germany) following the manufacturer’s
protocol. Reverse transcription was performed using SuperScript III reverse transcriptase
(RT) (Invitrogen, Carlsbad, CA, USA) and random hexamers (Invitrogen, USA) following
the supplier’s guidelines. Finally, the viral DNA and cDNAs from two pooled samples were
sent to TP-Bio Co. Ltd. (Shanghai, China) for library construction and high-throughput
Illunima Novaseq sequencing.

2.4. Library Construction and High-Throughput Sequencing

The obtained cDNAs from three pooled samples were ultrasonicated to generate
fragments ~450 bp in length. Three paired-end (PE) libraries were constructed by DNA
fragments end repair and adaptor ligation and sequenced using Illumina’s Novaseq 6000
platform. The Illumina-generated raw data were filtered using Trimmatic software (v0.36)
to trim adaptor-related reads, low-quality reads, reads with a high proportion of N-bases
(>10%), and short-length reads (<75 bp), resulting in high-quality clean data. The porcine
genomic and bacterial reads were removed from the cleaned data using BWA, and the
obtained reads were de novo assembled using Megahit software (v1.0). The assembled
viral contigs from each pool were aligned with sequences in the nucleic acid and protein
databases using BLASTn and BLASTx. The taxonomies of the sequences with the best
BLAST values (>90% overlap identity) were selected and used for further grouping and
analyses. The viral abundances were calculated using SOAP aligner software (v2) [22].
Reads representing different viruses were individually identified from clinical samples by
specific PCR and Sanger sequencing.

2.5. Sequence Comparison, Phylogenetic and Recombination Analysis

The open reading frames of the viral nucleotide and amino acid sequences were ana-
lyzed using DNAstar software (version 7.0) [23]. Phylogenetic analyses were conducted in
MEGAX software (v10) with the Kimura 2-parameter and a nucleotide substitution model,
and Maximum-likelihood (ML) trees were constructed from nucleotide sequences using
the ClustalW multiple alignment algorithm [24]. The selected viral reference sequences
were downloaded from GenBank. The bootstrap values were evaluated from 1000 repli-
cates. In addition, the SimPlot software (v3.5.1) [25] and Recombination Detection Program
(v4) [26] were used to detect recombination events and recombination breakpoints within
the genomes of viruses. Recombination events were considered significant if confirmed by
at least five of seven methods (RDP, Bootscan, GENECONV, MaxChi, Chimaera, SiScan,
and 3Seq) with p < 0.01. Furthermore, ML trees were generated from each recombinant
fragment to confirm the putative recombination events.

2.6. Virus Detection Rates in Tibetan Pigs

To detect the viral prevalence in Tibetan pigs with PRDC, total nucleic acid was
extracted using a QIAamp Viral DNA Mini Kit (QIAGEN, Germany). Specific primers were
designed for each virus based on the Illumina sequencing data. The PCRs using specific
primer pairs (Supplementary Table S1) were performed using Best W5 HiPer High-Fidelity
DNA Polymerase PCR Red mix (Mei5bio, Beijing, China). DNA (2 µL) from each clinical
respiratory sample was used in each reaction. Amplification followed the following cycling
profile: a denaturation of 98 ◦C for 2 min followed by cycles of 98 ◦C for 8 s, 50–64 ◦C for
25 s and 72 ◦C for 15 s. The amplified PCR products were detected on 1.0% agarose gel.
PCR products were purified and cloned into pMD19-T vector (TaKaRa, Dalian, China) and
sequenced at Sangon Biotech (Shanghai, China).

