
Citation: Li, C.; Wen, C. A Novel

Extended Unscented Kalman Filter Is

Designed Using the Higher-Order

Statistical Property of the

Approximate Error of the System

Model. Actuators 2024, 13, 169.

https://doi.org/10.3390/act13050169

Academic Editors: Xuerui Wang and

Erik-Jan Van Kampen

Received: 18 March 2024

Revised: 22 April 2024

Accepted: 25 April 2024

Published: 1 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

A Novel Extended Unscented Kalman Filter Is Designed Using
the Higher-Order Statistical Property of the Approximate Error
of the System Model
Chengyi Li 1 and Chenglin Wen 2,*

1 School of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132000, China;
lichengyi@jlict.edu.cn

2 School of Automation, Guangdong University of Petrochemical Technology, Maoming 525000, China
* Correspondence: wencl@gdupt.edu.cn

Abstract: In the actual working environment, most equipment models present nonlinear character-
istics. For nonlinear system filtering, filtering methods such as the Extended Kalman Filter (EKF),
Unscented Kalman Filter (UKF), and Cubature Kalman Filter (CKF) have been developed successively,
all of which show good results. However, in the process of nonlinear system filtering, the performance
of EKF decreases with an increase in the truncation error and even diverges. With improvement
of the system dimension, the sampling points of UKF are relatively few and unrepresentative. In
this paper, a novel high-order extended Unscented Kalman Filter (HUKF) based on an Unscented
Kalman Filter is designed using the higher-order statistical properties of the approximate error. In
addition, a method for calculating the approximate error of the multi-level approximation of the
original function under the condition that the measurement is not rank-satisfied is proposed. The
effectiveness of the filter is verified using digital simulation experiments.

Keywords: UKF; least squares; approximate error; state estimation; nonlinear Gaussian system

1. Introduction

The state estimation is usually implemented by a filter, which uses real-time measure-
ments and dynamic models of the system to improve the data accuracy and obtain the
estimated state of the system [1]. In 1960, Kalman proposed a filtering method for linear
systems that was soon widely used [2]. It is a time-domain filtering method that describes
the target system using a state-space approach and a minimum mean square error (MSE)
recursive form [3]. Kalman filtering is a state estimation method that has been widely
used in the areas of signal processing, autonomous navigation, and fault diagnosis [2]. KF
is optimal for linear filtering and less effective for nonlinear filtering [4]. However, in a
practical context, almost all systems are nonlinear [5]. Therefore, with the wide application
of Kalman filtering algorithms in engineering practice, Kalman filtering has struggled to
meet practical needs. In order to solve the problem of the poor performance of Kalman
filtering in dealing with nonlinear systems, the extended Kalman filter (EKF) was proposed
by combining Kalman filtering and the Taylor expansion method [6]. It effectively solves
the problem of divergence of the Kalman filtering algorithm in nonlinear Gaussian systems.
However, because the extended Kalman filtering algorithm only takes the first-order Jacobi
matrix and ignores the higher-order terms in the Taylor expansion in the process of con-
verting a nonlinear system to a linear system [7], a truncation error is introduced, and the
accumulation of errors in the error covariance matrix during the linearization process also
inevitably leads to a loss of filtering accuracy [8]. For strongly nonlinear systems, the Jacobi
matrix is not a suitable approximation and may cause the EKF estimation to deviate from
the true state trajectory, leading to poor estimation and numerical instability [9]. In order to
solve the problem that the truncation error of the extended Kalman filter affects the filtering
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accuracy, Fredrik Gustafsson et al. [10] proposed the use of a second-order compensation
EKF to approximate the residual term and improve the filtering accuracy by compensat-
ing the mean and variance of the estimated term. O. A. Stepanov et al. [11] proposed a
polynomial filter to improve the estimation accuracy in the case of quadratic nonlinearity
and reduce the impact of the error caused by the linearization process. Although these
methods improve the estimation accuracy, they require extensive calculation and increase
the computational burden owing to the improvement of the order of truncation error. To
solve the problems associated with the extended Kalman filter, in 1995, Julier proposed the
Unscented Kalman filter (UKF) [12]. The main difference between the EKF and UKF is the
model linearization method [13]. The core of the UKF algorithm is the UT transform [14],
which is used to linearize a nonlinear function by nonlinearly influencing the sampling
points [15]. The UKF can approximate the statistical mean and covariance of any nonlinear-
ity up to the third order [9], although both the EKF and UKF can approximate nonlinear
models up to the second order [15]. The UKF is becoming promising, as it performs better
in terms of convergence rate and estimation accuracy compared with the EKF [16]. The
strength of the UKF lies in the accuracy and efficiency of computation [17]. It is highly
accurate for the computation of nonlinear distribution statistics because it is not necessary
to solve the Jacobi matrix and round off the higher-order term information. Owing to
these advantages, the UKF is widely used in state tracking, signal processing, and fault
diagnosis [18].

For an exploratory study of Unscented Kalman filtering methods, Stojanovski et al. [19]
proposed an extended UKF based on Unscented Kalman filtering, which considers asym-
metric sample points and weights to match third-order and fourth-order moments in
addition to the mean and covariance to improve the performance. Cui et al. [8] proposed a
sampling design method based on the advantages of statistical sampling of the UKF and
random sampling of the EnKF to overcome the shortcomings of both.

