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Abstract: Neutrophils are the most abundant polymorphonuclear granular leukocytes in human
blood and are an essential part of the innate immune system. Neutrophils are efficient cells that
eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections
remains controversial. At sites of protozoan parasite infections, a large number of infiltrating
neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection.
Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage.
Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions
of people globally. In this review, we summarize these protozoan diseases and describe the novel
view on how neutrophils are involved in protection from these parasites. Also, we present recent
evidence that neutrophils play a double role in these infections participating both in control of the
parasite and in the pathogenesis of the disease.
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1. Introduction

Adaptive immune responses are very specific for particular foreign agents (antigens)
and usually long-lasting, but they also take a long time (around two weeks) to develop [1].
Since we are in continuous contact with unicellular microorganisms, the defense of our
organism depends to a large extent on the innate immune system [1]. An essential part of
the innate immune system is the neutrophils, which are polymorphonuclear and granular
leukocytes [2]. Neutrophils are the most abundant (50–70%) circulating leukocytes in
human blood. They measure around 7–10 µm in diameter, present a lobulated nucleus,
and have many granules and secretory vesicles in their cytoplasm. Neutrophils are quickly
recruited in large numbers from the blood into sites of infection or inflammation. For this
reason, they are usually the first cells to interact with invading microorganisms and are
thus considered a first line of defense of the innate immune system [3]. Neutrophils are
recruited to affected sites by chemoattractants, a chemically diverse group of molecules
that stimulate the migration of leukocytes and provide guidance to the cells. Chemoat-
tractants include lipids, such as PAF (platelet-activating factor) or LTB4 (leukotriene-B4);
N-formylated peptides; complement anaphylatoxins, such as C3a and C5a; and chemokines
(host small proteins) [4]. In humans, at least seven chemokines (CXCL1, CXCL2, CXCL3,
CXCL5, CXCL6, CXCL7, and CXCL8) have been identified to mediate the recruiting of
neutrophils in a timely and coordinated manner [5]. The chemokine CXCL8, also known
as interleukin (IL)-8, is the most potent chemoattractant for neutrophils [6]. In an infected
tissue, neutrophils carry out important antimicrobial functions [7], including degranula-
tion [8], production of reactive oxygen species (ROS) [9,10], phagocytosis [11], formation of
neutrophil extracellular traps (NETs) [12], and trogocytosis [13]. Neutrophils in blood, that
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do not migrate to infected tissues, turn into aged neutrophils and migrate back to the liver,
spleen, or bone marrow [14], where they will die by apoptosis and finally be eliminated by
macrophages in a process known as efferocytosis [15].

Neutrophils contain preformed effector molecules stored in their intracellular granules.
There are four types of granules in neutrophils: primary or azurophil (containing myeloper-
oxidase, elastase, and defensins), secondary or specific (containing lactoferrin, cathelicidin,
and metalloproteinases), tertiary or gelatinase (containing gelatinase proteins such as ma-
trix metalloproteinase-9 (MMP-9)), and secretory (containing serum albumin, cytokines,
and membrane-bound components, such as adhesion molecules and receptors) [16,17]. At
sites of infection, neutrophils achieve a rapid response against microorganisms by degran-
ulation, that is, the release of granule proteins toward pathogens to induce their killing
and digestion [18]. Another mechanism for killing microorganisms is the generation of
ROS. To achieve this, neutrophils activate an NADPH (nicotinamide adenine dinucleotide
phosphate) oxidase enzyme complex. NADPH oxidase generates large amounts of super-
oxide, in a process also known as oxidative burst. Superoxide is a precursor of H2O2 and
other forms of ROS with potent antimicrobial activity [18]. Phagocytosis is arguably the
most important antimicrobial function of neutrophils [11,19]. Phagocytosis is a receptor-
mediated process that results in internalization of a particle larger than 0.5 µm into the cell.
Neutrophils recognize microorganisms through PAMPs (pathogen-associated molecular
patterns) or through opsonins (antibody molecules or complement components) to initiate
phagocytosis, which results in ingestion of the microorganism into a vacuole called the
phagosome. Next, the phagosome fuses with lysosomes, in a process known as phago-
some maturation, to becomes a phagolysosome [20]. The interior of the phagolysosome
has an acidic pH and many degradative enzymes that are toxic for the microorganism
ingested [18]. Neutrophils can also form and release NETs through a dynamic cell death
program known as NETosis. NETs are fibers of decondensed chromatin decorated with
histones and antimicrobial proteins and enzymes from the neutrophil granules. Once NETs
are deployed, they function as a physical barrier where pathogens get trapped and could
be eliminated extracellularly and independently of phagocytosis [18]. NETs are beneficial
when controlling the dissemination of infectious microorganisms. However, unregulated
NET formation can also be detrimental to the host, since excessive NETs may promote
inflammation and tissue damage [12]. Trogocytosis (from the Greek trogo-: nibble) is a
recently identified cellular process by which one cell physically takes little pieces (“bites”)
from another cell and ingests these pieces of cellular material. Through trogocytosis, a cell
can damage the membrane of another cell, leading to its death [13]. Neutrophils can imple-
ment trogocytosis to kill large cells, such as sperm cells and some tumor cells [21,22]. In
addition to these important antimicrobial functions, in recent years, it has become evident
that neutrophils are also key effector cells of the adaptive immune system [18], and display
phenotypic heterogeneity and functional versatility [23,24].