3. Results
3.1. Viral Metagenomics

Using high-throughput sequencing, a total of 110,687,546 reads were obtained from
the mixed pooled samples of Tibetan pigs. Approximately 2.21% (2,446,194 reads) of the
sequence reads from the clinical respiratory samples mapped to mammalian-associated
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viral sequences. Metagenomics analysis revealed that the viruses in Tibetan pigs from
asymptomatic pigs were mainly bacteriophages, and only a few sequence reads of Mar-
divirus in Herpesviridae (1.54%) were mapped to mammalian-associated viral sequences.
Members of fifteen virus families were identified, as follows, in order of sequence read abun-
dance: Genomoviridae (33.02% of all reads), Anelloviridae (13.97%), Herpesviridae (13.82%),
Circoviridae (7.83%), Totiviridae (6.67%), Asfarviridae (5.09%), Smacoviridae (3.61%), Poxviridae
(2.83%), Peribunyaviridae (2.23%), Flaviviridae (2.23%), Adenoviridae (2.11%), Retroviridae
(1.93%), Parvoviridae (1.91%), Polyomaviridae (1.53%), and Coronaviridae (0.75%) (Figure 1a).
Eighteen distinct viruses were identified in these fifteen families, in order of sequence
read abundance: Gemycircularvirus (33.02% of all reads), Torque teno sus virus (TTSuV,
14.43%), Porcine circovirus type 2 (PCV-2, 7.83%), Piscine myocarditis-like virus (6.67%),
Porcine cytomegalovirus (PCMV, 5.02%), Human gammaherpesvirus 4 (HHV-4, 4.39%),
Porprismacovirus (3.61%), Variola virus (2.83%), Orthobunyavirus (OROV, 2.23%), Hep-
acivirus C (2.23%), Fowl aviadenovirus (FADV, 2.11%), Caviid betaherpesvirus 2 (2.01%),
Porcine type-C oncovirus (1.93%), Protoparvovirus (1.91%), Polyomavirus (1.53%), Ictalurid
herpesvirus 1 (1.46%), Human betaherpesvirus 7 (HHV-7, 0.95%), and Tylonycteris bat
coronavirus (0.83%) (Figure 1b). These results show that the viral communities are complex
and diverse in Tibetan pigs with PRDC.
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3.2. Viral Genome Assembly, Sequence Alignment and Phylogenetic Analysis

The contigs from the 18 different identified viruses were de novo assembled using
SOAP assembly software (v2), from which six genomic sequences (three strains of TTSuV,
two strains of PCV-2, and a Porprismacovirus strain), were assembled using the corre-
sponding viral sequence contigs.

3.2.1. TTSuV

A total of 15,972,212 reads with sequences corresponding to TTSuV were detected
in the pooled respiratory samples of Tibetan pigs. Three nearly complete genomes of
TTSuV were assembled and designated TTSuV2-1/2022/SCgz/China (2815 bp), TTSuV2-
2/2022/SCgz/China (2578 bp) and TTSuV2-3/2022/SCgz/China (2757 bp). These se-
quences were submitted to the GenBank database (accession no. OQ874787-OQ874789).
Similarity analyses revealed that the three TTSuV strains shared 56.2~74.9% nucleotide
sequence identity with each other and 55.8~92.5%/55.6~97.9% identity to reference genome
sequences of TTSuV 2a/2b strains, but only 34.5% to 39.7% identity to TTSuV 1 reference
strains (Table 1). Thus, the three TTSuV strains identified in Tibetan pigs belong to type 2
TTSuV.
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Table 1. Nucleotide sequence identity values for different regions of three TTSuV strains identified in
Tibetan pigs compared with nine TTSuV reference strains.

GD/China/
2009/TTV1/17 TTV1Bj2-1 SH0822/2008 pork_298 lung3 TTV2Ln13 38E19 TTV2Bj1-2 TTV2Jl1

TTSuV 1 TTSuV 2a TTSuV 2b

Pairwise % Identity to TTSuV (nt)

