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Abstract: This work mainly studies the issue of predefined time and accuracy adaptive fault-tolerant
control for strict-feedback nonlinear systems with multiple faults. The faults in the controlled system
include actuator faults and external system faults. The unknown functions for nonlinear systems
are approximated by fuzzy logic systems (FLSs). And then, according to the backstepping technique
and the predefined time stability theory, an adaptive fuzzy control algorithm is presented, which can
make sure that all closed-loop system signals remain predefined time bound and the tracking error
converges to a predefined accuracy within the predefined time. Ultimately, the effectiveness of the
presented control algorithm is proved through two simulation examples.

Keywords: adaptive fuzzy control; backstepping technique; fault-tolerant control; predefined time
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1. Introduction

For a long time in the past, the adaptive control problem of nonlinear systems has
become a research hotspot. Experts and scholars have proposed many design methods for
controllers, such as adaptive dynamic surface control [1], adaptive backstepping control [2],
sliding mode control [3], and so on. Among these, the adaptive backstepping method can
handle the uncertainty of nonlinear systems, so it is widely used, e.g., [4–6]. However,
when there are complex and unknown nonlinear parts in the controlled system, it is very
difficult to design a suitable controller solely using adaptive backstepping technology.
Therefore, experts have proposed FLSs and neural networks (NNs) as commonly employed
approximation tools, which can effectively solve the issue of model uncertainty in nonlinear
systems in [7–14]. For example, the authors presented an adaptive controller for a class of
high-order nonlinear systems with full state constraints and input saturation by combining
FLSs and backstepping mechanisms in [15].

In fact, for practical control systems, actuator components are prone to malfunctions,
which can affect the performance of the system, such as the ship autopilot [16], the one-link
manipulator [17], the linear motor systems [18], etc. In order to solve this difficulty, experts
have proposed many fault-tolerant control schemes [19–24]. An adaptive fault-tolerant
control method for nonlinear systems with unmodeled dynamics and unknown control
directions was proposed in [25]. In [26], a tuning function control scheme was presented for
nonlinear systems with actuator or sensor faults and mismatched disturbances. In [27,28],
some experts developed fault-tolerant control strategies for robot malfunctions. However,
it is not comprehensive to only consider actuator faults. In reality, there are also external
faults, so scholars have conducted research on fault-tolerant control problems with multiple
faults, such as [29–32]. In [33], the authors studied the adaptive fault-tolerant control
problem for stochastic nonlinear systems with multiple faults and full state constraints.

In the above analysis, only infinite-time fault-tolerant control was considered. However,
in practical applications, the convergence time of the controlled system is often regarded as
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an important indicator for stability analysis. Scholars have conducted extensive research on
the finite-time stability of nonlinear systems [34–38]. A finite-time adaptive fault-tolerant
control strategy was proposed for nonlinear systems with multiple faults in [39]. Due
to the fact that the settling time function of the finite-time stability theory depends on
the initial conditions of the systems, the use of finite-time stability theory has limitations
when the initial conditions are unknown. To solve this problem, experts have presented
the fixed-time stability theory in [40]. After this, many significant milestones have been
achieved [41–45]. In [46], an adaptive fixed-time fault-tolerant controller was presented for
uncertain stochastic nonlinear systems with actuator and sensor faults. Due to the fact that
the boundary of convergence time for the fixed-time stability theory is independent of the
initial conditions of the control systems but limited by design parameters, the application of
the fixed-time theory is limited when the bound function of convergence time is complex.

Thus, in order to overcome this difficult problem, scholars have presented the predefined
time stability theory in [47], in which the upper boundary of its settling time is directly
relevant to the controller parameters and is not associated with initial conditions. Because of
the characteristics of predefined time stability theory, experts have presented many significant
research results. In [48], an adaptive predefined time tracking control strategy was proposed
for switched nonlinear systems. The author presented a predefined time adaptive tracking
controller for nonlinear strict-feedback systems with time-varying output constraints in [49].
In [50], the authors proposed a class of Lyapunov-like conditions for dynamic systems based
on predefined time stability. However, these research results did not consider the occurrence
of faults and external faults in the control systems. This is the research motivation of this work.

Based on the above analysis, this paper designs an adaptive fuzzy controller with
predefined time and accuracy for nonlinear systems with actuator faults and external faults.
According to the predefined time stability theory, FLSs and the backstepping mechanism, an
adaptive fuzzy controller is proposed to ensure that the tracking error meets the predefined
accuracy and all signals in the closed-loop systems are bounded within the predefined time.
The main innovation points of this study are as follows:

(1) Actuator faults and unknown external fault are concerned simultaneously for
strict-feedback nonlinear systems for the first time under the predefined time and accuracy,
and the predefined accuracy of general controlled systems was studied from different
perspectives.

(2) An improved predefined accuracy condition is proposed to ensure the tracking
error converges within the predefined neighborhood and avoid the “singularity problem”
generated during virtual controller differentiation. By using FLSs to approximate the
unknown functions of the controlled systems, the algorithm is optimized and the controller
structure is simplified.

(3) Unlike [51], this work not only considers actuator faults but also external faults.
And unlike [52], the piecewise function in the predefined accuracy condition proposed in
this article is continuous.

The structure of the remaining of the article is as below. The problem formulations
and preliminaries are proposed in Section 2. Section 3 contains the design and stability
analysis of the controller. A numerical simulation example demonstrated the validity of
the control strategy in Section 4. Section 5 provides the conclusion.

2. Problem Formulations and Preliminaries
2.1. Problem Formulation

Take into account the n-order nonlinear systems as outlined below:
ẋi = fi(x̄i) + gi(x̄i)xi+1, i = 1, . . . , n − 1
ẋn = fn(x̄n) + gn

T(x̄n)u + H(t)Γ(x),
y = x1,

(1)
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where x̄i = [x1, . . . , xi]
T ∈ Ri(i = 1, 2, . . . , n), y ∈ R and u = [u1, u2, . . . , uq] ∈ Rq are the

state vector, system output and the control input, respectively; gi(x̄i) denotes the control
gains, gn = [gn1, gn2, . . . , gnq]T ∈ Rq, and where gnj, j = 1, 2, . . . , q is a known constant;
fi(x̄i), i = 1, . . . , n is the unknown smooth nonlinear function; Γ(x) is the system external
fault and the diagonal matrix H(t) ∈ Rn is represented as

H(t) =
{

1, t ≥ Tf ault
0, t < Tf ault

(2)

where Tf ault is the time when the external fault occurred.