In a classical view, neutrophils are reported to be efficient cells to eliminate pathogenic
bacteria and fungi [25]. However, much less is known about the role of neutrophils in
infections caused by protozoan parasites. This is somewhat surprising, since several
protozoan parasites are responsible for important diseases around the world, for example
malaria, leishmaniasis, and amoebiasis. These diseases affect millions of people globally
and represent a serious burden to human health, as indicated by the 2013 Global Burden
of Disease Study [26,27]. In most cases of protozoan parasite infections, a large number
of infiltrating neutrophils are observed in the affected tissues [28–32]. This suggests that
neutrophils are relevant immune cells for controlling the infection. Yet, in most cases, there
is also a strong inflammatory response that can provoke tissue damage. Therefore, the role
of neutrophils in protozoan parasitic infections remains controversial. In this review, we
summarize the protozoan diseases malaria, trichomoniasis, leishmaniasis, Chagas disease,
and amoebiasis, and describe the novel view of how neutrophils are involved in protection
from these parasites. Also, we present recent evidence that neutrophils play a double role
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in these infections, participating both in control of the parasite and in the pathogenesis of
the disease.

2. Malaria

Malaria is a disease caused by protozoan parasites from the genus Plasmodium. There
are five species within the genus Plasmodium recognized to infect humans: P. falciparum,
P. vivax, P. malariae, P. ovale, and P. knowlesi [33]. According to the World Health Organization
(WHO), malaria is a serious disease globally producing a huge public health problem with
more than 241 million clinical cases and 627,000 deaths just in 2020 [34]. The disease causes
severe morbidity and mortality in African countries south of the Sahara Desert, where more
than 90% of all malaria cases and deaths are reported [27]. Young children and pregnant
women are especially susceptible to this disease, which in most cases is due to infections
by P. falciparum [34]. Clinically, malaria is found in three forms: asymptomatic, mild or
uncomplicated, and severe or complicated [35,36]. The asymptomatic form is found in
the vast majority of infected individuals. When symptoms develop, in the mild form,
they include fever and sweating, chills, fatigue, nausea or vomiting. These symptoms are
thought to result from a combination of the sequestration of infected erythrocytes in the
microvasculature, activation of endothelial cells, and pro-inflammatory and pro-coagulant
responses. In the severe form, Plasmodium infection becomes complicated by abnormalities
in the patient’s blood or metabolism or by serious organ failures. The manifestations of
severe malaria include: cerebral malaria, characterized by neurologic alterations, including
abnormal behavior, impairment of consciousness, seizures, or coma. Also, severe anemia,
due to destruction of erythrocytes, hemoglobinuria, and even acute respiratory distress
syndrome (ARDS), an inflammatory reaction in the lungs that inhibits oxygen exchange,
may also be observed. In severe cases, complications can lead to death [37].

Plasmodium protozoans are complex organisms that are obligate parasites of vertebrates
and insects. The life cycle of Plasmodium species involves two phases. In one phase, the
parasite develops in a blood-feeding female Anopheles mosquito host. In another phase, the
mosquito injects parasites into a vertebrate (human) host during a blood meal [38]. The
bite of the female Anopheles mosquito introduces Plasmodium sporozoites into the human
host. Sporozoites mature as they travel to the liver and ultimately the bloodstream. Initially,
during a blood meal from an infected person, Plasmodium gametocytes enter the midgut
of the mosquito where they transform into male microgametes and female macrogametes.
The union of gametes forms a zygote, which transforms into an ookinete that penetrates
the intestinal wall of the mosquito. Then, the ookinete is converted into an oocyst. Inside
the oocyst, sporozoites develop, which then migrate to the mosquito salivary gland. The
sporozoites are released during the blood meal of the mosquito, entering the vertebrate
host. Inside a human, sporozoites migrate and infect the liver, where they undergo a single
round of replication becoming merozoites. Next, merozoites exit the liver and enter the
bloodstream where they infect erythrocytes. Plasmodium merozoites continue dividing
inside erythrocytes, causing their destruction and releasing more merozoites. The parasites
then go through continuous cycles of erythrocyte infection. A small number of parasites
differentiate into a sexual stage called a gametocyte, which is picked up by a mosquito
during a blood meal, and in this way completing the life cycle [39]. The continuous
destruction of erythrocytes is the main cause of malaria.