In practical applications, as the degree of nonlinearity increases, the sampling infor-
mation of the unscented Kalman filter is relatively reduced, the sampling point is no longer
representative, and the prediction accuracy is reduced. In this case, the sampling point
selection process will inevitably introduce errors, and the use of this error information is
constantly identified and brought into the Unscented Kalman filtering algorithm from the
theoretical point of view of the analysis. The results produced by this method are better
than those from standard Unscented Kalman filtering, but it is unclear how this information
should be used.

The new filter proposed in this paper, based on the Unscented Kalman filtering
algorithm, makes use of the statistical characteristics of the approximate error of the system
model to improve the precision of the state estimation, namely HUKF. The traditional
Unscented Kalman Filter weights and sums the predicted values of a series of sampling
points by sigma sampling at the predicted values to fit the true values. However, owing to
the unknown state true values in the process, approximate errors are inevitably introduced
when the predicted estimates replace the true values to solve the prediction errors. The
method proposed in this paper identifies the higher-order statistical characteristics of the
approximate error and applies them to the process of state prediction to improve prediction
accuracy and stability.

A method for calculating the approximate error of the multi-level approximation
of the original function under the condition that the measurement is not rank-satisfied
(under-measurement) is also proposed.

The remaining parts of this paper are organized as follows. Section 2 is used to
introduce the Unscented Kalman Filter algorithm. In Section 3, we introduce the proposed
method (an Unscented Kalman Filter with a higher-order approximate error). In Section 4,
the performance of the traditional Unscented Kalman Filter and the proposed method is
analyzed. Section 5 presents a numerical simulation. The effectiveness of the proposed
method is verified by the simulation when the state equation and the measurement equation
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are in the same dimension and by the simulation when the dimension is different. Section 6
provides a conclusion.

2. Unscented Kalman Filtering Algorithm

The Unscented Kalman filtering algorithm is divided into a prediction step and an
update step, and the specific update process is as follows.

Forecasting phase:

For systems where both the equations of state and measurement are nonlinear, the
equations of state and measurement of the system are simplified to the two Equations in (1)
and (2) for simplicity of operation:

x(k + 1) = f (x(k)) + w(k) (1)

y(k + 1) = h(x(k + 1)) + v(k + 1) (2)

where x(k) ∈ Rn×1 is the n-dimensional state vector at time k, y(k + 1) ∈ Rn×1 is the
n-dimensional measure vector at time k + 1, f (·) is the state transformation operator, and
h(·) is the measurement transformation operator. w(k) ∈ Rn×1 and v(k + 1) ∈ Rn×1 are
process noise and measurement noise, respectively, and w(k) ∼ N(0, Q(k)) and v(k + 1) ∼
N(0, R(k + 1)).

Step 1: Obtain an estimated value x̂(k|k) of the system state x(k) and the corresponding
covariance matrix P(k|k) from the initial conditions.

x̂(k|k) = E{x(k)} (3)

P(k|k) = E
{
[x(k)− x̂(k|k)][x(k)− x̂(k|k)]T

}
(4)

Remark 1. E{·} is the mean symbol and T is the transpose symbol. x̂(k|k) of Equation (3) is the
estimated value of the state at time k, and x̂(k + 1|k) is the predicted value at time k + 1. In the
following, “k|k” and “k + 1|k” are used for this purpose.

Step 2: Construct a collection of sigma samples centered at x̂(k|k).
xi(k) = x̂(k|k); i = 0
xi(k) = x̂(k|k) + (

√
(n + L)P(k|k))i; i = 1, · · · , n

xi(k) = x̂(k|k)− (
√
(n + L)P(k|k))i; i = n + 1, · · · , 2n

(5)

where (
√
(n + L)P(k|k))i represents the ith column of matrix P(k|k) after number multipli-

cation and square opening.
Step 3: The corresponding weights for each sampling point are:

Wm
0 = L/(n + L)

Wc
0 = L/(n + L) + (1 − α2 + β)

Wm
i = Wc

i = L/2(n + L); i = 1, · · · , 2n
(6)

where L = α2(n + λ)− n. Usually, α is set to a smaller integer (1e−4 ≤ α ≤ 1); λ is the
variable to be given, usually set to 0 or 3 − n. β denotes the distribution variable, which is
generally set to 2 under a Gaussian distribution, whereas in the case of one-dimensional
state variables, it is usually taken to be 0.

Step 4: Calculate the state prediction value for each sampling point:

x̂i(k + 1|k) = f (xi(k)); i = 0, · · · , 2n (7)
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Step 5: Each predicted value in Equation (5) is weighted and summed to obtain the
predicted estimated value x̂(k + 1|k) and the corresponding estimation error covariance
matrix Pxx(k + 1|k), respectively.

x̂(k + 1|k) =
2n

∑
i=0

Wm
i x̂i(k + 1|k) (8)

Pxx(k + 1|k) =
2n

∑
i=0

Wc
i (x̂i(k + 1|k)− x̂(k + 1|k))(x̂i(k + 1|k)− x̂(k + 1|k))T + Q(k) (9)

Update phase:

Step 6: Construct a collection of sigma samples centered on x̂(k + 1|k):
xi(k + 1|k) = x̂(k + 1|k); i = 0
xi(k + 1|k) = x̂(k + 1|k) + (

√
(n + L)P(k + 1|k))i; i = 1, · · · , n

xi(k + 1|k) = x̂(k + 1|k)− (
√
(n + L)P(k + 1|k))i; i = n + 1, · · · , 2n

(10)

Step 7: Calculate the observed predicted value for each sampling point:

ŷi(k + 1|k) = h(x̂i(k + 1|k)); i = 0, 1, · · · , 2n (11)

Step 8: Weighted summation gives:

ŷ(k + 1|k) =
2n

∑
i=0

Wm
i ŷi(k + 1|k) (12)

Step 9: Calculate each measurement prediction estimation error ỹi(k + 1|k) and the
measurement estimation error covariance matrices Pyy(k + 1|k + 1).