Remark 1. The strict-feedback nonlinear systems, as classic controlled systems, have received
widespread attention. A remarkable characteristic is that the i-th order function of the system is
only related to the previous i system states. It can simulate actual industrial systems, such as a
one-link manipulator, automotive control systems, and quadcopters. Meanwhile, strict-feedback
nonlinear systems may have a wide range of uncertainties, which are not linearly parameterized,
making modeling a challenging process. Therefore, it is meaningful to study the control method for
strict-feedback nonlinear systems.

Assumption 1. For the gain function gi(x̄i), i = 1, 2, . . . , n − 1 in systems (1), there are two
known positive constants g

i
and gi, which are the lower and upper bounds of gi(x̄i) and satisfy

0 < g
i
≤ |gi(x̄i)| ≤ gi < ∞. (3)

Assumption 2 ([53]). The expected output tracking signal yr and its i-th order derivative, y(i)r ,
i = 1, 2, . . . , n are continuous, known and bounded.

2.2. Fault Description and Processing

In this article, the actuator faults considered include lock-in-place and loss-of-
effectiveness [54,55].

(1) Lock-in-place model:

uj(t) = uj, j ∈ {j1, . . . , jp} ⊂ {1, 2, . . . , q}, (4)

where uj is a constant expressing the lock-in-place fault; p is the number of actuators
affected by lock-in-place faults.

(2) Loss-of-effectiveness model:

ui(t) = ρiνi(t), i ∈ {j1, . . . , jp} ⊂ {1, 2, . . . , q}, (5)

where νi(t) is the actual actuator signal; ρi is the fault ratio coeffcient; and ρ
i

is the lower
bound of ρi, which is an unknown constant that satisfies ρi ∈ [ρ

i
, 1] and 0 < ρ

i
≤ 1. When

ρi = 1, there is no fault with the i-th actuator.

Remark 2. The loss-of-effectiveness faults concerned in this article are widely present in practical
control systems. Without external disturbances, the loss-of-effectiveness faults can occur due to
long-term operation or mechanical wear, such as a one-link manipulator [16], aircraft systems [56]
and autonomous underwater vehicles (AUVs) [57]. When actuator failure occurs, the controlled
systems may collapse, and the considered fault may suddenly appear and enter the system without
fault diagnosis information. Therefore, this fault is universal and has a wider range of applications.

Then, based on (4) and (5), the input vector u(t) of control systems can be represented as

u(t) = ρν(t) + ζ(u − ρν(t)), (6)



Actuators 2024, 13, 131 4 of 23

where ν(t) = [ν1, . . . , νq(t)]T, u = [u1, . . . , uq]
T, ρ = diag{ρ1, . . . , ρq} and ζ = diag{ζ1, . . . , ζq},

where

ζi =

{
1, i f theactuator f aultsas(4), i.e., ui = ui
0, otherwise.

(7)

The special control framework of the actuator is designed as shown below:

νi(t) = ηi(x)u0, (8)

where u0 is the input signal, and the gain function ηi(x) has a lower bound η
i

and an upper
bound ηi for any x ∈ Rn, that is

0 < η
i
≤ ηi(x) ≤ ηi, i = 1, 2, . . . , q. (9)

2.3. Predefined Time Theory

A generic nonlinear system is outlined below:

ẋ = f (x;ℵ), f (0;ℵ) = 0, x0 = x(0), (10)

which assumes the origin is the equilibrium point; x ∈ Rn indicates the state variable
of systems (10); ℵ ∈ Rb stands for the system parameter; and f : Rn → Rn is the
nonlinear function.

Definition 1 ([58–60]). The original point of system (10) satisfies the fixed-time stability theory,
for ℵ, in which a constant T∗ = T∗(ℵ) > 0 exists that holds ∀x0 ∈ Rn, T(x0) ≤ T∗ for the
settling-time function T : Rn → R. T∗ is known as a predefined time.

Lemma 1 ([52]). For the system (10), a Lyapunov function V(x) satisfies

V̇(x) ≤ − π

rTc

(
V(x)1+ r

2 + V(x)1− r
2

)
+ b, (11)

in which 0 < r < 1, Tc > 0 and b > 0 are constants; then, the system (10) is practical predefined
time stable, and V(x) satisfies V(x) ≤ rbTc

π in the predefined time 2Tc.

2.4. Fuzzy Logic Systems

The FLSs comprises the following rules: Rl : if x1 is Al
1 and x2 is Al

2 and . . . and xn is
Al

n, then y is Bl , l = 1, 2, . . . , N, where x = [x1, . . . , xn]T ∈ Rn is the FLSs input and y ∈ R is
the FLSs output. Al

j and Bl are fuzzy sets, and N denotes the number of rules.
According to singleton funtion, center average defuzzification, and product inference [61],

the FLSs can be indicated as

y(x) =

N
∑

l=1
wl∏

n
j=1 µAl

j
(xj)

N
∑

l=1

[
∏n

j=1 µAl
j
(xj)

] , (12)

where wl = maxy∈RµBl(y), µAl
j
(xj) and µBl (y) are the fuzzy membership functions of the

fuzzy set Al
j and Bl , respectively. The fuzzy basis function is defined as

sl =
∏n

j=1 µAl
j
(xj)

N
∑

l=1

[
∏n

j=1 µAl
j
(xj)

] , (13)
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where the fuzzy membership functions µAl
j
(xj), j = 1, . . . , n are usually defined as

Gaussian-type functions:

µAl
j
(xj) = exp

(
−(xj − ιj)

T(xj − ιj)

τ2
j

)
, (14)

where ιj = [ιj1, . . . , ιjn]
T is the center of the basis function and τj is the width of the

basis function.
The FLSs is represented as

y(x) = WTS(x), (15)

where W = [w1, . . . , wN ]
T , S(x) = [s1(x), . . . , sN(x)]T .

Lemma 2 ([61,62]). For any positive constant ε, and any continuous function f (x) defined in a
compact set ∆, there exists an FLS that satisfies sup

x∈∆
| f (x)− WTS(x)| ≤ ε.