Complete
genome

TTSuV2-
1/2022/SCgz/China 35.8 34.7 34.5 55.9 55.9 55.8 96.1 1 56.3 55.6

TTSuV2-
2/2022/SCgz/China 39.7 39.1 37.3 75.1 79.1 74.7 55.9 97.9 87.7

TTSuV2-
3/2022/SCgz/China 39.2 38.8 38.5 92.5 80.3 72.6 55.8 75.1 74.7

ORF1

TTSuV2-
1/2022/SCgz/China 34.7 33.4 34.5 57.1 56.2 55.9 96.5 57.0 56.0

TTSuV2-
2/2022/SCgz/China 38.8 38.4 38.1 75.2 77.8 71.1 56.9 98.3 85.0

TTSuV2-
3/2022/SCgz/China 38.7 37.9 39.4 92.4 80.7 71.5 57.4 75.5 74.7

ORF2

TTSuV2-
1/2022/SCgz/China 35.3 35.3 33.6 44.5 44.1 43.3 99.2 46.2 45.0

TTSuV2-
2/2022/SCgz/China 40.8 44.5 38.2 79.8 91.6 87.8 45.4 96.2 97.1

TTSuV2-
3/2022/SCgz/China 42.9 43.3 42.4 97.1 79.8 80.3 44.1 80.3 78.6

1 The highest nucleotide identities of different regions are indicated in bold typeface. Furthermore, the nucleotide
similarity of the ORF1 and ORF2 genes in the three novel TTSuV strains and in nine representative strains of
TTSuV 1, 2a, and 2b were compared. The results showed that ORF1 of TTSuV2-1/TTSuV2-2 shared the highest
nucleotide similarity, 96.5%/98.3%, with TTSuV 2 strain 38E19/TTV2Bj1-2, while ORF1 of TTSuV2-3 shared the
highest nucleotide similarity, 92.4%, with TTSuV 1 strain pork_298. ORF2 of TTSuV2-1/TTSuV2-2 shared the
highest nucleotide similarity, 99.2%/97.1%, with TTSuV 2 strain 38E19/TTV2Bj1-2, while ORF1 of TTSuV2-3
shared the highest nucleotide similarity, 97.1%, with TTSuV 1 strain pork_298 (Table 1). Phylogenetic analysis
indicated that the three TTSuV strains in Tibetan pigs belonged to TTSuV 2 genotype and could be divided into
two distinct sub-genotypes: 2a and 2b. The TTSuV2-1/2022/SCgz/China and TTSuV2-2/2022/SCgz/China
belong to the TTSuV 2b sub-genotype, and strain TTSuV2-3/2022/SCgz/China was classified into the TTSuV 2a
sub-genotype (Figure 2).
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3.2.2. PCV-2

A total of 8,666,834 reads with sequences corresponding to porcine circovirus were
detected in the pooled samples. Two complete genomes of porcine circoviruses were assem-
bled and designated PCV2-1/2022/SCgz/China (1767 bp) and PCV2-2/2022/SCgz/China
(1731 bp). These sequences were submitted to the GenBank database (accession no.
OQ874786 and OQ656424). Similarity analyses revealed that the two porcine circovirus
strains shared 95.1~99.1% identity with the PCV-2 reference strains, but only 40.1% to 57.2%
identity with the PCV-3 and PCV-4 reference strains (Table 2). Furthermore, the nucleotide
similarity was also compared for the Rep and Cap genes in the two novel PCV strains and
in nine representative strains of PCV 2, 3 and 4. The results showed that both Rep and
Cap genes of PCV2-1/PCV2-2 shared the highest nucleotide similarity, 98.6~99.0% and
99.2~99.4%, respectively, with PCV2d strains (Table 2).

Table 2. Nucleotide sequence identity values for different regions of two PCV strains identified in
Tibetan pigs compared with nine PCV reference strains.

SA1 Henan
PCV2

DK1980PM
WSfree GX0602 QuJing YN/QuJing-

2018
PCV3-

US/SD2016

PCV3/CN/
Fujian-
5/2016

E115

PCV 2a PCV 2b PCV 2c PCV 2e PCV 2d PCV 3 PCV 4

Pairwise % Identity to TTSuV (nt)

Complete
genome

PCV2-
1/2022/SCgz/China 95.9 97.0 95.3 95.6 99.0 1 98.8 40.2 40.1 56.8

PCV2-
2/2022/SCgz/China 95.8 96.7 95.1 95.4 99.0 99.1 40.3 40.1 57.2

Rep
gene

PCV2-
1/2022/SCgz/China 98.4 97.8 98.1 98.0 98.6 97.9 46.6 46.4 50.7

PCV2-
2/2022/SCgz/China 98.6 97.8 98.1 98.1 98.8 99.0 46.7 46.4 51.2

Cap
gene

PCV2-
1/2022/SCgz/China 90.9 94.9 89.8 90.2 99.3 99.4 40.2 40.2 53.0

PCV2-
2/2022/SCgz/China 90.4 94.4 89.3 89.8 99.0 99.2 40.3 40.3 53.1

1 The highest nucleotide identities of different regions are indicated in bold typeface.

Phylogenetic analysis indicated that the PCV reference strains in this study were
clustered into three genotypes: PCV-2, PCV-3, and PCV-4. The PCV-2 strains all showed
evidence of evolutionary divergence and were further classified into five sub-genotypes
(2a, 2b, 2c, 2d, and 2e). The two PCVs in Tibetan pigs belonged to the PCV-2 genotype and
were further classified into the PCV-2d sub-genotype (Figure 3).