ỹi(k + 1|k) = ŷi(k + 1|k)− ŷ(k + 1|k) (13)

Pyy(k + 1|k + 1) =
2n

∑
i=0

Wc
i ỹi(k + 1|k)ỹT

i (k + 1|k) + R(k + 1) (14)

Step 10: Calculate the mutual covariance matrix of the state prediction error and
measurement prediction error Pxy(k + 1|k + 1).

Pxy(k + 1|k + 1) =
2n

∑
i=0

Wc
i (x̂i(k + 1|k)− x̂(k + 1|k))(ŷi(k + 1|k)− ŷ(k + 1|k))T (15)

Step 11: Find the Kalman Filter gain matrix K(k + 1).

K(k + 1) = Pxy(k + 1|k + 1)(Pyy(k + 1|k + 1))−1 (16)

Step 12: Design an Unscented Kalman Filter:

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)(y(k + 1)− ŷ(k + 1|k)) (17)

Step 13: Calculate the error in state estimates x̃(k + 1|k + 1) and the state estimate
error covariance matrix Pxx(k + 1|k + 1).

x̃(k + 1|k + 1) = x(k + 1)− x̂(k + 1|k + 1)
= x(k + 1)− x̂(k + 1|k)− K(k + 1)(y(k + 1)− ŷ(k + 1|k))
= x̃(k + 1|k)− K(k + 1)ỹ(k + 1|k)

(18)
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Pxx(k + 1|k + 1) = E
{
(x(k + 1)− x̂(k + 1|k + 1))(x(k + 1)− x̂(k + 1|k + 1))T

}
= Pxx(k + 1|k)− K(k + 1)Pyy(k + 1|k + 1)KT(k + 1)

(19)

3. Unscented Kalman Filtering Algorithm Considering High-Order Approximate Error

Forecasting Phase:

The specific calculation process of x̂(k + 1|k) can be seen in Equations (1) to (6) in
Section 2.

Step 1: For the state prediction error, in the standard UKF algorithm, the weighted
state prediction value is used instead of the true value, and an approximate error is
inevitably introduced in this process. The approximate error is considered in the real
value, and the first-order information in the approximate error is replaced by ξ(1)(k) in the
following equation.

x(1)(k + 1) = f (x(k)) + w(k)
= x̂(k + 1|k) + x̃(k + 1|k)

=
2n
∑

i=0
Wm

i x̂i(k + 1|k) + f (x(k))−
2n
∑

i=0
Wm

i x̂i(k + 1|k) + w(k)

=
2n
∑

i=0
Wm

i x̂i(k + 1|k) + ξ(1)(k) + w(k)

(20)

where ξ(1)(k) = f (x(k))−
2n
∑

i=0
Wm

i x̂i(k + 1|k)

Remark 2. The superscript 1 in x(1)(k + 1)is used to indicate that the first-order approximate error
information is introduced into the state vector, and the subsequent superscript numbers all represent
the approximate error information of the corresponding order. x(l)(k + 1) differs from x(k + 1) in
that the lth-order information of the approximate error is already taken into account in the state
vector of the former.

Step 2: Find the updated state prediction value x̂(1)(k + 1|k).

x̂(1)(k + 1|k) =
2n

∑
i=0

Wm
i x̂i(k + 1|k) + ξ̂(1)(k) (21)

Step 3: Identify the expected value ξ̂(1)(k) of ξ(1)(k) using the least squares method
for rounding off the error information.

y(k + 1) = h(x(1)(k + 1)) + v(k + 1)
≈ H(k + 1)x(1)(k + 1) + v(k + 1)

= H(k + 1)(
2n
∑

i=0
Wm

i x̂i(k + 1|k) + ξ(1)(k) + w(k)) + v(k + 1)

= H(k + 1)
2n
∑

i=0
Wm

i x̂i(k + 1|k) + H(k + 1)ξ(1)(k) + H(k + 1)w(k) + v(k + 1)

(22)

Remark 3. H(k + 1) = ∂h(x(k+1))
∂x(k+1) |x(k+1)=x̂(k+1|k) is the first-order Jacobi matrix of the measure-

ment equation, which is only used to calculate the approximate error.

y(k + 1)− H(k + 1)
2n

∑
i=0

Wm
i x̂i(k + 1|k) = H(k + 1)ξ(1)(k) + H(k + 1)w(k) + v(k + 1) (23)

y(1)(k + 1) = H(k + 1)ξ(1)(k) + v(k + 1) (24)
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where y(1)(k+ 1) = y(k+ 1)− H(k+ 1)
2n
∑

i=0
Wm

i x̂i(k + 1|k), v(k+ 1) = H(k+ 1)w(k)+ v(k+ 1),

R(k + 1) = E
{

ṽ(k + 1)ṽ
T
(k + 1)

}
= E{[v(k + 1)− v̂(k + 1)][v(k + 1)− v̂(k + 1)]T}

= H(k + 1)Q(k)H(k + 1)T + R(k + 1) > 0
.

When the state equation and the measurement equation are of the same dimension,
the over-measurement least squares method is used. The formula is shown in Equation (25).
When the state equation and the measurement equation are not of the same dimension, the
under-measurement least squares method is used, see Equation (26). The present formula
derivation only considers the case where the state equation and the measurement equation
are of the same dimension.