Lemma 3 ([63]). Assume xi ∈ R, i = 1, . . . , n and 0 < c1 ≤ 1, one has

n

∑
i=1

|xi|c1 ≥
(

n

∑
i=1

|xi|
)c1

. (16)

Lemma 4 ([63]). Assume xi ∈ R, i = 1, . . . , n and a2 > 1, we have

n

∑
i=1

|xi|a2 ≥ n1−a2

(
n

∑
i=1

|xi|
)a2

. (17)

Lemma 5 ([64]). For x ∈ R and ∀ω > 0, we have

0 ≤ |x| ≤ ω +
x2

√
x2 + ω2

. (18)

Lemma 6 ([65]). For real variables χ and ι, and any constants a > 0, κ > 0, we have

|χ|a|ι|1−a ≤ bκ|χ|+ (1 − a)κ
−a

1−a |ι|.

Lemma 7 ([66]). For 0 ≤ β ≤ γ, and a > 1, we have

β(γ − β)a ≤ a
a + 1

(γa+1 − βa+1).

3. Adaptive Fuzzy Controller Design

In this section, we construct a predefined-time adaptive fault-tolerant control scheme
to handle nonlinear controlled systems with actuator faults and external faults; the block
diagram is shown in Figure 1.

Firstly, we set up the following coordinate transformations:{
z1 = x1 − yr,
zi = xi − αi−1, 2 ≤ i ≤ n − 1

(19)

in which zi(i = 1, . . . , n) is the tracking error, αi−1(i = 2, . . . , n) is the virtual control signal,
and yr is the tracking signal. The process of controller design consists of n steps:

Step 1: Due to (1) and (19), the ż1 is given as
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ż1 = ẋ1 − ẏr

= f1(x̄1) + g1(x̄1)x2 − ẏr

= f1(x̄1) + g1(x̄1)(z2 + α1)− ẏr. (20)

( ) ( )
( ) ( ) ( ) ( )

1

1

, 1,..., 1,

,

i i i i i i

T

n n n n n

x f x g x x i n

x f x g x u H t x

y x

+= + = -ì
ï

= + + Gí
ï =î

( )i i i( )( )x f x( )i i ii i i( )f xf ( )i i ii i i( )
(n n n((x f x(n n nn n n(f xf (
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Fuzzy logic 
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Virtual controllers 
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2 2
, 1,..., 1i i
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i i i i

z
i n
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a w
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Figure 1. The block diagram of the predefined time adaptive fuzzy controller.

Select the following Lyapunov function

V1 =
1
2

z2
1 +

1
2σ1

θ̃2
1 , (21)

in which θ̃1 = θ1 − θ̂1, θ1 = ||W1||2 is estimated by θ̂1 > 0, and the parameter σ1 > 0 can
be designed.

Then, the differentiation of V1 produces

V̇1 = z1ż1 −
1
σ1

θ̃1
˙̂θ1

= z1( f1(x̄1) + g1(x̄1)(z2 + α1)− ẏr)−
1
σ1

θ̃1
˙̂θ1

= z1(F1 + g1(x̄1)(z2 + α1)−
1
2

z1)−
1
σ1

θ̃1
˙̂θ1, (22)

where F1 = f1(x̄1)− ẏr +
1
2 z1.

Next, according to the definition of FLSs and Lemma 2, WT
1 S1(X1) can be employed

to approximate F1; for ε1 > 0, we have

F1 = WT
1 S1(X1) + δ1(X1), |δ1(X1)| ≤ ε1, (23)

where X1 = [x1, yr, ẏr]T .
Then, by employing Young’s inequality, we have

z1F1 = z1

(
WT

1 S1(X1) + δ1(X1)
)

≤ |z1|(||W1||||S1(X1)||+ ε1)

≤ 1
2a2

1
z2

1θ1ST
1 (X1)S1(X1) +

a2
1

2
+

z2
1

2
+

ε2
1

2
, (24)

where a1 > 0 is a design parameter.
Then, substituting (24) into (22), V̇1 can be derived as
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V̇1 ≤ 1
2a2

1
z2

1θ̂1ST
1 (X1)S1(X1) + g1z1z2 + g1z1α1

− 1
σ1

θ̃1

(
˙̂θ1 −

σ1

2a2
1

z2
1ST

1 (X1)S1(X1)

)
+

a2
1

2
+

ε2
1

2
. (25)

The virtual controller α1 and adaptive law θ̂1 are selected as

α1 = −
z1α̌2

1

g
1

√
z2

1α̌2
1 + ω2

1

, (26)

˙̂θ1 =
σ1

2a2
1

z2
1ST

1 (X1)S1(X1)−
π(3n)

r
2

rTc
θ̂1+r

1 − π

rTc
θ̂1, (27)

where ω1 > 0 is a small parameter and α̌1 is designed as

α̌1 =
1

2a2
1

z1θ̂1ST
1 (X1)S1(X1) +

π(3n)
r
2

rλTc

(
1
2

z2
1

)1+ r
2
+

π

21− r
2 rλTc

Φ1, (28)

where

Φ1 =

{
(z2

1)
1− r

2 , |z1| < λ

(1 + pr)λ−3−rz5
1 − prλ−1−rz3

1, |z1| ≥ λ > 0
(29)

where λ > 0 is predefined accuracy and p > 0 is a constant.
According to Lemma 5 and (26), one has

g1z1α1 = −
g1z2

1α̌2
1

g
1

√
z2

1α̌2
1 + ω2

1

≤ −
z2

1α̌2
1√

z2
1α̌2

1 + ω2
1

≤ ω1 − |z1α̌1|
≤ ω1 − z1α̌1. (30)

