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Abstract: Bioprospecting is the discovery and exploration of biological diversity found within or-
ganisms, genetic elements or produced compounds with prospective commercial or therapeutic
applications. The human skin is an ecological niche which harbours a rich and compositional di-
versity microbiome stemming from the multifactorial interactions between the host and microbiota
facilitated by exploitable effector compounds. Advances in the understanding of microbial coloni-
sation mechanisms alongside species and strain interactions have revealed a novel chemical and
biological understanding which displays applicative potential. Studies elucidating the organismal
interfaces and concomitant understanding of the central processes of skin biology have begun to
unravel a potential wealth of molecules which can exploited for their proposed functions. A variety
of skin-microbiome-derived compounds display prospective therapeutic applications, ranging from
antioncogenic agents relevant in skin cancer therapy to treatment strategies for antimicrobial-resistant
bacterial and fungal infections. Considerable opportunities have emerged for the translation to
personal care products, such as topical agents to mitigate various skin conditions such as acne and
eczema. Adjacent compound developments have focused on cosmetic applications such as reducing
skin ageing and its associated changes to skin properties and the microbiome. The skin microbiome
contains a wealth of prospective compounds with therapeutic and commercial applications; however,
considerable work is required for the translation of in vitro findings to relevant in vivo models to
ensure translatability.

Keywords: skin microbiome; therapeutics; bioprospecting; personal care; ageing; lipid

1. Introduction

Despite perceptions of being an arid wasteland, the human skin is a habitat occu-
pied by a diverse array of microorganisms. Human skin microbiome diversity stems
from microenvironment variations between body sites ranging from the Cutibacterium-
dominated sebaceous regions, rich in lipids, to the halotolerant Staphylococcus that are
abundant in sweat-rich areas [1,2]. The complement of these microorganisms, the mi-
crobiota, utilises host compounds as nutrient sources whilst conveying benefits to their
host, such as pathogenic colonisation resistance, local immune system priming and the
maintenance of lipid barriers [3]. Akin to macroecological biomes, the skin microbiota
community structure consists of organisms specialised to corresponding niches that are
susceptible to invasion by foreign species displacing resident organisms [2]. The composi-
tion and stability of the skin microbiome are constrained by physical factors that include
pH, oxygen concentration, nutrient availability and competition, plus host symbiotic and
commensal relationships [4]. Interactions between host microbiota are largely mediated
by secreted biological effector compounds, such as digestive enzymes, antimicrobials and
quorum sensing compounds [5]. The diversity of skin microbiota and associated effector
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compounds represent an underappreciated source of effectors potentially relevant to the
treatment of a variety of diseases and conditions.

Bioprospecting is the discovery and exploration of the biological diversity of or-
ganisms, genetic components or compounds with potential commercial or therapeutic
applications. The utility of beneficial biologically derived compounds is highlighted by
the discovery of antibiotics, which has revolutionised modern healthcare and drastically
increased global lifespan [6]. Novel drug discovery remains necessary for improving the
financial viability of therapeutic and commercial compound pipelines and healthcare out-
comes [7]. There is an overwhelming need for novel treatments for bacterial infections in
a contemporary world where antimicrobial resistant (AMR) pathogens are an increasing
concern, with over 1 million deaths in 2019 associated with such infections [8]. Several
alternative treatment strategies are in development to combat AMR infections, such as
bacteriophage therapy that has recently gained momentum in Western countries [9].

The skin microbiome provides a vast resource for the development of novel treatment
strategies towards the control of AMR infections. Understanding the biochemistry at
the interface between host and microbiota will unravel hitherto unknown biology. The
coevolution of the human skin with pathogens has resulted in control mechanisms, such
as sapienic acid and psoriasin capable of the growth inhibition of AMR Staphylococcus
aureus and Escherichia coli, respectively [8,10,11]. The comparable gut microbiome has
revealed a plethora of novel compounds with treatment potential for diseases such as
chronic infection, cancer and obesity [12]. Whilst skin microbiota potentially harbours a
greater species richness than the gut, its potential abundance of therapeutic compounds
and their translational benefits are yet to be mined [3].

Advances in high-throughput genomic technologies have revealed a wealth of mi-
crobiome data, facilitating a conceptual shift whereby multicellular organisms’ functions
are intrinsically linked to their microbiota [13]. Classically, microbiological investigations
relied upon the direct culturing of isolates utilising historic techniques to infer organism
identity. The true picture of microbiota diversity was confounded by fastidious organisms
lacking the necessary growth conditions provided in vivo, such as complex metabolic
interdependences [14,15]. Metagenomic techniques have facilitated more interrogative
analyses of the total genomic material present within the skin, which continue to reveal
ever more diversity within the skin microbiota [16–19]. Further development of artificial
intelligence technologies has enabled a sophisticated analysis of metagenomic and physical
data, allowing for inferences in the causal linkage of skin hydration, age and smoking
status to microbiome composition and interpersonal variation [16].

Investigations utilising next-generation omics technologies have revealed a multitude
of mechanisms and concepts from the skin microbiome. The human skin microbiome is a
complex and dynamic field with varied applications, and many organisms and associated
compounds have feasibly exploitable properties [3,4,17,18]

This review is distinct through a focus on the breadth and recent advances in the
therapeutic and commercial application of biological molecules gained from bioprospecting
the human skin microbiome. We further explore the viability of prospective compounds
for their translational capacity in human application.