ξ̂(1)(k) = (H(k + 1)T R(k + 1)−1H(k + 1))
−1

H(k + 1)T R(k + 1)−1y(1)(k + 1) (25)

ξ̂(1)(k) = H(k + 1)(H(k + 1)H(k + 1)T)
−1

(y(1)(k + 1)− v̂(k + 1)) (26)

Step 4: Update the state values with approximate errors and find the state prediction
error covariance matrix P(1)

xx (k + 1|k) from the updated state value.

P(1)
xx (k + 1|k) =

2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x(1)(k + 1))(x̂i(k + 1|k)− x(1)(k + 1))
T

=
2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x̂(k + 1|k))(x̂i(k + 1|k)− x̂(k + 1|k))T

+ξ̂(1)(k)ξ̂(1)(k)T + Q(k)

(27)

Step 5: When extracting the approximate error considering only the first-order infor-
mation, there is a problem with the improvement of the estimation accuracy. Therefore, we
need to consider the second-order information, using ξ(2)(k) to indicate that the second-
order information is in the first-order prediction error when the first-order residual infor-
mation identification is completed, thereby updating the true value of x(2)(k + 1), which
corresponds to the need to remove the first-order information in the approximate error.

x(2)(k + 1) = f (x(k)) + w(k)
= x̂(1)(k + 1|k) + x̃(1)(k + 1|k)

=
2n
∑

i=0
Wm

i x̂i(k + 1|k) + ξ̂(1)(k)

+( f (x(k))−
2n
∑

i=0
Wm

i x̂i(k + 1|k)− ξ̂(1)(k)) + w(k)

=
2n
∑

i=0
Wm

i x̂i(k + 1|k) + ξ̂(1)(k) + ξ(2)(k) + w(k)

(28)

where ξ(2)(k) = f (x(k))−
2n
∑

i=0
Wm

i x̂i(k + 1|k)− ξ̂(1)(k).

Step 6: The approximate error information is identified again by least squares to find
the mean ξ̂(2)(k) of ξ(2)(k).

y(k + 1) = h(x(2)(k + 1)) + v(k + 1)
≈ H(k + 1)x(2)(k + 1) + v(k + 1)

= H(k + 1)(
2n
∑

i=0
Wm

i x̂i(k + 1|k) + ξ̂(1)(k) + ξ(2)(k) + w(k)) + v(k + 1)

= H(k + 1)
2n
∑

i=0
Wm

i x̂i(k + 1|k) + H(k + 1)ξ̂(1)(k) + H(k + 1)ξ(2)(k)

+H(k + 1)w(k) + v(k + 1)

(29)
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y(k + 1)− H(k + 1)
2n

∑
i=0

Wm
i x̂i(k + 1|k)− H(k + 1)ξ̂(1)(k) = H(k + 1)ξ(2)(k) + H(k + 1)w(k) + v(k + 1) (30)

y(2)(k + 1) = H(k + 1)ξ(2)(k) + v(k + 1) (31)

where y(2)(k + 1) = y(k + 1)− H(k + 1)
2n
∑

i=0
Wm

i x̂i(k + 1|k)− H(k + 1)ξ̂(1)(k), v(k + 1) =

H(k + 1)w(k) + v(k + 1), and R(k + 1) = E
{

v(k + 1)vT(k + 1)
}

, ξ̂(2)(k) can be computed
from the least squares formula.

ξ̂(2)(k) = (H(k + 1)T R(k + 1)−1H(k + 1))
−1

H(k + 1)T R(k + 1)−1y(2)(k + 1) (32)

Step 7: The state values are then updated with approximate errors, and the state
prediction error covariance matrix P(2)

xx (k + 1|k) is obtained from the updated state values.

P(2)
xx (k + 1|k) =

2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x(2)(k + 1))(x̂i(k + 1|k)− x(2)(k + 1))
T

=
2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x̂(k + 1|k))(x̂i(k + 1|k)− x̂(k + 1|k))T

+ξ̂(1)(k)ξ̂(1)(k)T + ξ̂(2)(k)ξ̂(2)(k)T + Q(k)

(33)

Step 8: Similarly, the information from the (r − 1) item in the approximate error can
be extracted and represented by ξ(r−1)(k).

x(r−1)(k + 1) = f (x(k)) + w(k)
= x̂(r−2)(k + 1|k) + x̃(r−2)(k + 1|k)

=
2n
∑

i=0
Wm

i x̂i(k + 1|k) + ξ̂(1)(k) + ξ̂(2)(k) + · · ·+ ξ̂(r−2)(k)

+( f (x(k))−
2n
∑

i=0
Wm

i x̂i(k + 1|k)− ξ̂(r−2)(k)) + w(k)

=
2n
∑

i=0
Wm

i x̂i(k + 1|k) + ξ̂(1)(k) + ξ̂(2)(k)

+ · · ·+ ξ̂(r−2)(k) + ξ(r−1)(k) + w(k)

(34)

Step 9: Identify the approximate error information using the same least squares
method to find the mean value ξ̂(r−1)(k) of ξ(r−1)(k).

y(k + 1) = h(x(r−1)(k + 1)) + v(k + 1)
≈ H(k + 1)x(r−1)(k + 1) + v(k + 1)

= H(k + 1)(
2n
∑

i=0
Wm

i x̂i(k + 1|k) + ξ̂(1)(k) + ξ̂(2)(k)

+ · · ·+ ξ̂(r−2)(k) + ξ(r−1)(k) + w(k)) + v(k + 1)