(1) If |z1| ≥ λ, based on (28)–(30), we can obtain

−z1α̌1 = − 1
2a2

1
z2

1θ̂1ST
1 (X1)S1(X1)−

π(3n)
r
2 z1

rλTc

(
1
2

z2
1

)1+ r
2
− πz1

21− r
2 rλTc

Φ1

≤ − 1
2a2

1
z2

1θ̂1ST
1 (X1)S1(X1)−

π(3n)
r
2

rTc

(
1
2

z2
1

)1+ r
2

− π

21− r
2 rTc

(
(1 + pr)λ−3−rz5

1 − prλ−1−rz3
1

)
≤ − 1

2a2
1

z2
1θ̂1ST

1 (X1)S1(X1)−
π(3n)

r
2

rTc

(
1
2

z2
1

)1+ r
2

− π

21− r
2 rTc

(
(1 + pr)λ−1−rz3

1 − prλ−1−rz3
1

)
≤ − 1

2a2
1

z2
1θ̂1ST

1 (X1)S1(X1)−
π(3n)

r
2

rTc

(
1
2

z2
1

)1+ r
2
− π

21− r
2 rTc

λ−1−rz3
1

≤ − 1
2a2

1
z2

1θ̂1ST
1 (X1)S1(X1)−

π(3n)
r
2

rTc

(
1
2

z2
1

)1+ r
2
− π

rTc

(
1
2

z2
1

)1− r
2
. (31)
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By employing Assumption 1, one can obtain

g1z1z2 ≤ |g1z1z2|. (32)

Then, substituting (26), (27) and (30)–(32) into (25) yields

V̇1 ≤ 1
2a2

1
z2

1θ̂1ST
1 (X1)S1(X1) + g1z1z2 + ω1 − z1α̌1 +

π(3n)
r
2

σ1rTc
θ̃1θ̂1+r

1

+
π

σ1rTc
θ̃1θ̂1 +

a2
1

2
+

ε2
1

2

≤ −π(3n)
r
2

rTc

(
1
2

z2
1

)1+ r
2
− π

rTc

(
1
2

z2
1

)1− r
2
+

π(3n)
r
2

σ1rTc
θ̃1θ̂1+r

1

+
π

σ1rTc
θ̃1θ̂1 + |g1z1z2|+ b1, (33)

where b1 = ω1 +
a2

1
2 +

ε2
1
2 .

(2) If |z1| < λ, the tracking error z1 enters the predefined neighborhood, achieved the
control, and from (28)–(30), one has

−z1α̌1 = − 1
2a2

1
z2

1θ̂1ST
1 (X1)S1(X1)−

π(3n)
r
2 z1

rλTc

(
1
2

z2
1

)1+ r
2
− πz1

21− r
2 rλTc

Φ1

≤ − 1
2a2

1
z2

1θ̂1ST
1 (X1)S1(X1)−

π(3n)
r
2

rTc

(
1
2

z2
1

)1+ r
2
− π

rTc

(
1
2

z2
1

)1− r
2
, (34)

we can see that the final derivation result of (34) is the same as that of (31). Therefore, for
|z1| ≥ λ and |z1| < λ, we always have the following inequality that holds

V̇1 ≤ −π(3n)
r
2

rTc

(
1
2

z2
1

)1+ r
2
− π

rTc

(
1
2

z2
1

)1− r
2
+

π(3n)
r
2

σ1rTc
θ̃1θ̂1+r

1 +
π

σ1rTc
θ̃1θ̂1

+|g1z1z2|+ b1. (35)

Step i (i = 2, . . . , n − 1): From (1) and (19), żi is

żi = ẋi − α̇i−1

= fi(x̄i) + gi(x̄i)xi+1 − α̇i−1

= fi(x̄i) + gi(x̄i)(zi+1 + αi)− α̇i−1. (36)

Consider the Lyapunov function as follows:

Vi = Vi−1 +
1
2

z2
i +

1
2σi

θ̃2
i , (37)

in which θ̃i = θi − θ̂i, θi = ||Wi||2 is estimated by θ̂i > 0, and the parameter σi > 0 can
be designed.

Then, we can obtain V̇i as

V̇i = V̇i−1 + zi żi −
1
σi

θ̃i
˙̂θi

= V̇i−1 + zi( fi(x̄i) + gi(zi+1 + αi)− α̇i−1)−
1
σi

θ̃i
˙̂θi

= V̇i−1 + zi

(
Fi + gi(zi+1 + αi)−

1
2

zi

)
− 1

σi
θ̃i

˙̂θi, (38)

where Fi = fi(x̄i)− α̇i−1 +
1
2 zi.
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Next, the FLSs WTSi(Xi) are exploited to model Fi, and one can yield

Fi = WT
i Si(Xi) + δi(Xi), |δi(Xi)| ≤ εi, (39)

where εi > 0 is given, Xi = [x1, . . . , xi, yr, ẏr, . . . , y(i)r ]T .
Then, by utilizing Young’s inequality, we can obtain

ziFi = zi

(
WT

i Si(Xi) + δi(Xi)
)

≤ |zi|(||Wi||||Si(Xi)||+ εi)

≤ 1
2a2

i
z2

i θiST
i (Xi)Si(Xi) +

a2
i

2
+

z2
i

2
+

ε2
i

2
, (40)

where ai > 0 is a constant.
Substituting (40) into (38), one has

V̇i ≤ V̇i−1 +
1

2a2
i

z2
i θ̂iST

i (Xi)Si(Xi) + gizizi+1 + giziαi

− 1
σi

θ̃i

(
˙̂
iθ −

σi

2a2
i

z2
i ST

i (Xi)Si(Xi)

)
+

a2
i

2
+

ε2
i

2
. (41)

Choose the virtual controller αi and adaptive law θ̂i as

αi = − 1
g

i

(
zi α̌

2
i√

z2
i α̌2

i +ω2
i
+

z2
i−1 ḡ2

i−1zi√
z2

i−1 ḡ2
i−1z2

i +ω2
i

)
, (42)

˙̂θi =
σi

2a2
i

z2
i ST

i (Xi)Si(Xi)−
π(3n)

r
2

rTc
θ̂1+r

i − π

rTc
θ̂i, (43)

in which ωi > 0 is a small parameter and α̌i is designed as

α̌i =
1

2a2
i

zi θ̂iST
i (Xi)Si(Xi) +

π(3n)
r
2

rλTc

(
1
2

z2
i

)1+ r
2
+

π

21− r
2 rλTc

Φi, (44)

where

Φi =

{
(z2

i )
1− r

2 , |zi| < λ

(1 + pr)λ−3−rz5
i − prλ−1−rz3

i , |zi| ≥ λ > 0
(45)