2. Skin Environment

The external skin represents a surface functioning primarily to minimise transepider-
mal evaporative water loss whilst simultaneously providing a physical barrier to extrinsic
biological and environmental agents and regulating body temperature [19]. Structurally,
skin is comprised of three layers: the innermost hypodermis which stores adipose fat for
physical protection and energy, the connective dermis, containing blood and nerve vessels,
and the external epidermis [20]. The epidermis is composed of a stratified network of
keratinocytes which originate from lower levels and migrate through the epidermis even-
tually forming the outer stratum corneum of dead anucleate corneocytes [19]. Eventually,
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corneocytes desquamate and are released from the keratin and lipid matrix, facilitating
skin renewal whilst providing nutrition for resident skin microorganisms (Figure 1) [4,21].

Human skin displays localised variability in secretion content, local topography and
thickness. Oily skin areas, such as the forehead, contain an increased abundance of se-
baceous glands which release sebum onto the skin through the hair follicle canal and
holocrine secretions [22,23]. Sebum is composed of a mixture of nonpolar lipids, such as
wax esters, squalene and triglycerides, with the latter lipolysed into free fatty acids by
resident microbiota [24–30]. Sebum-derived fatty acids including sapienic acid maintain
skin pH and exert a broad-spectrum antimicrobial action modulating skin microbiota
composition. Community structure disruption is linked to inflammatory skin conditions
like atopic dermatitis [31–33]. Epidermal lipids secreted directly by keratinocytes filling in
areas between squamous corneocytes act directly to minimise transepidermal evaporative
water loss [34].

Perspiration occurs across nearly all bodily regions via sweat glands secreting saline-
rich liquid onto the skin to facilitate evaporative thermoregulation [35,36]. The regional
variation in human skin sites is further evidenced through variations in thickness, invagi-
nations, moisture content and hair follicle density, among other factors (Figure 1), [2].
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profiles associated with epidermal lipids, sebum and sweat. Lipid- and sebum-rich sites are associ-
ated with an increased proportion of lipophilic microorganism genera, namely, Cutibacterium and
Malassezia. Sweat-rich regions display an abundance of halotolerant genera such as Staphylococcus
and Corynebacterium [1,37]. Pie charts represent the abundance of bacterial and fungal genera at
corresponding body sites adapted from several studies. Additionally, sites such as the plantar heel
display a high degree of diversity across individuals [2,38,39]. Created with www.BioRender.com
(accessed on 4 April 2023).

3. Drivers of Skin Microbiome Community Structure

The human skin microbiome is governed by fundamental ecological principles re-
lating to habitat, species interaction and community disruption. The skin environment
contains an abundance of biological niches that vary in factors, including topography, lipid
content, pH, salinity and moisture content alongside temporal changes from ageing and
gender [16,40,41]. Human skin is occupied by very diverse populations of bacteria, archaea,
fungi, viruses and protists, with colonisation requiring specialisation and adaptation due
to niche-specific microenvironments [42,43]. Resident skin microorganisms coevolved
with competitors and their hosts, producing complex nutritional interdependencies and
behavioural characteristics such as diverse antimicrobial biosynthesis [2,4,44]. Given the
range and variation in skin environments alongside differences in external factors, microor-
ganisms are under a variety of abiotic and biotic selective pressures driving variation in
stable community structures (Figure 2), [3].
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Extrinsic intrapersonal factors relate to environmentally derived variations, such as observations of
cultural practices. Intrinsic interpersonal drivers are associated with the biological variation between
individuals, such as hormonal differences between genders leading to altered skin physiology [45].
Created with www.BioRender.com.

4. Pathogenic Invasion and Community Disruption

The skin microbiome is susceptible to invasion by foreign organisms capable of dis-
rupting the community equilibrium. Many human skin pathogens are generally considered
commensal, with their opportunistic pathogenic behaviour evident when introduced into a
new subsurface niche through environmental disturbance, such as a laceration [46]. Com-
mensals such as Staphylococcus epidermidis and Cutibacterium acnes provide host benefit
through nutritional competition with pathogens, stimulating host antimicrobial peptide
secretion and dampening nonpathogenic local immune system activation [47–49]. Yet S.
epidermidis and C. acnes represent common aetiological agents of nosocomial infections
of immunocompromised patients, generally following medical device implantation and
prosthetic joint surgery [4,50]. Staphylococcus aureus asymptomatic colonisation of the an-
terior nares is often causative of future systemic infection, a threat compounded by the
feasibility of AMR strains competing with susceptible strains for dominance [51]. The
wide range of skin-relevant pathogens has been discussed in detail elsewhere [52–54].
Current antibiotic treatment strategies are often ineffective given the recalcitrant nature of
skin-pathogen-associated biofilms alongside the prevalence and continued dissemination
of multiple antibiotic resistance elements [55–57]. Mechanisms by which microorganisms
interact directly influence the microbiota community structure, hence these mechanisms
can be manipulated as a source of therapeutically and commercially relevant compounds.

5. Therapeutically Relevant Skin-Microbiome-Derived Compounds
5.1. Bacteriocins

Bacteriocins are a range of bacterial-derived peptides and proteins capable of exerting
bacteriostatic and bactericidal activity. Bacteriocins act as competitive factors to inhibit the
growth of adjacent organisms, akin to antibiotics, yet are associated with distinct resistance
mechanisms and thus therapeutically relevant [58]. Diversity in the structure of bacteriocins
has evolved with variations in their molecular targets and breadth of host range [59–61].

In contrast to broad-spectrum antibiotics, bacteriocin-based treatments could be tai-
lored to the clearance of specific pathogenic organisms with minimal disruption to natural
flora [62–65]. Hence, they are relevant in the treatment of nosocomial infections which are
linked to unstable patient microbiomes and increased colonisation by reservoirs of highly
antimicrobial-resistant pathogenic bacteria in the healthcare environment [65,66].