3.2.3. Porprismacovirus

A total of 3,995,820 reads with sequences corresponding to Porprismacovirus were
detected in the respiratory samples. One complete genome of Porprismacovirus was
assembled and designated as PPMV-SCgz-2022. The sequences were submitted to the
GenBank database (accession no. OQ656300), and the full-length genomic sequence was
2398 nucleotides in length.

Analysis using the MegAlign program of the DNAstar software (v7.1.0) revealed that
the complete genome of PPMV-SCgz-2022 shared the highest nucleotide similarity (89.5%)
with the human-associated porprismacovirus isolate 16,806 × 66-213 (GenBank accession
no. MH111125), reported in Vietnam in 2013, but only 61.0–63.4%, 37.0–37.2%, 42.4–42.7%,
and 35.7–42.2% identity with reference strains from domestic pigs, Chicken/Turkey, Rat,
and Monkey/Chimpanzee, respectively. Interestingly, the Cap gene of PPMV-SCgz-2022
had the highest similarity (87.4%) with the human-origin strain 16,806 × 66_213, but the
Rep gene had higher similarity (87.7–90.3%) to the swine-origin strains (Table 3).
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Table 3. Nucleotide and amino acid homology between SCgz-2022 strain and 14 reference strains
isolated from different hosts.

Host Strains Country/Year Complete
Genome (%)

Rep Gene
(%)

Cap
Gene (%)

Swine

17,668 × 82_593 Vietnam/2013 62.2 89.6 45.4
17,668 × 19_1792 Vietnam/2013 61.0 87.7 43.5
17,489 × 28_1796 Vietnam/2013 63.4 90.3 1 37.3
17,668 × 85_1302 Vietnam/2013 62.9 89.5 37.4

Human
16,806 × 66_213 Vietnam/2013 89.5 86.3 87.4

Smacv3 Peru/2013 39.0 72.6 47.4
SF2 USA/2009 38.6 73.1 48.6

Chicken/Turkey
mg2_55 USA/2017 37.2 75.8 46.1
mg8_345 USA/2017 37.2 55.1 45.7
TuSCV Hungary/2012 37.0 72.7 44.5

Rat
Mu/10/1799 Germany/2010 42.4 52.0 50.2
KS/11/0577 Germany/2010 42.7 52.4 50.2

Monkey/Chimpanzee cg5878 USA/2014 35.7 60.8 38.7
GM510 Tanzania/2004 42.2 52.6 41.1

1 The highest nucleotide identities of different regions are indicated in bold typeface.

Phylogenetic analysis of PPMV-SCgz-2022 was performed based on the complete
genome and Rep gene sequences of reference PPMVs originated from different hosts. The
results showed that the PPMV strains that originated from pigs had higher genetic diversity
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than those from other hosts and were divided into three different clusters (Clusters 1, 2, and 3).
Phylogenetic trees showed that PPMV-SCgz-2022 was classified in the human-associated
porprismacoviruses based on the full-length genomic sequence, but clustered into a swine-
related branch of the phylogenetic tree according to the Rep genotyping (Figure 4). These
findings suggested possible recombination between different hosts shaped the genome of
PPMV-SCgz-2022.
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3.3. Viral Detection in Lung Samples from Tibetan Pigs