According to Lemma 5 and (42), we have

giziαi = −
giz2

i α̌2
i

g
i

√
z2

i α̌2
i + ω2

i

−
giz2

i−1 ḡ2
i−1z2

i

g
i

√
z2

i−1 ḡ2
i−1z2

i + ω2
i

≤ 2ωi − |ziα̌i| − |ḡi−1zi−1zi|
≤ 2ωi − ziα̌i − |ḡi−1zi−1zi|. (46)

(1) If |zi| ≥ λ > 0, from (44)–(46) and similar to (31), one has

−ziα̌i = − 1
2a2

i
z2

i θ̂iST
i (Xi)Si(Xi)−

π(3n)
r
2 zi

rλTc

(
1
2

z2
i

)1+ r
2
− πzi

21− r
2 rλTc

Φi

≤ − 1
2a2

i
z2

i θ̂iST
i (Xi)Si(Xi)−

π(3n)
r
2

rTc

(
1
2

z2
i

)1+ r
2
− π

rTc

(
1
2

z2
i

)1− r
2
. (47)
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By utilizing Assumption 1, we can obtain

gizizi+1 ≤ |ḡizizi+1|. (48)

Then, bringing (42), (43) and (46)–(48) into (41), one has

V̇i ≤ V̇i−1 +
1

2a2
i

z2
i θ̂iST

i (Xi)Si(Xi) + gizizi+1 + 2ωi − ziα̌i − |ḡi−1zi−1zi|

+
π(3n)

r
2

σirTc
θ̃i θ̂

1+r
i +

π

σirTc
θ̃i θ̂i +

a2
i

2
+

ε2
i

2

≤ −
i−1

∑
j=1

π(3n)
r
2

rTc

(
1
2

z2
j

)1+ r
2
−

i−1

∑
j=1

π

rTc

(
1
2

z2
j

)1− r
2
+

i−1

∑
j=1

π(3n)
r
2

σjrTc
θ̃j θ̂

1+r
j

+
i−1

∑
j=1

π

σjrTc
θ̃j θ̂j + |ḡ−1zi−1zi| −

π(3n)
r
2

rTc

(
1
2

z2
i

)1+ r
2
+ bi−1 −

π

rTc

(
1
2

z2
i

)1− r
2

+
π(3n)

r
2

σirTc
θ̃i θ̂

1+r
i +

π

σirTc
θ̃i θ̂i + |ḡizizi+1| − |ḡi−1zi−1zi|+

a2
i

2
+

ε2
i

2
+ 2ωi

≤ −
i

∑
j=1

π(3n)
r
2

rTc

(
1
2

z2
j

)1+ r
2
−

i

∑
j=1

π

rTc

(
1
2

z2
j

)1− r
2
+

i

∑
j=1

π(3n)
r
2

σjrTc
θ̃j θ̂

1+r
j

+
i

∑
j=1

π

σjrTc
θ̃j θ̂j + |ḡizizi+1|+ bi, (49)

where bi = bi−1 +
a2

i
2 +

ε2
i

2 + 2ωi.
(2) If |zi| < λ, according to (44)–(46), we can obtain

−ziα̌i = − 1
2a2

i
z2

i θ̂iST
i (Xi)Si(Xi)−

π(3n)
r
2 zi

rλTc

(
1
2

z2
i

)1+ r
2
− πzi

21− r
2 rλTc

Φi

≤ − 1
2a2

i
z2

i θ̂iST
i (Xi)Si(Xi)−

π(3n)
r
2

rTc

(
1
2

z2
i

)1+ r
2
− π

rTc

(
1
2

z2
i

)1− r
2
, (50)

the inequality (50) is the same as inequality (47).
Therefore, based on the above derivation of situation (1) and situation (2), one has

V̇i ≤ −
i

∑
j=1

π(3n)
r
2

rTc

(
1
2

z2
j

)1+ r
2
−

i

∑
j=1

π

rTc

(
1
2

z2
j

)1− r
2
+

i

∑
j=1

π(3n)
r
2

σjrTc
θ̃j θ̂

1+r
j

+
i

∑
j=1

π

σjrTc
θ̃j θ̂j + |ḡizizi+1|+ bi. (51)

Step n: The controller will be presented in this step. Similar to Step i, one can obtain żn:

żn = ẋn − α̇n−1

= fn(x̄n) + gT
n u + H(t)Γ(x)− α̇n−1. (52)

From (6) and (8), we have

gT
n u = gT

n (ρν(t) + ζ(u − ρν(t)))
= gT

n ((1 − ζ)ρν(t) + ζu)
= ∑

j ̸=j1,...,jp

ρjgnjηju0 + ∑
j=j1,...,jp

gnjuj

= g f u0 + u f , (53)
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where g f = ∑
j ̸=j1,...,jp

ρjgnjηj and u f = ∑
j=j1,...,jp

gnjuj.

The Lyapunov function candidate function is chosen as shown below:

Vn = Vn−1 +
1
2

z2
n +

1
2σn

θ̃2
n +

1
2σ

κ̃2, (54)

where θ̃n = θn − θ̂n, κ̃ = κ − κ̂; θn = ||Wn||2 and κ = ||W||2 are estimated by θ̂i > 0 and
κ̂ > 0; the parameters σi > 0 and σ > 0 can be designed.

Then, the time differentiation of Vn is

V̇n = V̇n−1 + zn żn −
1
σn

θ̃n
˙̂θn −

1
σ

κ̃ ˙̂κ

= V̇n−1 + zn( fn(x̄n) + g f u0 + u f + H(t)Γ(x)− α̇n−1)−
1
σn

θ̃n
˙̂θn −

1
σ

κ̃ ˙̂κ

= V̇n−1 + zn

(
Fn + g f u0 + u f + H(t)Γ(x)− zn

)
− 1

σn
θ̃n

˙̂θn −
1
σ

κ̃ ˙̂κ, (55)

where Fn = fn(x̄n)− α̇n−1 + zn.
Then, based on FLSs and Lemma 2, WT

n Sn(Xn) and ΦTS(X) are used to model Fn and
Γ(x), respectively. For the given εn > 0 and δ̄ > 0, we have

Fn = WT
n Sn(Xn) + δn(Xn), |δn(Xn)| ≤ εn, (56)