Bacteriocins have been identified as effector agents of bacterial antagonism, directing
research to exploit their commercial and therapeutic activity [67]. Commercial applications
of bacteriocins have focused primarily on the preservation of meat, vegetables and dairy
products through the prevention of the bacterial degradation of food [68]. To date, Nisin
derived from the dairy fermentative lactic acid bacterium Lactococcus lactis remains the
sole Food and Drug Administration-approved bacteriocin with licensing in food preserva-
tion [69]. The scope for the therapeutic use of bacteriocins is broad, ranging from infection
treatments to oral hygiene products and spermicidal compounds. The therapeutic bacte-
riocin field has yet to fully target the potential of skin microbiome diversity, with studies
needed to further the elucidation of the biosynthetic pathways, mechanisms of action and
cost of production alongside tolerance in clinical trials [70–72].

Studies of the nasal microbiome identified that coagulase-negative commensal staphy-
lococci produce bacteriocins active against niche competitors [73]. The skin and na-
sopharynx commensal S. lugdunensis synthesises lugdunin, which represents the first
nonribosomal-produced antimicrobial identified within the human skin microbiome. Clas-
sified as a novel class of thiazolidine cyclic peptide bacteriocin termed fibupeptides, lug-
dunin inhibits the growth of several Gram-positive bacteria, including methicillin-resistant

www.BioRender.com
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S. aureus (MRSA) [74–76]. Lugdunin is proposed to exert antimicrobial activity through
the disruption of the transmembrane pH gradient likely leading to intracellular protein
denaturation and reduced proton motive force, directly inhibiting respiration [74,77,78].
Lugdunin is further evidenced to increase the gene expression of several cutaneous antimi-
crobial peptides and induce the phagocytic recruitment of neutrophils and monocytes [75].
A key driver of lugdunin research is the low propensity for resistance development in
exposed bacteria, with one study identifying S. aureus as not developing resistance after
several subinhibitory passages [76].

The therapeutic translation of purified bacteriocins remains difficult due to several factors,
such as serum half-life and immunogenicity. Protein engineering represents a promising area
for redesigning bacteriocins towards their human use. An example comes from a study of
the domesticated ruminant commensal Staphylococcus simulans that is associated with rare
opportunistic infections in humans, such as endocarditis and erythema [79–81]. S. simulans
secretes the bacteriocin lysostaphin, an endopeptidase enzyme capable of pentaglycine bridge
cleavage within the peptidoglycan of staphylococci. Lysostaphin exerts anti-S. aureus bactericidal
activity regardless of planktonic, quiescent and biofilm-associated lifestyles [82]. Lysostaphin
immunogenicity represents a major barrier to clinical application. Protein engineering reduced
lysostaphin immunogenicity through T-cell epitope removal alongside an increased serum
half-life through polyethylene glycol and albumin conjugation [83–85]. Various lysostaphin
application vehicles have been effective versus S. aureus in vivo via intravaginal dissolvable
tablets, emulsion-based topical gels and intravenous injection.

The viricidal, virostatic and food-preservative applications of certain bacteriocins have
further been reported. For example, the gut commensal and rare skin pathogen Enterococcus
faecium produces the bacteriocin CRL35, capable of the considerable inhibition of herpes
simplex virus (HSV) 1/2 through late-stage protein-synthesis retardation in vitro [86–88].
Antimicrobial properties of CRL35 have been demonstrated in vivo and been explored
for use as a dairy food preservative via chitosan microencapsulation with a retainment of
bactericidal activity [89]. Bacillus subtilis can be found on skin and its bacteriocin subtilosin,
a macrocyclic lantibiotic, is capable of the inhibition of both HSV-1 and 2 late-stage replica-
tion in addition to several bacteria associated with urinary tract infections [90–92]. Further
nonskin-bacteria-derived bacteriocins have potent antiviral activity, which highlights the
scope for further investigation of the skin microbiome in this area [90].

Most skin-relevant bacteriocins remain to be explored in preclinical development
stages to assess pharmacological benefits. Several considerations must be addressed prior
to the therapeutic and commercial applications of bacteriocins, including toxicity, biological
half-life and the capacity for resistance development [58]. Indeed, given the range of
susceptibility spectrums for bacteriocins, there is a need to collect temporal data as a means
to disfavour those with the potential to disrupt the skin microbiota community, where it
may exacerbate or perpetuate inflammatory disorders [67].

5.2. Bacteriophages

The virome remains an underappreciated area of the skin microbiome, with attention
mostly limited to bacteriophages. In natural environments, bacteriophages are consid-
ered to modulate bacterial communities through the proliferation inhibition of dominant
species, thereby maintaining diversity via predator–prey coevolution [93]. Research of the
species-rich gut virome has revealed 1010 bacteriophages per gram of faecal material, with
variations indicating complex ecological interactions [94,95]. Skin metagenome analyses
have highlighted the breadth of phages associated with the predominant skin bacterial
genera Staphylococcus, Cutibacterium and Streptococcus [96,97]. This repertoire represents a
rich source of potentially therapeutic bacteriophages.

A principal translational pathway for the therapeutic use of lytic bacteriophages
is to clear pathogens from infected tissue [98]. Phages exert bactericidal activity with
typical strain specificity for infection through the interaction with bacterial cell surface
structures, such as lipopolysaccharide or teichoic acid [99,100]. The genetic manipulation
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of phage–bacteria determinant regions has been extensively studied, thereby improving
the effectiveness of this strategy for the treatment of AMR infections [101–103].