Although Plasmodium merozoites, the causal agents of malaria, are found in the blood
stream, it is surprising that there are relatively few studies exploring the role of neutrophils
in malaria. This may be in part due to technical difficulties, including the short lifespan
of neutrophils and the complications involved in isolating these leukocytes from blood,
which make fieldwork a real challenge in malaria-endemic countries [40]. However, recent
evidence indicates that neutrophils play a double role in malaria, participating both in
control of the parasite and in the pathogenesis of the disease [41]. During an infection with
Plasmodium, it has been estimated that blood neutrophil counts can increase up to 40%, and
the number of leukocytes is associated with parasitemia [42]. However, neutrophil counts
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did not change with the severity of the disease [43]. Thus, it seems that different neutrophil
defense mechanisms may influence the outcome between protection and pathogenesis in
malaria [41].

2.1. Neutrophil Response Anti-Plasmodium
2.1.1. Phagocytosis

Neutrophils are normally the first leukocytes to respond to an invading pathogen,
and phagocytosis is a common defense mechanism of these cells. Phagocytosis of free
merozoites or gametocytes has been observed in vitro [44] and in blood smears from
patients with malaria [45]. This phagocytosis seems to be dependent on complement
activation [45]. However, it is still uncertain to what extent phagocytosis of free parasites
controls Plasmodium proliferation [46]. Phagocytosis of infected erythrocytes, which is
observed more frequently in malaria patients, may be more relevant to control of Plasmod-
ium growth. This phagocytosis is mainly dependent on the presence of antibodies [47]
and apparently independent of complement [48]. Therefore, this response may not be
relevant during primary infections, since it depends on previous and chronic exposure to
parasites, but it may become important in controlling parasite burden in malaria-endemic
areas [49]. Although phagocytosis of Plasmodium-infected erythrocytes is easily detected
in vitro, phagocytosis in vivo is usually inferred by the presence of hemozoin (malaria
pigment) within neutrophils [50]. The number of neutrophils with malaria pigment in
peripheral blood increases with disease severity [51,52] and correlates with parasitemia and
mortality due to severe malaria in adults and children [53]. Hemozoin is the end product of
hemoglobin digestion by parasites, and it is able to inhibit further phagocytosis of infected
erythrocytes by phagocytes that previously ingested hemozoin [54,55]. Hence, neutrophil
phagocytosis is capable of controlling Plasmodium infections to a certain extent, by ingesting
free parasites and, more importantly, infected erythrocytes (Figure 1).
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are the first leukocytes to respond to the Plasmodium infection site, where they can phagocytose
free sporozoites. Also, neutrophils release neutrophil extracellular traps (NETs) that ensnare free
sporozoites. Sporozoites mature into merozoites as they travel to the liver and ultimately to the
bloodstream. Plasmodium merozoites infect erythrocytes, where they continue dividing until the
erythrocyte is destroyed, releasing more merozoites. The continuous destruction of erythrocytes is
the main cause of malaria. Neutrophils are the first leukocytes to respond to the Plasmodium infection
site, where they can phagocytose free sporozoites. Also, neutrophils release NETs that ensnare free
sporozoites. In the blood, neutrophil phagocytosis of free or antibody (Ab)-coated merozoites can
take place. Inside the neutrophil, parasites can be killed by reactive oxygen species (ROS). Neutrophil
phagocytosis of infected erythrocytes is observed more frequently, particularly if erythrocytes are
opsonized with antibodies (Ab). Neutrophils that have ingested infected erythrocytes accumulate
hemozoin (malaria pigment), which is the end product of hemoglobin digestion by parasites. Hemo-
zoin is able to inhibit further phagocytosis (down red arrow). In addition, neutrophils can control
parasite burden by degranulation. Granule proteins such as MMP-9 (matrix metallopeptidase 9) can
damage merozoites directly. Finally, Plasmodium-infected erythrocytes can induce NET formation by
releasing MIF (macrophage migration inhibitory factor), uric acid crystals, or heme (a hemoglobin
breakdown product). Thus, NETs are an important mechanism to control parasite dissemination.