Γ(x) = ΦTS(X) + δ(X), |δ(X)| ≤ δ̄, (57)

where Xn = [x1, . . . , xn, yr, ẏr, . . . , y(n)r ]T , X = [x1, x2, . . . , xn]T .
Then, by utilizing Young’s inequality, it can be obtained that

znFn ≤ 1
2a2

n
z2

nθnST
n (Xn)Sn(Xn) +

a2
n

2
+

z2
n
2

+
ε2

n
2

, (58)

zn H(t)Γ(x) ≤ 1
2a2 z2

nκST(X)S(X) +
a2

2
+

z2
n
2

+
δ̄2

2
, (59)

where an > 0 and a > 0 are design constants.
Next, bringing (58) and (59) into (55), one can obtain

V̇n ≤ V̇n−1 +
1

2a2
n

z2
n θ̂nST

n (Xn)Sn(Xn) +
1

2a2 z2
nκ̂ST(X)S(X) + zn

(
g f u0 + u f

)
− 1

σn
θ̃n

(
˙̂θn −

σn

2a2
n

z2
nST

n (Xn)Sn(Xn)

)
− 1

σ
κ̃
(

˙̂κ − σ

2a2 z2
nST(X)S(X)

)
+

a2
n

2
+

ε2
n
2

+
a2

2
+

δ̄2

2
. (60)

We define the control law as
u0 = αn + uF, (61)

in which

αn = − 1
g f

 znα̌2
n√

z2
nα̌2

n + ω2
n
+

z2
n−1 ḡ2

n−1zn√
z2

n−1 ḡ2
n−1z2

n + ω2
n

− 1
g f

u f , (62)

uF = − 1
2g f a2 κ̂znST(X)S(X), (63)
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where ωn > 0 is a small parameter and α̌n is selected as

α̌n =
1

2a2
n

zn θ̂nST
n (Xn)Sn(Xn) +

π(3n)
r
2

rλTc

(
1
2

z2
n

)1+ r
2
+

π

21− r
2 rλTc

Φn, (64)

where Φn is designed as

Φn =

{
(z2

n)
1− r

2 , |zn| < λ

(1 + pr)λ−3−rz5
n − prλ−1−rz3

n, |zn| ≥ λ > 0
(65)

The adaptive law θ̂n and κ̂ are constructed separately as

˙̂θn =
σn

2a2
n

z2
nST

n (Xn)Sn(Xn)−
π(3n)

r
2

rTc
θ̂1+r

n − π

rTc
θ̂n, (66)

˙̂κ =
σ

2a2 z2
nST(X)S(X)− π3

r
2

rTc
κ̂1+r − π

rTc
κ̂. (67)

According to (62), (63) and Lemma 5, we have

zng f αn ≤ − z2
nα̌2

n√
z2

nα̌2
n + ω2

n
−

z2
n−1 ḡ2

n−1z2
n√

z2
n−1 ḡ2

n−1z2
n + ω2

n

− znu f

≤ 2ωn − |znα̌n| − |ḡn−1zn−1zn| − znu f

≤ 2ωn − znα̌n − |ḡn−1zn−1zn| − znu f , (68)

zng f uF ≤ − 1
2a2 κ̂z2

nST(X)S(X). (69)

Similar to Step i, when |zn| ≥ λ > 0 or |zn| < λ, substituting (64)–(69) into (60) yields

V̇n ≤ V̇n−1 +
1

2a2
n

z2
n θ̂nST

n (Xn)Sn(Xn) + 2ωn − znα̌n +
1

2a2 z2
nκ̂ST(X)S(X)

−|ḡn−1zn−1zn|+ zng f uF +
π(3n)

r
2

σnrTc
θ̃n θ̂1+r

n +
π

σnrTc
θ̃n θ̂n +

π3
r
2

σrTc
κ̃κ̂1+r

+
π

σrTc
κ̃κ̂ +

1
2

a2
n +

1
2

ε2
n +

1
2

a2 +
1
2

δ̄2

≤ −
n−1

∑
j=1

π(3n)
r
2

rTc

(
1
2

z2
j

)1+ r
2
−

n−1

∑
j=1

π

rTc

(
1
2

z2
j

)1− r
2
+

n−1

∑
j=1

π(3n)
r
2

σjrTc
θ̃j θ̂

1+r
j +

n−1

∑
j=1

π

σjrTc
θ̃j θ̂j

+|ḡn−1zn−1zn|+ bn−1 −
π(3n)

r
2

rTc

(
1
2

z2
n

)1+ r
2
− π

rTc

(
1
2

z2
n

)1− r
2
− |ḡn−1zn−1zn|

+
π(3n)

r
2

σnrTc
θ̃n θ̂1+r

n +
π

σnrTc
θ̃n θ̂n +

π3
r
2

σrTc
κ̃κ̂1+r +

π

σrTc
κ̃κ̂ +

a2
n

2
+

ε2
n
2

+
a2

2
+

δ̄2

2
+ 2ωn

≤ −
n

∑
j=1

π(3n)
r
2

rTc

(
1
2

z2
j

)1+ r
2
−

n

∑
j=1

π

rTc

(
1
2

z2
j

)1− r
2
+

n

∑
j=1

π(3n)
r
2

σjrTc
θ̃j θ̂

1+r
j +

n

∑
j=1

π

σjrTc
θ̃j θ̂j

+
π3

r
2

σrTc
κ̃κ̂1+r +

π

σrTc
κ̃κ̂ + bn, (70)

where bn = bn−1 +
a2

n
2 + ε2

n
2 + a2

2 + δ̄2

2 + 2ωn.

Theorem 1. For the nonlinear systems (1) with actuator faults and external faults, when the virtual
control signals (26), (42), the actual control (61) and the adaptive laws (27), (43), (66) and (67)
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are adopted. By designing appropriate parameters, all signals defined in these closed-loop systems
maintain boundedness and z1 will converge to a predefined accuracy λ within a predefined time 2Tc.