Multiple bacteriophages are reportedly being explored for phage therapy for various
manifestations of skin-associated pathogens. Support for clinical research comes from
phage therapy success for skin infections of Mycobacterium chelonae and multiple-drug
resistant (MDR) Pseudomonas aeruginosa [104,105]. Topical bacteriophage therapy targeting
C. acnes has advanced to phase I clinical trials after displaying efficacy in reducing C. acnes
abundance without significant safety concerns [106]. Screening studies isolated seven
distinct bacteriophages effective against S. epidermidis albeit with highly variable strain-
specific resistance profiles [107]. Combinations of S. epidermidis with S. aureus-specific
phages were demonstrated to suppress phage-resistant mutants of S. aureus in a skin model
of atopic dermatitis [108].

More than 10 clinical trials were in various stages of completion by early 2023 investi-
gating the efficacy of bacteriophage therapy for the treatment of musculoskeletal, skin and
soft tissue infections [109]. Previous trials supported the high safety of phage therapy with
varying efficacy arising from delivery mechanisms and phage stability [110]. For example,
PhagoBurn is a phage-treated wound dressing found safe yet ineffective in phase I/II
clinical trials at reducing Escherichia coli and Pseudomonas aeruginosa burdens, likely through
insufficient dosing. The foundation is established, however, for future phage-mediated skin
infection trials using phage lysins, liposome-encapsulated phage cocktails and antibiotic
phage combinatorial therapy [111].

A topical bacteriophage cocktail therapy for acne, BX001, demonstrated significant
C. acnes abundance reduction in phase I cosmetic clinical trials. The evidence implicates
the IA-1 C. acnes phylotype as an opportunistic pathogen of the pilosebaceous unit by
stimulating a localised proinflammatory response leading to acne lesions, meaning such
treatment has utility [112]. Direct modulation of skin microbiome composition through
targeted phage therapy may yield novel skin treatment strategies from wound healing to
eczema [108,113–115]. A sufficient knowledge of multiple phages with distinct cellular
targets is required to mitigate the capacity for phage resistance alongside a physiochemical
knowledge of product formulations slowing product development [116].

An appreciation of safety concerns is necessary for the responsible translation of
bacteriophages into clinical use. Wildtype phages are classified in relation to their infec-
tion cycles, with temperate phages associated with prophage genomic integration and
maintenance, whilst obligate lytic phages are associated with direct cellular lysis following
infection [117,118]. Phage therapy focuses on obligate lytic phages to circumvent toxin
production, integration and insertional mutagenesis [119]. Temperate phage insertions
are experimentally evidenced in some cases to facilitate the mobilisation of pathogenicity
islands and associated antibiotic resistance and superantigen genes in S. aureus, thereby
limiting their translation by promoting virulence and treatment resistance [120,121]. Strate-
gies to circumvent inherent phage limitations include the modification of phage DNA to
encode CRISPR-Cas9 systems that resensitise resistant bacteria to antibiotic treatments or
bactericidal toxins [122]. Bacteriophage endolysins targeting specific cell wall lysis are a
promising alternative to hindrances associated with bacteriophage therapy by removing the
replicative cycle of phages, albeit with higher production costs [123]. Endolysins available
commercially include the eczema treatment Gladskin Micreobalance® with considerable
mitigation of S. aureus-associated atopic dermatitis [124].

5.3. Cutaneous Lipids

Cutaneous fatty acids impart multiple functions for the host, namely, microbial
growth inhibition through a reduction in skin pH alongside direct antimicrobial ac-
tivity, whilst simultaneously promoting commensal adherence [2]. Skin fatty acids
are produced through the hydrolysis of epidermal and sebaceous triglycerides, with
activity predominantly facilitated through the extracellular lipase secretion of commen-
sals, such as Cutibacterium spp. and Staphylococcus spp. [125–127]. Fatty acids further
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function as signalling molecules capable of diminishing proinflammatory cytokine
induction in keratinocytes associated with allergic dermis reactions through free fatty
acid receptor 1 activation [128]. Triglyceride degradation liberates glycerol, a potent
humectant that supports corneocyte desquamation from corneodesosome cleavage,
thereby stimulating the recovery of irritated skin [26,129,130]. The microbial fermen-
tation of glycerol with the production of fatty acids, namely lactic acid, promotes an
acidic pH and the upregulated gene expression of essential skin barrier proteins in
keratinocytes [131]. Topical formulations of certain skin lipids have the potential for
therapeutic use due to their range of activity and antimicrobial activity. Sphingosine
and sapienic acid show potent activity towards staphylococci [11,31,132]. Skin lipids
represent an avenue for therapeutic application, and studies indicate a potential use
for sapienic acid as a stable antimicrobial in cosmetic products [31,132,133].

5.4. Biofilm Inhibitors

Microorganisms aggregate into biofilms through the secretion of matrix proteins,
polysaccharides and DNA, with the structures considered a dominant growth mecha-
nism by members of the skin microbiome [134,135]. Biofilms convey many benefits to
their community with decreases in both immune system stimulation and antimicro-
bial uptake through metabolic dormancy [136]. Many opportunistic skin pathogens
form monomicrobial biofilms, e.g., S. aureus, C. acnes and S. epidermidis. Notably, S.
aureus biofilms are prevalent in atopic dermatitis, with a correlation between abun-
dance and disease severity [137]. C. acnes and S. epidermidis biofilms are associated
with medical-implant-associated infection, often leading to systemic bacteraemia in
immunocompromised individuals [138–140]. Given the clinical relevance of biofilm-
associated infection, novel therapeutics are necessary to circumvent the treatment
resistance of these bacterial aggregates.