Among the 18 detected viruses, 3 viruses were previously associated with PRDC:
PCV-2, TTSuV, and PCMV. Furthermore, lungs from the 66 asymptomatic samples and
101 PRDC-positive pigs were subjected to PCR amplification and sequencing to verify
the detection rates of PCV-2, TTSuV, and PCMV. The results showed detection of PCMV
in 4.5% of the 66 asymptomatic samples, but the samples were negative for PCV-2 and
TTSuV. From the 101 PRDC-positive cases (Table 4), the positive rates of PCV-2, TTSuV,
and PCMV were 22.8% (23/101), 22.8% (23/101), and 3.0% (3/101), respectively. The rates
of co-infection with PCV-2 + TTSuV, PCV-2 + PCMV, and TTSuV + PCMV were 13.9%
(14/101), 3.0% (3/101), and 2.0% (2/101), respectively. PCV-2/TTSuV/PCMV co-infection
was not detected in these samples. Among PCV2-positive samples, the rate of detection of
PCV2 + TTSuV was 65.2% (15/23), but that of PCV2 + PCMV was only 4.3% (1/23).
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Table 4. Viruses detected by PCR in 101 respiratory samples from Tibetan pigs in four regions.

Region Pigs with
PRDC

No. Positive of Pigs with PRDC

PCV-2 TTSuV PCMV PCV-2 +
TTSuV

PCV-2 +
PCMV

TTSuV +
PCMV

Luding 31 8 7 1 4 1 1
Kangding 47 9 13 2 7 2 1
Daocheng 15 3 1 0 1 0 0

Xiangcheng 8 3 2 0 2 0 0
rate

(positive/total) 101 22.8%
(23/101)

22.8%
(23/101) 3.0% (3/101) 13.9%

(14/101) 3.0% (3/101) 2.0% (2/101)

4. Discussion

PRDC is a multifactorial syndrome that significantly affects the respiratory system of
pigs, with important effects on the global swine industry [2]. Our metagenomics analysis
detected mainly small linear and circular DNA viruses, with a total of 18 distinct viruses
belonging to 15 viral taxonomic families present in the respiratory samples of Tibetan pigs
with PRDC in this high-altitude area in China, which shows that the viral flora in these ani-
mals were complex and diverse. Among the 18 detected viruses, pathogens associated with
PRDC in pigs, including PCV-2, TTSuV, and PCMV were detected [3,5,27,28]. However, few
mammalian-associated viral sequences were detected in Tibetan pigs from asymptomatic
pigs. This result may be related to the process of sample collection in the asymptomatic
pigs. Compared with the PRDC group, all 66 samples in the control group were from nasal
swabs from asymptomatic pigs. The nasal cavity of Tibetan pigs is relatively shorter than
that of domestic pigs, making it difficult for swabs to penetrate deep into the nasal cavity
for sufficient sample collection. In addition, due to the arid climate and low temperature in
plateau areas, the nasal cavity of Tibetan pigs is quite dry, so it may be difficult to detect
viruses using this collection method. Notably, PRRSV, as one of the primary pathogens
of PRDC [3], was identified as negative in the 101 respiratory samples from Tibetan pigs
with PRDC by RT-PCR. A previous study has demonstrated that Tibetan pigs are much
less susceptible to PRRSV than domestic pigs [29], and, to our knowledge, there have been
no clinical reports of PRRSV infection in Tibetan pigs. Interestingly, the low sequence read
abundance of human gamma herpesvirus 4 (4.39%), fowl aviadenovirus (2.11%), human
betaherpesvirus 7 (0.95%), and tylonycteris bat coronavirus (0.83%) indicates a possible
relationship of disease in these animals with the unique farming model of Tibetan pigs
in this region. The farming model may facilitate the cross-species transmission of viruses
between different animals or the occurrence of zoonotic diseases, which can have important
consequences for disease spread.