Proof of Theorem 1. According to Lemma 4, Lemma 7 and 0 < r < 1, we can deduce that

n

∑
j=1

π(3n)
r
2

σjrTc
θ̃j θ̂

1+r
j ≤

n

∑
j=1

1 + r
2 + r

π(3n)
r
2

σjrTc

(
θj

2+r − θ̃2+r
j

)
≤

n

∑
j=1

π(3n)
r
2

σjrTc

(
θj

2+r − θ̃2+r
j

)

≤
n

∑
j=1

π(3n)
r
2

σjrTc
θj

2+r −
n

∑
j=1

π3
r
2

rTc

(
θ̃2

j

2σj

)1+ r
2

. (71)

Similarly, it can be derived that

π3
r
2

σrTc
κ̃κ̂1+r ≤ π3

r
2

σrTc
κ2+r − π3

r
2

rTc

(
κ̃2

2σ

)1+ r
2

. (72)

By using Young’s inequality, we have

θ̃j θ̂j ≤
1
2

θj
2 − 1

2
θ̃2

j , (73)

κ̃κ̂ ≤ 1
2

κ2 − 1
2

κ̃2. (74)

Substituting (71)–(74) into (70) yields

V̇n ≤ −
n

∑
j=1

π(3n)
r
2

rTc

(
1
2

z2
j

)1+ r
2
−

n

∑
j=1

π

rTc

(
1
2

z2
j

)1− r
2
−

n

∑
j=1

π3
r
2

rTc

(
θ̃2

j

2σj

)1+ r
2

−π3
r
2

rTc

(
κ̃2

2σ

)1+ r
2

−
n

∑
j=1

π

2σjrTc
θ̃2

j −
π

2σrTc
κ̃2 +

π

rTc

(
n

∑
j=1

θ̃2
j

2σj

)1− r
2

− π

rTc

(
n

∑
j=1

θ̃2
j

2σj

)1− r
2

+
π

rTc

(
κ̃2

2σ

)1− r
2

− π

rTc

(
κ̃2

2σ

)1− r
2

+
n

∑
j=1

π(3n)
r
2

σjrTc
θj

2+r

+
π3

r
2

σrTc
κ2+r +

n

∑
j=1

π

2σjrTc
θ2

j +
π

2σrTc
κ2 + bn. (75)

By using Lemma 6, one can obtain

π

rTc

(
n

∑
j=1

θ̃2
j

2σj

)1− r
2

≤ π

rTc

n

∑
j=1

θ̃2
j

2σj
+

π

2Tc

(
2

2 − r

) r−2
r

, (76)

π

rTc

(
η̃2

2σ

)1− r
2

≤ π

rTc

κ̃2

2σ
+

π

2Tc

(
2

2 − r

) r−2
r

. (77)

Based on Lemmas 3 and 4, we have
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−
n

∑
j=1

π

rTc

(
1
2

z2
j

)1− r
2
− π

rTc

(
n

∑
j=1

θ̃2
j

2σj

)1− r
2

− π

rTc

(
κ̃2

2σ

)1− r
2

≤ − π

rTc

[
n

∑
j=1

1
2

z2
j +

n

∑
j=1

θ̃2
j

2σj
+

κ̃2

2σ

]1− r
2

, (78)

−
n

∑
j=1

π(3n)
r
2

rTc

(
1
2

z2
j

)1+ r
2
−

n

∑
j=1

π3
r
2

rTc

(
θ̃2

j

2σj

)1+ r
2

− π3
r
2

rTc

(
κ̃2

2σ

)1+ r
2

≤ − π

rTc

[
n

∑
j=1

1
2

z2
j +

n

∑
j=1

θ̃2
j

2σj
+

κ̃2

2σ

]1+ r
2

. (79)

Substituting (76)–(79) into (75), one has

V̇n ≤ − π

rTc

[
n

∑
j=1

1
2

z2
j +

n

∑
j=1

θ̃2
j

2σj
+

κ̃2

2σ

]1+ r
2

− π

rTc

[
n

∑
j=1

1
2

z2
j +

n

∑
j=1

θ̃2
j

2σj
+

κ̃2

2σ

]1− r
2

+
n

∑
j=1

π(3n)
r
2

σjrTc
θj

2+r +
π3

r
2

σrTc
κ2+r +

π

Tc

(
2

2 − r

) r−2
r
+

n

∑
j=1

π

2σjrTc
θ2

j

+
π

2σrTc
κ2 + bn

≤ − π

rTc

(
V1+ r

2
n + V1− r

2
n

)
+ b, (80)

where b =
n
∑

j=1

π(3n)
r
2

σjrTc
θj

2+r + π3
r
2

σrTc
κ2+r + π

Tc

( 2
2−r
) r−2

r +
n
∑

j=1

π
2σjrTc

θ2
j +

π
2σrTc

κ2 + bn.

Therefore, when |zi| ≥ λ or |zi| < λ, we can both obtain

V̇n = − π

rTc

(
V1+ r

2
n + V1− r

2
n

)
+ b. (81)

From Lemma 1, we have

|z1| ≤
√

2rbTc

π
, (82)

this means that z1 is bounded within the predefined-time 2Tc.
And then based on (54), (81) and Lemma 1, we can deduce that Vn, θ̃i and κ̃ are

bounded, and zi satisfies |zi| ≤ λ within predefined time 2Tc. According to Assumption 2
and the boundedness of z1, we can see that x1 is bounded. Because θi is a constant and θ̃i is
bounded, we can obtain that θ̂i is bounded. Due to the boundedness of κ̃ and the constant
κ, we can deduce that κ̂ is bounded. Since zi and αi−1, i = 2, . . . , n are bounded from (26)
and (42), so the boundedness of xi follows from xi = zi + αi−1. On the basis of the above
discussion and analysis, all signals of the closed-loop systems maintain boundedness. This
completes the proof.

4. Simulation

Example 1. Consider a second-order strict feedback nonlinear system as outlined below:
ẋ1 = f1(x̄1) + g1(x̄1)x2,
ẋ2 = f2(x̄2) + gT

2 u + H(t)Γ(x),
y = x1,

(83)
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where f1(x̄1) = x2
1 cos(x1), g1(x̄1) = 2+ x2

1, f2(x̄2) = x1 cos(x1x2)− x2
1x2ex2 , g2 = [g21 , g22 ]

T

and u = [u1, u2].
The virtual control signal α1 and the actual controller u0 are constructed as shown below:

α1 = −
z1α̌2

1

g
1

√
z2

1α̌2
1 + ω2

1

, (84)

u0 = α2 + uF

= − 1
g f

 z2α̌2
2√

z2
2α̌2

2 + ω2
2

+
z2

1 ḡ2
1z2√

z2
1 ḡ2

1z2
2 + ω2

2

+ u f +
1

2a2 κ̂z2ST(X)S(X)

. (85)

The adaptive laws are constructed as shown below:

˙̂θ1 =
σ1

2a2
1

z2
1ST

1 (X1)S1(X1)−
π(3n)

r
2

rTc
θ̂1+r

1 − π

rTc
θ̂1, (86)

˙̂θ2 =
σ2

2a2
2

z2
2ST

2 (X2)S2(X2)−
π(3n)

r
2

rTc
θ̂1+r

2 − π

rTc
θ̂2, (87)

˙̂κ =
σ

2a2 z2
2ST(X)S(X)− π3

r
2

rTc
κ̂1+r − π

rTc
κ̂. (88)

The block diagram of a predefined-time adaptive fuzzy controller is shown in Figure 2.
The initial conditions and parameters of the controlled system (83) are presented in Table 1.