Resident skin flora exerts antagonistic interactions to limit biofilm formation and
integrity through the production of antibiofilm agents. S. epidermidis secretes a serine
protease, Esp, evidenced to disassemble MRSA biofilms by degrading several proteins for
cell wall and biofilm formation. Esp can degrade human receptors utilised by S. aureus
for adherence, such as fibronectin to convey colonisation resistance [141–143]. Moreover, a
S. epidermidis protease-independent biofilm inhibitor is effective against a range of MRSA
and methicillin-susceptible S. aureus (MSSA) without reducing cell viability. This unchar-
acterised biofilm inhibitor was proposed to be a phenol-soluble modulin (PSM) likely
functioning through the inhibition of the polysaccharide adhesion operon [144–146].

The lipophilic, aerotolerant commensal Cutibacterium acnes can reside in pilosebaceous
units, and its secreted lipases hydrolyse triglycerides, releasing short-chain fatty acids
(SCFAs) resulting in local pH reduction and the inhibition of competing bacteria, stabilising
niche occupation [147]. Additional beneficial functions of C. acnes include the secretion of
antioxidant enzymes and in vivo antitumoral properties [49,148]. However, sebum-derived
SCFAs may also induce proinflammatory gene expression in keratinocytes and sebocytes
within the pilosebaceous unit that likely drive acne vulgaris manifestations [149,150]. SC-
FAs further inhibit the polysaccharide biofilm formation of S. epidermidis at physiological
concentrations whilst simultaneously increasing susceptibility to both ampicillin and doxy-
cycline [151]. SCFAs are being explored within the gut microbiome given their significant
potential for inflammatory and immune diseases, with a likely relevance to cutaneous
homeostasis [152–154].

5.5. Quorum Sensing Modulators

The survival of bacterial communities requires constant environmental adaptation to
selective pressures [155]. Quorum sensing (QS) systems mediate cell-to-cell communication
to bring about a coordinated change in gene expression producing a community beneficial
behaviour [156]. QS relies upon the secretion of autoinducer compounds at subthreshold
levels that diffuse into the extracellular environment where the autoinducer concentration
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is linked with bacterial population density. The post-threshold autoinducer activates signal
transduction to a transcription factor(s) that drive(s) regulon expression [157–160].

QS products such as extracellular proteases have a metabolic expense but provide
community level fitness benefits, hence collaborative production acts to limit individual
cost [161]. Many QS-mediated products are virulence factors that facilitate processes
such as biofilm formation, integrity promotion and dispersal associated with systemic
disease progression [160,162]. In recent years, analogous quorum-sensing-like systems
were identified in fungi and bacteriophages, highlighting the significance of microbial
communication in microbiota present on the skin [163,164].

The secretion of QS inhibitors represents a form of antagonism common within the skin
microbiome that has potential therapeutic translatability. Various commensal staphylococci,
including S. epidermidis, S. hominis and S. simulans, secrete inhibitors of the S. aureus
accessory gene regulator (agr) that interfere with colonisation and virulence [165,166].
S. hominis autoinducer peptides (AIPs) were shown to quench accessory gene regulatory
(agr) QS systems of MRSA, with AIP-2 providing protection from S. aureus necrosis and
skin damage [167]. Staphylococcus warneri produces AIP-1 and AIP-2 capable of the dose-
dependent inhibition of S. epidermidis agr-1 and all agr of S. aureus, reducing virulence
factor production and providing protection against associated skin barrier damage [168].

Since pathogenic bacteria often utilise QS to stimulate biofilm formation, many QS
inhibitors have a translational application in the treatment of recalcitrant biofilm infections
derived from the human skin [169,170]. The skin commensal Staphylococcus xylosus ex-
presses an RNAIII-inhibiting peptide (RIP) that inhibits QS-associated signal transduction
pathways. RIP is a potent inhibitor of S. aureus and S. epidermidis biofilm formation pro-
teins [171–173]. Moreover, RIP treatment displayed both an in vitro inhibition of S. aureus
adhesion and efficacy in the treatment of S. aureus murine infection models [173,174].

5.6. Fungicidal Compounds

The cutaneous mycobiome is less well studied as the fungal component that colonises
human skin. The mycobiome becomes established following birth with compositional
changes associated with extrinsic and intrinsic factors comparable with the microbiome
as a whole. Skin fungal dysbiosis correlates with common cutaneous disorders, such as
dandruff, atopic dermatitis and pityriasis versicolor [175–177]. Fungal pathogen emergence
is underrecognised in contrast to the antimicrobial resistance of bacterial pathogens and
viral pathogen resurgence [178,179]. Problematically, fungal infection treatment is generally
limited to just four classes of compounds, which can often be unsuccessful due to resistance
development that highlights the necessity of novel antifungal compounds [180,181].

The predominant genus of the human cutaneous mycobiome is Malassezia, which
was recently identified to have a greater breadth of species from metagenomic studies,
albeit species that remain uncultured [182]. Malassezia can produce indole compounds
for nitrogen acquisition through tryptophan metabolism [183]. Malassezia indoles display
broad-spectrum fungicidal properties, effective against pathogenic yeasts and moulds
at skin-relevant concentrations in vitro [184]. Malassezia furfur produces several indoles,
such as indolo [2,3] carbazole, which inhibits Candida spp. and other Malassezia spp. at
concentrations less than 6 ug/mL [184,185]. Known ligands of aryl hydrocarbon receptors,
these indoles can result in the induction of proinflammatory responses, drastically limiting
their therapeutic prospects [186].