= H(k + 1)
2n
∑

i=0
Wm

i x̂i(k + 1|k) + H(k + 1)ξ̂(1)(k) + H(k + 1)ξ̂(2)(k)

+ · · ·+ H(k + 1)ξ̂(r−2)(k) + H(k + 1)ξ(r−1)(k) + H(k + 1)w(k) + v(k + 1)

(35)

y(k + 1)− H (k + 1)
2n
∑

i=0
Wm

i x̂i(k + 1|k)− H(k + 1)ξ̂(1)(k)

−H(k + 1)ξ̂(2)(k)− · · · − H(k + 1)ξ̂(r−2)(k) = H(k + 1)ξ(r−1)(k) + H(k + 1)w(k) + v(k + 1)
(36)

y(r−1)(k + 1) = H(k + 1)ξ(r−1)(k) + v(k + 1) (37)
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where
y(r−1)(k + 1) = y(k + 1)− H(k + 1)

2n
∑

i=0
Wm

i x̂i(k + 1|k)− H(k + 1)ξ̂(1)(k)

−H(k + 1)ξ̂(2)(k)− · · · − H(k + 1)ξ̂(r−2)(k)
,

v(k + 1) = H(k + 1)w(k) + v(k + 1), R(k + 1) = E
{

v(k + 1)vT(k + 1)
}

, ξ̂(r−1)(k) can be
computed using the least squares formula.

ξ̂(r−1)(k) = (H(k + 1)T R(k + 1)−1H(k + 1))
−1

H(k + 1)T R(k + 1)−1y(r−1)(k + 1) (38)

Step 10: The state values are then updated with approximate errors, and the state
prediction error covariance matrix P(r−1)

xx (k + 1|k) is obtained from the updated state values.

P(r−1)
xx (k + 1|k) =

2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x(r−1)(k + 1))(x̂i(k + 1|k)− x(r−1)(k + 1))
T

=
2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x̂(k + 1|k))(x̂i(k + 1|k)− x̂(k + 1|k))T

+ξ̂(1)(k)ξ̂(1)(k)T + ξ̂(2)(k)ξ̂(2)(k)T + · · ·+ ξ̂(r−1)(k)ξ̂(r−1)(k)T + Q(k)

(39)

Step 11: By mathematical induction, we can obtain P(r)
xx (k + 1|k), which completes the

real-time updating of the error covariance matrix.

P(r)
xx (k + 1|k) =

2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x(r)(k + 1))(x̂i(k + 1|k)− x(r)(k + 1))
T

=
2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x̂(k + 1|k))(x̂i(k + 1|k)− x̂(k + 1|k))T

+ξ̂(1)(k)ξ̂(1)(k)T + ξ̂(2)(k)ξ̂(2)(k)T + · · ·+ ξ̂(r)(k)ξ̂(r)(k)T + Q(k)

(40)

Step 12: For the termination problem of r item information recognition, set the thresh-
old value σ; when ||ξ̂(r)(k)|| < σ, the termination task is complete. ||ξ̂(r)(k)|| is denoted by
the norm of ξ̂(r)(k).

Step 13: When the termination condition is triggered, the update information of
x(r)(k + 1) contains the higher-order information that is not considered after termination,
denoted by ξ̃(r)(k). Correspondingly, the covariance matrix of the state prediction error
covariance matrix contains the covariance matrix of the discarded higher-order information,
denoted by P(r)

ξ (k), which can be solved using the least squares method. Thus, P(r)
xx (k + 1|k)

can be updated again.

P(r)
xx (k + 1|k) =

2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x(r)(k + 1))(x̂i(k + 1|k)− x(r)(k + 1))
T

=
2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x̂(k + 1|k))(x̂i(k + 1|k)− x̂(k + 1|k))T

+ξ̂(1)(k)ξ̂(1)(k)T + ξ̂(2)(k)ξ̂(2)(k)T + · · ·+ ξ̂(r)(k)ξ̂(r)(k)T + P(r)
ξ (k) + Q(k)

(41)

P(r)
ξ (k) = (H(k + 1)T R(k + 1)−1H(k + 1))

−1
(42)

Update phase:

Step 14: Construct a collection of sigma samples centered on x̂(r)(k + 1|k):
x(r)i (k + 1|k) = x̂(r)(k + 1|k); i = 0
x(r)i (k + 1|k) = x̂(r)(k + 1|k) + (

√
(n + L)P(k + 1|k))i; i = 1, · · · , n

x(r)i (k + 1|k) = x̂(r)(k + 1|k)− (
√
(n + L)P(k + 1|k))i; i = n + 1, · · · , 2n

(43)

Step 20: Obtain the observed predicted value for each sampling point.

ŷi(k + 1|k) = h(x̂(r)i (k + 1|k)); i = 0, 1, · · · , 2n (44)
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Step 15: The weighted sum yields

ŷ(k + 1|k) =
2n

∑
i=0

Wm
i ŷi(k + 1|k) (45)

Step 16: Calculate the measurement prediction estimation error ỹi(k + 1|k) and mea-
surement estimation error covariance matrices Pyy(k + 1|k + 1).

ỹi(k + 1|k) = ŷi(k + 1|k)− ŷ(k + 1|k) (46)

Pyy(k + 1|k + 1) =
2n

∑
i=0

Wc
i ỹi(k + 1|k)ỹT

i (k + 1|k) + R(k + 1) (47)

Step 17: Calculate the mutual covariance matrix of the state prediction error and
measurement prediction error Pxy(k + 1|k + 1).