Three sets of predefined time are set to 2Tc = 2, 2Tc = 4 and 2Tc = 6. The reference signal is selected
as yr = 0.5(sin(0.5t)− sin(t)). The actuator faults are set to u1 = 0.6v1 and u2 = ū2 = 10 for
t ≥ 7 s, and the external fault occurs at Tf ault = 15 s.

The simulation results are presented in Figures 3–7. Figure 3 represents the system output y
and the tracking signal yr. Figure 4 shows the trajectory of the tracking error z1. Figure 5 displays
the trajectory of the system state x2. Figure 6 displays the trajectories of the actual control inputs u1
and u2. Figure 7 is the curves of adaptive parameters θ̂1, θ̂2 and κ̂. Based on the simulation results,
we can draw the conclusion that all the closed-loop system signals remain bounded and the tracking
error can converge to a predefined accuracy within the predefined time.

Table 1. Parameters of simulation Example 1.

Parameters Value Parameters Value

x1(0) 0.05 x2(0) 0.02
n 2 p 0.1

g21 1 g21 1
r 0.35 g

1
1

ḡ1 3 ω1 0.3
ω2 0.3 a1 5
a2 5 a 5
σ1 5 σ2 1.5
σ 1.5 λ 0.1
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Figure 2. The block diagram of predefined time adaptive fuzzy controller for Example 1.
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Figure 3. System output y and reference signal yr of Example 1.

Example 2. For the one-link manipulator with multiple faults:{
Dq̈ + Bq̇ + N sin(q) = τ

Mτ̇ + Hτ = gTu + H(t)Γ(x)− Km q̇,
(89)

where q stands for the link position, q̇ expresses the velocity, and q̈ is the acceleration; τ is the torque
produced by the motor and u = [u1, u2] is the control input with multiple faults. The parameters
are selected to D = B = M = 1, N = H = 10, Km = 2. Then, we make x1 = q, x2 = q̇ = ẋ1
and x3 = τ, and the system (89) can be rewritten as

ẋ1 = f1(x̄1) + g1(x̄1)x2
ẋ2 = f2(x̄2) + g2(x̄2)x3
ẋ3 = f3(x̄3) + gTu + H(t)Γ(x)
y = x1

(90)

where g1(x̄1) = g2(x̄2) = 1, g = [1, 2]T , f1(x̄1) = 0, f2(x̄2) = −x2 − 10 sin(x1) + x2
1 cos(x2),

f3(x̄3) = −2x2 − 10x3.
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The block diagram of predefined-time adaptive fuzzy controller is diplayed in Figure 8.
The initial values and adjustable parameters of (90) are represented in Table 2. The predefined

times are set to 2Tc = 4 and 2Tc = 6. The reference signal is yr = 0.5(sin(0.5t)− sin(t)). The
actuator faults are set to u1 = 0.6v1 and u2 = ū2 = 15 for t ≥ 5 s, and the external fault occurs at
Tf ault = 10 s.

The simulation results are shown in Figures 9–13, in which the system output y and tracking
signal yr are represented in Figure 9, Figure 10 displays the tracking error z1, Figure 11 is the
trajectory of the system states x2 and x3, actual control inputs u1 and u2 are displayed in Figure 12,
and Figure 13 expresses the curves of adaptive parameters θ̂1, θ̂2, θ̂3 and κ̂. According to the results,
we can conclude that all the closed-loop system signals meet the predefined time-bound conditions
and the tracking error can converge to a predefined neighborhood.

0 5 10 15 20 25 30

Time (sec)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 4. Tracking error z1 of Example 1.
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Time (sec)

-1.5

-1
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0

0.5

1

Figure 5. State variable x2 of Example 1.
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Figure 6. The actual control inputs u1 and u2 of Example 1.
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Figure 7. Adaptive laws θ̂1, θ̂2 and κ̂.

Table 2. Parameters of simulation Example 2.

Parameters Value Parameters Value

x1(0) 0.01 x2(0) 0.02
x3(0) 0.01 n 3

p 10 g31 1
g32 2 r 0.1
g

1
1 ḡ1 1

ω1 0.1 ω2 0.1
a1 1 a2 1
a3 1 a 1.5
σ1 5 σ2 10
σ3 10 σ 10
λ 0.15
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Figure 8. The block diagram of predefined time adaptive fuzzy controller for Example 2.
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Figure 9. System output y and reference signal yr of Example 2.
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Figure 10. Tracking error z1 of Example 2.
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Figure 11. State variable x2 of Example 2.
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Figure 12. The actual control inputs u1 and u2 of Example 2.
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Figure 13. Adaptive laws θ̂1, θ̂2 and κ̂ of Example 2.
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Therefore, Examples 1 and 2 demonstrate the effectiveness of the control strategy
presented in this paper.

5. Conclusions

In this research, the predefined time and accuracy adaptive fault-tolerant control
problem has been investigated for a class of strict-feedback nonlinear systems with multiple
faults. FLSs were employed to model the unknown parts of the systems. Based on the
predefined time theory, a condition has been proposed that enables the tracking error to
converge to the expected accuracy within predefined time while avoiding singularity issues.
Combined with the backstepping mechanism, an adaptive fault-tolerant control strategy
has been presented. The controller can ensure that all signals in the closed-loop system are
bounded, and the tracking error meets the requirements of predefined accuracy and time.
The results of two numerical simulation examples proved the effectiveness of the presented
control strategy.

In addition, in future learning and research, we will extend the control strategy
proposed in this article to fractional-order systems.
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