Several commensal bacteria inhibit Candida albicans colonisation within the cutaneous
environment. S. epidermidis stimulates the production of specific CD8+ T cells via localised
dendritic cell activation, resulting in an improved protection against Candida albicans infec-
tion through enhanced innate defence systems [187]. S. epidermidis stimulates the primary
keratinocyte production of human antimicrobial peptides beta defensin 1–3 in a Toll-like
receptor-2-associated manner [177,188]. Lactobacillus spp. that are abundant within the
vaginal microbiome produce lactic acid and SCFA resulting in vaginal acidification that
inhibits the C. albicans yeast–hyphae transition [189]. Such hyphal transition represents
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a key virulence strategy of C. albicans required for mucosal invasion and systemic dis-
semination [190]. Several postulated antifungal benefits of vaginal lactobacilli are related
to colonisation resistance through strong adhesion and biofilm formation upon mucosal
membranes and free-radical secretion increasing mucus cohesion [191]. Indeed, vaginal
probiotics are commercialised with Lactobacillus-based Canesten Canesflor®, demonstrat-
ing the potential of developing probiotics for fungal infections. The antifungal potential
of Saccharomyces cerevisiae and Candida spp. was demonstrated in vitro to inhibit biofilm
formation and hyphal transition in C. albicans, highlighting the need for future probiotic
research [192].

5.7. Skin Cancer Treatments

The development of novel cancer treatments represents an unequivocally imperative
task for modern health science. The significance of cancer is highlighted through the rapid
growth in global morbidity and mortality, representing a leading cause of premature deaths
in an estimated 60% of countries as of 2021 [193,194].

Within cancerous tumours exists a distinct microenvironment, and the microbiome
can alter both progression and treatment resistance. Multiple associations were identified
between the prevalence of individual skin microbiome members and specific skin cancers,
such as S. aureus within squamous cell carcinoma skin biopsies [195]. A causative relation-
ship between skin microbiome members and skin cancers is proposed to occur through
the induction of proinflammatory responses, which links to an apparent increased risk of
skin cancer with skin-microbiome-associated disorders [196–199]. There is a necessity to
investigate the intentional modification of skin tumour microbiomes to mitigate the risks
associated with skin cancer development given the previously described rich source of
bactericidal products [195]. The characterisation of the skin microbiome has so far revealed
several compounds displaying potential antioncogenic activity capable of increasing the
available therapies to clinical professionals.

The metabolic analysis of S. epidermidis skin isolates revealed the trait variable pro-
duction of 6-N-hydroxyaminopurine (6-HAP), a hydroxylamine adenine analogue with
mutagenic and teratogenic activity [200,201]. 6-HAP displayed an in vitro selective inhibi-
tion of lymphoma and melanoma tumour cell line proliferation whilst exerting relatively
little effect on an epidermal keratinocyte cell line. S. epidermidis-producing 6-HAP is preva-
lent in the human skin microbiome, and these strains exerted a significant inhibition of
ultraviolet-associated neoplasia generation in vivo [202]. The antioncogenic properties of
6-HAP have been questioned based on the characterisation of commercially sourced versus
commensal-produced 6-HAP [203,204]. The therapeutic potential of 6-HAP is contingent
on the further translation to in vivo models alongside the elucidation of its mechanism of
action, prior to its application in cancer treatment and prevention.

Commensal Malassezia spp. synthesise indirubin, a compound capable of potent
aryl hydrocarbon receptor (AHR) agonism, with a proposed competitive inhibition of
cyclin-dependent kinases associated with cell cycle modulation, resulting in cell cycle
arrest [205]. Further antioncogenic mechanisms of indirubin have been discussed in detail
elsewhere [206]. Despite the apparent commensality of Malassezia spp., opportunistic
pathogenesis is associated with several conditions, such as dermatitis, supporting the
application of topical probiotic formulations, i.e., for treatment of skin cancers [207].

Bacteriocins represent an attractive source of antioncogenic compounds arising from
their specificity, nontoxicity and abundance within the skin microbiome [208]. Pyocins
(bacteriocins produced by the genus Pseudomonas) of the transient opportunistic pathogen
Pseudomonas aeruginosa selectively inhibit the proliferation of human hepatoma, B lympho-
cyte and murine fibroblast cell lines [209,210]. The antioncogenic activity of bacteriocins
produced by skin-relevant pathogens has been described, such as Klebsiella pneumoniae-
derived microcin E492; however, the therapeutic potential of skin-microbiome-derived
bacteriocins remains unexplored [208]. Moreover, investigations of the antioncogenic ac-
tivity of bacteriocins are largely limited to in vitro cell lines, illustrating the necessity for
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in vivo studies and considerations of the reported limitations of the therapeutic utilisation
of bacteriocins.

Many anticancer therapeutic compounds are limited by the development of resistance
in target cells alongside nonselective cell targeting, resulting in multiple adverse side effects.
The selective and distinct functional mechanisms of bacteriocins highlight their therapeutic
application potential [209]. Several methods were discussed to feasibly increase bacteriocin
therapeutic activity, for example, the conjugation to nanoparticles for synergistic drug
delivery facilitating a lower therapeutic dosage [211]. Additionally, many common oral
probiotic compounds are associated with the production of bacteriocins with considerable
anticancer activity, highlighting the need for parallel investigations with topical probiotics
or purified compounds [209].

6. Skin Microbiome Applications in Personal Care Products

Personal care products represent a considerable proportion of the global economy,
with a total estimated market valuation of over USD 500 billion in 2022 and a predicted
annual growth rate of over 6% [212]. Within this growth potential, the skin microbiome has
many demonstratable applications for personal care product development and many areas
for future investigations.