Pxy(k + 1|k + 1) =
2n

∑
i=0

Wc
i (x̂i(k + 1|k)− x̂(r)(k + 1|k))(ŷi(k + 1|k)− ŷ(k + 1|k))T (48)

Step 18: Find the Kalman Filter gain matrix K(k + 1).

K(k + 1) = Pxy(k + 1|k + 1)(Pyy(k + 1|k + 1))−1 (49)

Step 19: Design an Unscented Kalman Filter.

x̂(k + 1|k + 1) = x̂(r)(k + 1|k) + K(k + 1)(y(k + 1)− ŷ(k + 1|k)) (50)

Step 20: Calculate the error in state estimates x̃(k + 1|k + 1) and the state estimate
error covariance matrix Pxx(k + 1|k + 1).

x̃(k + 1|k + 1) = x(k + 1)− x̂(k + 1|k + 1)
= x(k + 1)− x̂(k + 1|k)− K(k + 1)(y(k + 1)− ŷ(k + 1|k))
= x̃(k + 1|k)− K(k + 1)ỹ(k + 1|k)

(51)

Pxx(k + 1|k + 1) = E{(x(k + 1)− x̂(k + 1|k + 1))(x(k + 1)− x̂(k + 1|k + 1))T}
= P(r)

xx (k + 1|k)− K(k + 1)Pyy(k + 1|k + 1)KT(k + 1)
(52)

4. Comparative Analysis of HUKF and UKF Performance
4.1. Performance Analysis of the Prediction Phase

Firstly, in the stage of predicting the estimated value, compared with the traditional
UKF, the HUKF makes use of more information, with the multi-order term approximate
error that exists in the process of replacing the true value with the state value. From a
theoretical point of view, in the process of filter design, the smaller the error, the higher
the accuracy. The approximate error existing in the traditional filter decreases with the
continuous extraction of useful information, so the filtering accuracy is higher.

Secondly, the identification of the residual information ends at the r order and, using
x(r)(k + 1) as the standard value for x(k + 1), Pxx(k + 1|k) is obtained.

Pxx(k + 1|k) =
2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x(r)(k + 1))(x̂i(k + 1|k)− x(r)(k + 1))
T

=
2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x̂(k + 1|k))(x̂i(k + 1|k)− x̂(k + 1|k))T

+ξ̂(1)(k)ξ̂(1)(k)T + ξ̂(2)(k)ξ̂(2)(k)T + · · ·+ ξ̂(r)(k)ξ̂(r)(k)T

+P(r)
ξ (k) + Q(k)

(53)
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Then, in terms of the prediction error covariance matrix representing the performance
metrics of the filter’s prediction stage, when replacing the prediction error with ξ(1)(k),
ξ(1)(k) = ξ̂(1)(k) + ξ̃(1)(k) owing to the second-order term information present in ξ̃(1)(k).
In this case, ξ(2)(k) is used instead of ξ̃(1)(k) to identify ξ̂(2)(k), while ξ(3)(k) is used instead
of ξ̃(2)(k) to identify ξ̂(3)(k), and so on to ξ̂(r)(k).

The error covariance matrix for first-order information is P(1)
xx (k + 1|k).

P(1)
xx (k + 1|k) =

2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x̂(k + 1|k))(x̂i(k + 1|k)− x̂(k + 1|k))T

+ξ̂(2)(k)ξ̂(2)(k)T + · · ·+ ξ̂(r)(k)ξ̂(r)(k)T + P(r)
ξ (k) + Q(k)

(54)

The error covariance matrix for second-order information is P(2)
xx (k + 1|k).

P(2)
xx (k + 1|k) =

2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x̂(k + 1|k))(x̂i(k + 1|k)− x̂(k + 1|k))T

+ξ̂(3)(k)ξ̂(3)(k)T + · · ·+ ξ̂(r)(k)ξ̂(r)(k)T + P(r)
ξ (k) + Q(k)

(55)

This continues for the error covariance matrix of r order information P(r)
xx (k + 1|k).

P(r)
xx (k + 1|k) =

2n
∑

i=0
Wc

i (x̂i(k + 1|k)− x̂(k + 1|k))(x̂i(k + 1|k)− x̂(k + 1|k))T

+P(r)
ξ (k) + Q(k)

(56)

Using the above information, it is possible to determine that the inequality
ξ̂(r)(k)ξ̂(r)(k)T ≥ 0 always holds for any natural number. Accordingly:

P(1)
xx (k + 1|k) ≥ P(2)

xx (k + 1|k) ≥ · · · ≥ P(r)
xx (k + 1|k) (57)

It can be found that compared with the UKF, the HUKF utilizes more information in
the prediction stage, reducing the prediction error covariance matrix and increasing the
model prediction reliability. Therefore, the HUKF has better prediction performance in the
prediction stage compared with the traditional UKF.

4.2. Performance Analysis of the Update Phase

This can be determined by equational transformation.