PCV2 was first identified in piglets in 1998 [30] and is associated with reproductive
disorders, respiratory diseases, diarrhea, porcine dermatitis and nephropathy syndrome
(PDNS), and postweaning multisystemic wasting syndrome (PMWS), causing considerable
economic losses to the swine industry worldwide [31]. In this study, the PCV2 positivity
rate in Tibetan pigs was 22.8% (23/101), significantly lower than the detection rate (72.22%)
of respiratory samples from domestic pigs in low-altitude areas in Sichuan province [6].
Currently, eight sub-genotypes (PCV2a-PCV2h) have been identified in PCV2 strains with
a genetic p-distance of 0.035 [32]. Since 2012, PCV2d has gradually replaced PCV 2a and
PCV2b as the predominant sub-genotype in China [31]. Phylogenetic analysis indicated
that the two PCV strains identified in Tibetan pigs belong to the PCV2d sub-genotype,
which differs from the PCV2b sub-genotype we identified in Tibetan pigs in 2018 [10],
showing similar prevalent trends in other geographic regions in domestic pigs in China.
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TTSuV is a small circular single-stranded DNA virus with high population diver-
sity [32]. Two TTSuV genotypes are currently prevalent in domestic pigs: Torque teno sus
virus 1 (TTSuV1) and Torque teno sus virus 2 (TTSuV2) [7]. This is the first identification of
TTSuV in Tibetan pigs. Phylogenetic analysis indicated that all TTSuV strains detected in
Tibetan pigs belong to TTSuV2 and could be further divided into TTSuV2a and TTSuV2b
sub-genotypes. Previous studies have shown that TTSuV can serve as an enhancing fac-
tor of co-infection with porcine circovirus and respiratory disease viruses, particularly
PCV2 [7,33,34]. In this study, the TTSuV in Tibetan pigs showed the same positive rate
as PCV2 (22.8%), and among PCV2-positive samples, the proportion of PCV2/TTSuV2
co-infection was as high as 65.2% (15/23), suggesting it is likely the main cause of PRDC in
Tibetan pigs.

Recently, the sequences of circular replication initiation protein-encoding single-
stranded (CRESS) DNA viruses detected from eukaryotic hosts were found to have an
abundant genetic diversity [35]. According to the latest taxonomy of viruses by the In-
ternational Committee on Taxonomy of Viruses (ICTV), the Smacoviridae is a new family
of animal-associated CRESS DNA viruses. There are at least 41 species within six new
genera (Bovismacovirus, Cosmacovirus, Dragsmacovirus, Drosmacovirus, Huchismacovirus, and
Porprismacovirus) in this family, and these species have been found in a wide range of
animals [35,36]. The Porprismacovirus belong to the genus porprismacovirus of Smacoviri-
dae family and have been identified in feces samples from various vertebrates, including
human, porcine, chimpanzee, monkey, bovine, camel, chicken, rat, and sheep [37]. To
identify possible recombination events in the genome of PPMV-SCgz-2022, we detected
recombination using RDP4 (v4) and SIMPLOT (3.5.1) software. The analysis revealed
that PPMV-SCgz-2022 sequences showed remarkably high degrees of certainty of a re-
combination event supported by RDP (3.443 × 10−11), BootScan (1.270 × 10−19), MaxChi
(4.508 × 10−16), Chimaera (1.149 × 10−4), 3Seq (7.771 × 10−15), with all p-values < 0.01.
From the similarity plot, one recombination breakpoint was identified within the PPMV-
SCgz-2022 genome, located in the Rep gene (nt 761) (Figure 5a). This breakpoint separated
the genome of PPMV-SCgz-2022 into two regions, where region A (nt 1-761) was closely
related to swine-origin porprismacoviruses, and region B (nt 762-2575) was closely re-
lated to human-origin porprismacoviruses (Figure 5b). Collectively, the results indicated
that PPMV-SCgz-2022 may have originated from recombination events between Human
16,806 × 66-213 strain and Porcine 17,668 × 82-593 strain. Of note, all reported porprisma-
covirus strains were identified from the fecal matter of various animals using metagenomic
methods [36], suggesting that this virus likely is associated with animal diarrhea disease.
However, in the present study, PPMV-SCgz-2022 was identified in lung samples from
Tibetan pig with PRDC, indicating that the porprismacovirus may also be related to respi-
ratory disease. To date, no porprismacovirus strains have been cultured, limiting further
investigation of their pathogenicity.
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5. Conclusions

In conclusion, this is the first report of the viral communities in PRDC-affected Tibetan
pigs in the plateau region. The results revealed the complexity and diversity of the viral
flora in these animals, and indicate that single infection or co-infection of PCV2 and TTSuV2
are the main causes of PRDC disease in Tibetan pigs. Sequence analysis based on the viral
genomic sequences indicated that the PCV2 strains belonged to PCV2d, and TTSuVs were
classified as TTSuV2a and TTSuV2b genotypes. Because Porprismacoviruses are newly
discovered zoonotic viruses that can infect various animals and humans, surveillance of
these viruses is of great significance for veterinary and public health.
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