The composition and stability of an individual’s skin microbiota is paramount
for the maintenance of cutaneous homeostasis through functions such as pathogenic
colonisation resistance [2]. A growing body of evidence correlates skin microbiota com-
position with biophysical skin properties alongside the perpetuation and onset of skin
conditions [16,40,213–217]. Hence, the reshaping of the skin microbiota community
structure and utilisation of isolated effector compounds represent a significant area for
commercial product development [218]. The viability of such products is shown by
the prevalence of novel topical probiotics in the personal care market alongside the
renowned success of parallel gut probiotics.

6.1. Acne Vulgaris

The key microbial component of acne pathophysiology is linked to the obstruction of
the sebaceous gland leading to sebum accumulation, resulting in C. acnes extracellular li-
pases creating proinflammatory SCFAs [219–221]. Several clinical trials have demonstrated
probiotics cause C. acnes inhibition leading to reduced acne severity. A topical mixture
of E. faecalis and Lactobacillus sp. applied bidaily resulted in reductions in acne lesions,
proposedly resultant of C. acnes inhibition and reduced proinflammatory factor production.
Similarly, trials utilising aqueous Lactobacillus plantarum probiotics demonstrated dosage-
dependent reductions in lesion size [222]. To date, these trials have had a small cohort of
less than 100 people, inviting larger studies to support the confidence and reliability of
such products [223,224]. Skin probiotics capable of reducing acne manifestations include
products recently released to the market, such as those from Yun probiotherapy, indicating
the growth of such probiotic markets [225].

6.2. Atopic Dermatitis

Atopic dermatitis (AD) is the most common inflammatory skin disorder globally and
is associated with pruritic and desiccated inflamed lesions, arising from various inheritable
mutations in skin barrier proteins and allergen-specific immunological defects [226,227].
AD cutaneous dysbiosis is characterised by an increased abundance of staphylococci such
as S. aureus and Malassezia spp. which perpetuates AD manifestation and its severity
through the secretion of virulence factors (e.g., toxins) and cytokine-inducing nanovesicles,
respectively [228–230]. Nakatsuji et al. identified that in a small cohort study, the trans-
plantation of specific antimicrobial peptide-producing S. epidermidis and S. hominis strains
yielded considerable reductions in S. aureus abundance in AD patients [228]. Such promise
means further investigations with a larger cohort size and an understanding of the longer-
term persistence of transplanted strains with the effect of repeat applications is necessary to
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further unlock their clear potential. The effects of bacterial extracts of Vitreoscilla filiformis,
Streptococcus thermophilus and Lactobacillus johnsonii have yielded a promising mitigation of
AD severity, likely through an antagonistic action upon S. aureus and Malassezia [231].

6.3. Anti-Ageing

Skin ageing corresponds with physiological changes altering elasticity, thickness and
moisture. These changes are linked to multiple biological processes, including mutation
accumulation, cellular senescence and microbiome dysbiosis [232]. Physiological manifes-
tations of cutaneous ageing are accelerated by environmental factors, such as UV-mediated
photodamage [233]. The composition of the skin microbiome varies throughout life, with
aged skin having increased overall diversity. Ageing is further correlated to increased
antimicrobial production and physiological reductions in the production of cutaneous
factors, notably reduced collagen and sebum [40,234].

Correlations between ageing and cutaneous skin microbiome changes are well estab-
lished. Elderly skin microbiomes are associated with consistently reduced Cutibacterium
spp. and Lactobacillus spp. across multiple bodily sites. [40,235]. A conjectural association
with reduced C. acnes abundance is reduced glycerol, fatty acids and antioxidant production
perpetuating physiological changes associated with cutaneous ageing [131,236]. Strepto-
coccus spp. abundance increases until puberty and correlates with younger biophysical
properties, such as high elasticity [235]. The exogenous treatment of human fibroblasts
with a supernatant from facial-skin-swab-derived strains of Streptococcus sp. resulted in
an increased gene expression of collagen, filaggrin and lipid synthesis proteins [237]. The
causative compound within Streptococcus supernatants is accepted to be spermidine, a
polyamine capable of inducing cytoprotective autophagy associated with an increased
turnover of cells, proteins and organelles. Spermidine is further associated with chemother-
apy potentiation and tumorigenesis suppression in murine models [238,239]. Moreover,
spermidine levels are shown to decrease with biological ageing, further supporting its
role in ageing, and this polyamine displays low toxicity in mice and humans [240]. The
supplementation of spermidine or the promotion of producing streptococci in naturally
deficient older humans may provide improved phenotypes associated with biological
ageing and warrant further investigation.

Wide-ranging prospects of personal care treatments aimed to mitigate physiological
alterations associated with ageing are feasible. For example, Lactobacillus spp. correlate
with reduced photo-ageing through an ultraviolet protective effect, thus reducing collagen
degradation [17]. Further, C. acnes RoxP is a free-radical oxygenase capable of potent
antioxidant activity relevant for the mitigation of cutaneous ageing processes in purified or
pre- and probiotic formulations [236,241,242].

6.4. Skin Rejuvenation

Topical probiotics produced with the aim of establishing stable communities of benefi-
cial microorganisms represent a key direction for skin-microbiome-derived development.
S. epidermidis may contribute to the production of ceramide on human skin through sph-
ingomyelinase production leading to the digestion of antimicrobial amino alcohol sph-
ingosines [132,243] S. epidermidis sphingomyelinase is sufficient to significantly increase
murine ceramide content on skin and conveys no apparent pathology associated with
keratinocyte cytolysis or biofilm formation [244]. Ceramides provide a diverse and vital
range of functions through forming a major component of the lipid barrier to the regulation
of keratinocyte proliferation and the modulation of localised immune responses [244,245].
The further potential of streptococci producing hyaluronic acid and streptococcal lysates
increasing skin ceramide production highlights potential avenues that might direct skin
care product development [246–248]. Sphingomyelinase expression appears to provide
growth advantages for S. epidermidis by facilitating colonisation through nutrient acquisi-
tion and lipid osmoprotection [249]. Indeed, a correlative relationship was reported with
reduced spingomyelinase activity in atopic dermatitis, highlighting a further direction
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for product development [250]. The exploration into the commercial viability of products
utilising purified sphingomyelinase, lysate or probiotic formulations derived from strains
with optimal activity is warranted.