P(k + 1|k + 1)−1 = P(k + 1|k)−1 + HT(k + 1)R(k + 1)−1H(k + 1) (58)

The state estimation performance of the filter is found to be influenced by two main
aspects. One is the prediction error covariance that contains the prediction information, and
the other is the measurement error that contains the measurement prediction information.
Obviously, it can be obtained as follows:

P(r)
xx (k + 1|k + 1)−1 − P(r−1)

xx (k + 1|k + 1)−1 = P(r)
xx (k + 1|k)−1 − HT(k + 1)R(k + 1)−1H(k + 1)

−P(r−1)
xx (k + 1|k)−1 + HT(k + 1)R(k + 1)−1H(k + 1)

= P(r)
xx (k + 1|k)−1 − P(r−1)

xx (k + 1|k)−1 > 0

(59)

By analogy, this leads to

P(1)
xx (k + 1|k + 1) ≥ P(2)

xx (k + 1|k + 1) ≥ · · · ≥ P(r)
xx (k + 1|k + 1) (60)

It can be found that, compared with the UKF, the HUKF utilizes more information in
the updating phase, which reduces the prediction error covariance matrix and increases
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the model prediction reliability. Therefore, the HUKF has better prediction performance
compared with the traditional UKF in the prediction stage.

5. Simulation

The data and images obtained in all simulation experiments in this paper are the results
of 200 Monte Carlo statistics. All simulations in this section use the root mean square error
(RMSD) as the error index, which is specifically expressed in the following form:

RMSD(k) =

√√√√ 1
M

M

∑
i=1

(xi(k)− x̂i(k|k))2

RMSD =
1
N

N

∑
k=1

RMSD(k)

where k = 1, 2, · · · , N, N are the sampling numbers, and M is the number of Monte Carlo
simulations.

It is proposed that the accuracy is analyzed by calculating the accuracy factor ηj [20]
and comparing the root mean square error of the state vector estimation of the analyzed
algorithm and the UKF algorithm:

ηj =
RMSDuk f − RMSDj

RMSDuk f

where j denotes the order of the higher-order term in the algorithm.

5.1. Simulation 1

The equation of state is two-dimensional nonlinear, and the measurement equation is
two-dimensional linear.{

x1(k + 1) = 0.85x1(k) + 0.5x2(k) + 0.5 sin(0.25x1(k)) + w1(k)
x2(k + 1) = −0.5x1(k) + 0.5 sin(0.25x2(k)) + w2(k){
y1(k + 1) = x1(k + 1) + v1(k + 1)
y2(k + 1) = x2(k + 1) + v2(k + 1)

where the state noise and the measurement noise are both uncorrelated white Gaussian
noise and obey the following distribution: w(t) ∼ N(0, Q), v(k) ∼ N(0, R), Q = diag(1, 1),
R = diag(1, 1). The initial values of the system are x(0) = [1, 1], P(0|0) = I2×2. At the
same time, the relevant parameters in the Unscented Transformation are set to α = 1, β = 2,
λ = 1 and n = 2. The simulation results are shown in the following figures. Figure 1a,b
present the output curves of the true value of state X1 and state X2, the estimated value
of the UKF, and the estimated value when the proposed filter is extended to the first and
second orders. Figure 2a,b show the estimated error output results of the above filter in
state X1 and state X2, respectively. Table 1 shows a comparison of the mean square error of
each filtering method after the system is stabilized.

Through analysis of the data in the above table, it can be found that when the state
equation is in the same dimension as the measurement equation, for equation X1, con-
sidering the first-order residual term information on the basis of the UKF improves the
prediction accuracy by 6.50% compared with the traditional Unscented Kalman Filter. Con-
sidering the second-order remainder information on the basis of the UKF, the prediction
accuracy is improved by 6.60% compared with the traditional Unscented Kalman Filter.
and considering the third-order residual term information on the basis of the UKF, the
prediction accuracy is improved by 6.61% compared with the traditional Unscented Kalman
Filter. The prediction accuracy of the Unscented Kalman filtering method considering the
second-order remainder information is 0.10% higher than that of the Unscented Kalman
filtering method considering the first-order term information. The prediction accuracy of
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the Unscented Kalman filtering method considering the third-order remainder informa-
tion is 0.01% higher than that of the Unscented Kalman filtering method considering the
second-order term information.
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Table 1. Performance comparison of various methods.

Methods
State

RMSD of X1 RMSD of X2

UKF 0.936764 0.926681
First-order estimate 0.875919 0.857522

Improvement 6.50% 7.46%
Second-order estimate 0.874897 0.856663

Improvement 6.60% 7.56%
Third-order estimate 0.874817 0.856622

Improvement 6.61% 7.56%

For equation X2, considering the first-order residual term information on the basis
of the UKF improves the prediction accuracy by 7.46% compared with the traditional
Unscented Kalman Filter; considering the second-order remainder information on the basis
of the UKF, the prediction accuracy is improved by 7.56% compared with the traditional
Unscented Kalman Filter; and considering the third-order residual term information on
the basis of the UKF, the prediction accuracy is improved by 7.56% compared with the
traditional Unscented Kalman Filter. The prediction accuracy of the Unscented Kalman
filtering method considering the second-order remainder information is 0.10% higher than
that of the Unscented Kalman filtering method considering the first-order term information.
The prediction accuracy of the Unscented Kalman filtering method considering the third-
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order remainder information is similar to that of the Unscented Kalman filtering method
considering the second-order term information.

The second-order term information and third-order term information that can be
extracted from the data-available residuals are already very sparse.

5.2. Simulation 2

The equation of state is two-dimensional nonlinear, and the measurement equation
is one-dimensional linear.{

x1(k + 1) = 0.85x1(k) + 0.5x2(k) + 0.5 sin(0.5x1(k)) + w1(k)
x2(k + 1) = −0.5x1(k) + 0.5 sin(0.5x2(k)) + w2(k)

y(k + 1) = x1(k + 1) + 3x2(k + 1) + v(k + 1)

where the state noise and the measurement noise are both uncorrelated white Gaussian
noise and obey the following distribution: w(t) ∼ N(0, Q), v(k) ∼ N(0, R), Q = diag(1, 1),
R = 0.5. The initial values of the system are x(0) = [1, 1] and P(0|0) = I2×2. At the same
time, the relevant parameters in the Unscented Transformation are set to α = 1, β = 2,
λ = 1, and n = 2. The simulation results are shown in the following figures. Figure 3a,b
present the output curves of the true value of state X1 and state X2, the estimated value
of the UKF, and the estimated value when the proposed filter is extended to the first and
second orders. Figure 4a,b show the estimated error output results of the above filter in
state X1 and state X2, respectively. Table 2 shows a comparison of the mean square errors
of each filtering method after the system is stabilized.
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Table 2. Performance comparison of different algorithms.

Methods
State

RMSD of X1 RMSD of X2

UKF 1.93416 0.683426
First-order estimate 1.79871 0.646101

Improvement 7.00% 5.46%
Second-order estimate 1.78669 0.642469

Improvement 7.62% 5.99%
Third-order estimate 1.78524 0.642038

Improvement 7.70% 6.06%

Through analysis of the data in the above table, it can be found that when the state
equation and the measurement equation are not in the same dimension, for equation X1,
considering the first-order residual term information on the basis of the UKF improves
the prediction accuracy by 7.00% compared with the traditional Unscented Kalman Filter;
considering the second-order residual term information on the basis of the UKF improves
the prediction accuracy by 7.62% compared with the traditional Unscented Kalman Filter;
and considering the third-order residual term information, the Unscented Kalman Filter
improves the prediction accuracy by 7.70% compared with the traditional Unscented
Kalman Filter. The Unscented Kalman Filter with second-order residual information
improves the prediction accuracy by 0.62% compared with the Unscented Kalman Filter
with first-order term information. The Unscented Kalman Filter with third-order residual
information improves the prediction accuracy by 0.08% compared with the Unscented
Kalman Filter with second-order term information.

For equation X2, considering the first-order residual term information on the basis
of the UKF improves the prediction accuracy by 5.46% compared with the traditional
Unscented Kalman Filter; considering the second-order residual term information on the
basis of the UKF improves the prediction accuracy by 5.99% compared with the traditional
Unscented Kalman Filter; and considering the third-order residual term information, the
Unscented Kalman Filter improves the prediction accuracy by 6.06% compared with the
traditional Unscented Kalman Filter. The Unscented Kalman Filter with second-order
residual information improves the prediction accuracy by 0.53% compared with the Un-
scented Kalman Filter with first-order term information. The Unscented Kalman Filter with
third-order residual information improves the prediction accuracy by 0.07% compared with
the Unscented Kalman Filter with second-order term information.

In theory, as more error information is extracted and applied, the prediction accuracy
increases. As the order increases, less information can be extracted, and the lifting effect
will gradually weaken.

5.3. Summary of Simulation Results

Through analysis of the results of the above two simulation experiments, we can
obtain the following conclusion:

Through analysis of the results of simulation 1, when the dimensions of the state
equation and the measurement equation are 2 × 2, it means that when the dimensions
of the state equation and the measurement equation are the same dimension, from the
perspective of observability (not observability in modern control), the degree of freedom of
the equation is 0. For some equations, high-quality extraction of the remaining information
can be completed by considering the first-order information of the remaining items on the
basis of the UKF. The information in the second-order term and the third-order term is
limited, and the improvement of the prediction accuracy is negligible.

Through analysis of the results of simulation 2, when the dimensions of the state
equation and the measurement equation are 2 × 1, it means that when the dimensions
of the state equation and the measurement equation are different, this indicates under-
measurement, and the degree of freedom of the equation is 1 from the perspective of
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observability. Therefore, it can be clearly found through the simulation data that the
information in the first-order term, the information in the second-order term, and the
information in the third-order term that can be extracted from the remainder is reduced.
The prediction accuracy also decreases accordingly.

Through the above simulation experiments, the effectiveness of the new filtering
method considering the high-order rejection error on the basis of the UKF is proved;
through analysis of the dimensionality of the system’s state equation and the measurement
equation, when the dimensionality is the same, the enhancement effect of the higher-order
residual information on the prediction accuracy is minimal, and the first-order residual
information can be extracted to achieve substantial enhancement of the prediction accuracy;
when the dimensions are different, the enhancement effect of the higher-order residual
information is more obvious than that of the same dimension. When the dimensions are
different, the effect of higher-order residual information on the prediction accuracy is
more obvious than that in the same dimension. For a system with two-dimensional state
equations, one-dimensional measurement equations, and an operable degree of freedom of
1, the second-order residual information can be taken into account to achieve a substantial
increase in the prediction accuracy, and this effect on the improvement of the prediction
accuracy also increases with increasing under-measurement.

6. Conclusions

This paper improves the performance of nonlinear filtering based on Unscented
Kalman filtering, fully considers the influence of high-order rejection error on the accuracy
of state estimation, and improves the design issues of traditional Unscented Kalman filter-
ing. A new filtering method considering high-order rejection errors based on Unscented
Kalman filtering is established. The effectiveness of the proposed method is verified.

Outlook: Although the proposed method improves the filtering accuracy of the tra-
ditional UKF, there are still shortcomings. The proposed method is based on the fact that
the state to be estimated is normally distributed, but the state to be estimated is often a
non-Gaussian variable, which is difficult to conform to the normal distribution. Application
of the proposed method to non-Gaussian distribution systems should be investigated in
future studies. For non-Gaussian systems, further research is needed.
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