Lactobacillus spp. were explored as topical cutaneous probiotics [225,251]. Lactobacilli
are evidenced in primary human keratinocytes to aid skin rejuvenation through stim-
ulating the expression of skin-junction proteins via Toll-like receptor 2 activation, thus
promoting the integrity of the lipid barrier. Similarly, Lactobacillus ferment lysate stimu-
lated keratinocyte migration leading to increased skin repair; however, the direct effector
compounds are unknown [252].

6.5. Moisturisers

Topical moisturisers are a staple in the cosmetic industry, aiming to hydrate the skin to
visually improve skin smoothness through restoration of the skin lipid barrier [253]. Since
glycerol represents a potent humectant facilitating skin moisture and hydration retention,
cosmetic products that aim to increase glycerol liberation from sebaceous triglycerides are
a feasible option [131,254]. Hence, formulations containing either commensal-derived ex-
tracellular lipases or those that promote producer growth may yield moisturising potential.
Both prebiotic and postbiotic moisturisers are on the market, with one study identifying
visual improvements in skin moisture and increased skin microbiome diversity over the
4-week period studied [131,213,255]. Moisturisers containing probiotic lysates are currently
commercially available containing Lactobacillus spp. and generally aim to stimulate the
expression and production of skin barrier proteins as reported from in vivo and in vitro
models [217,256,257].

6.6. Cutaneous Hyperpigmentation

The superficial skin infection termed pityriasis versicolor is caused by several Malassezia
spp. and can result in hypopigmented and hyperpigmented macules [258]. Notably, the
Malassezia sp.-produced indole derivative compound malassezin can induce melanocyte
apoptosis through aryl hydrocarbon receptor agonist activity [259–262]. This activity means
malassezin was explored as a novel cosmetic treatment for facial hyperpigmentation and
produces clear decreases in melanin and visible skin lightening within two to four weeks
following oil–water emulsion skin treatment [261,263].

6.7. Rosacea

The chronic inflammatory skin disorder rosacea is characterised by persistent facial
flushing, sensitive dry skin and inflamed cutaneous plaques and is associated with genetic,
neurological and immune system dysregulation. Correlations between rosacea and mi-
crobial dysbiosis were identified with an overgrowth of S. epidermidis, Bacillus oleronius
and reduced C. acnes growth [217]. However, only one known study with one participant
has utilised a topical probiotic and low-dose doxycycline combinatory therapy, albeit with
apparent effective results 6 months post treatment [264]; the study signposts a future scope
for treatment.

7. Future Perspectives

The human skin microbiome contains a wealth of compounds that can be exploited for
therapeutic and personal care applications. Further research by both the public and private
sectors will bring skin-microbiome-derived products to the market and importantly eluci-
date mechanisms of action, efficacy and safety. Simultaneously, improvements to known
compounds through protein engineering that aid translation represent another promising
avenue for the application of skin-microbiome-derived compounds. Such products have
the capability to improve healthcare outcomes for a variety of disorders as well as improve
the quality of life for a significant portion of the population.

A wealth of knowledge exists pertaining to the skin microbiome representing an
incredibly well-characterised human–microbiome association. There is a plethora of com-



Microorganisms 2023, 11, 1899 14 of 24

mercial and therapeutic compounds evidenced to modulate the skin microbiome to provide
holistic benefits. Yet many investigations of the skin microbiome are reliant on correlative
studies and deductions from in vitro investigations on bacterial isolates. Hence, many
microbiome investigations are only able to reveal rudimentary relationships between a
limited number of species, which may not be translatable in vivo [265]. There is a necessity
for the development of models more closely reflecting the natural skin environment and the
diversity associated with physiological factors. Several skin models have been developed,
such as stem-cell-derived reconstructed human epidermis, skin explants and NativeSkin®,
albeit associated with a high cost and short-lived stability [266].

The advent of next-generation sequencing technologies has unequivocally transformed
microbiome research. Robust metagenomic pipelines have proved pivotal for the untar-
geted creation of detailed compositional maps of the microbiome, facilitating procedures
such as nosocomial MDR pathogen surveillance [267]. Metagenomics provides only a
limited picture of the microbiome, with investigations unable to confidently identify rare
species or nonviable cells [16]. Indeed, microbiome investigations are increasingly reliant
on multiomics approaches facilitating revelations of nuanced microbial behaviours with
potential human translatability [268].

8. Conclusions

The rapid growth in the development of therapeutic and commercial skin-microbiome-
derived and probiotic products illustrates the enormous potential of the field. The skin
microbiome contains a vast source of cosmetic or therapeutically relevant compounds which
have been shown to be translatable for the treatment of many diseases from antimicrobial-
resistant pathogen infections to cancers. Many applications further exist for commercial
exploitation in the personal care sector, with the potential for the development of novel
cosmetic drug formulations. Similarly, the intentional modulation of the native skin flora
composition through topical pre and probiotics may alleviate symptoms of many skin
disorders through the promotion of microorganisms associated with healthy individuals.
Skin microbiome research has recently displayed a surge in interest, yet considerable
developments in areas such as in vivo modelling are required to ensure coherency and
translatability to the human skin environment.
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