2.1.2. Reactive Oxygen Species (ROS)

In vitro experiments suggest that during Plasmodium infection, neutrophils become
activated and produce ROS, which may have a role in parasite clearance. Neutrophils
from children with malaria inhibit parasite growth better than neutrophils from uninfected
children or adults [56], and neutrophils from children with faster parasite clearance times
produce more ROS [57]. In addition, antibodies against merozoite antigens, such as PfMSP5
(Plasmodium falciparum merozoite surface protein-5) and MSP1 (merozoite surface protein-
1), can induce neutrophils to produce more ROS [58–60]. Interestingly, antibodies against
infected erythrocytes do not seem to induce a stronger ROS production by neutrophils [58].
Therefore, malaria antigens can activate neutrophils to produce ROS, which, in turn, can
contribute to destruction of the parasite (Figure 1).

2.1.3. Degranulation

Several neutrophil granule proteins have been associated with protection from in-
fection while studying naturally occurring malaria in Gambian children. Individuals
with higher expression of cathepsin G and MMP-9 showed a better inhibition of parasite
growth [61]. In vitro experiments indicated that MMP-9 could damage parasites directly,
thus acting as a classical antimicrobial protein. In contrast, cathepsin G acted on erythro-
cytes by cleaving membrane molecules necessary for parasitic invasion [61]. These findings
suggest that neutrophils can also control parasite burden by degranulation (Figure 1).

2.1.4. Neutrophil Extracellular Traps (NETs)

During malaria, several factors may induce neutrophils to produce NETs (Figure 1).
For example, Plasmodium-infected erythrocytes released MIF (macrophage migration in-
hibitory factor), which in turn induced NET formation [62]. Also, upon rupture of infected
erythrocytes, crystal uric acid, and its precursor hypoxanthine, are released [63]. Uric acid
crystals are a potent inducer of NET formation [64]. Similarly, erythrocyte rupture releases
heme, which can also induce NET formation [65]. In addition, there is some evidence that
in vitro neutrophils release NETs in response to P. falciparum antigens [66]. Thus, NETs
may contribute to sequester parasites and prevent their dissemination. However, malaria
pathology is also closely associated with the sequestration of parasites in the microvas-
culature. Hence, excessive NETs can lead to the development of dense aggregates that
promote parasite sequestration in the blood vessels of vital organs, such as liver and lungs.
In addition, NET components released by the action of plasma DNase I can also result
in higher expression of ICAM-1 (intercellular adhesion molecule-1) on endothelial cells,
leading to sequestration of infected erythrocytes in various tissues [65]. Consequently, the
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interplay between NET formation and parasite sequestration represents a critical aspect of
malaria pathogenesis [65]. Thus, inhibition of NETosis may be a therapeutic strategy for
vascular complications in malaria.

2.2. Anti-Neutrophil Responses in Malaria

Even though neutrophils can eliminate Plasmodium parasites through various mecha-
nisms, the mosquito and the parasite express molecules that restrict neutrophil responses
and give the parasite an advantage. The mosquito produces in its salivary glands the
protein agaphelin, which is increased upon infection with P. falciparum. Agaphelin can
inhibit neutrophil elastase activity, neutrophil chemotaxis, and NET formation [67]. Also,
the antigen-5 salivary proteins, which function as ROS scavengers, can prevent neutrophil
destruction of the parasite [68]. In addition, some Plasmodium antigens such as histamine-
releasing factor and MSP1 can also inhibit neutrophil responses [69]. In a murine malaria
model, histamine-releasing factor was found to block neutrophil IL-6 secretion in the liver
and then promote parasite development in that organ [70]. In addition, the P. falciparum
protein MSP1 was found to inhibit neutrophil chemotaxis in vitro by blocking neutrophil
responses to proinflammatory protein S100P [71]. Clearly, neutrophils are important cells
for controlling Plasmodium parasites, but both the mosquito and the parasite itself have
evolved mechanisms to evade neutrophil functions and perpetuate infections.

2.3. Invasive Bacterial Disease

A frequent complication of malaria, related to neutrophil function, is the increase of
bacterial infections disseminating to blood and other organs [72]. A systemic bacterial in-
fection, or sepsis, can lead to a systemic inflammatory response resulting in life-threatening
organ dysfunction and death [73]. Because systemic bacterial infections are associated with
high mortality rates and with long-term, life-changing sequelae, they remain a global health
issue [74]. In developed countries, sepsis is most frequently associated with Staphylococcus
aureus, particularly methicillin-resistant bacteria, and Escherichia coli infections [75,76]. In
contrast, in developing countries in Africa, community-acquired bacteremia is often associ-
ated with Salmonella enterica, habitually nontyphoidal Salmonella (NTS) [77]. Invasive NTS
is also observed more often among children with P. falciparum malaria [72,78]. Additionally,
there is evidence that individuals presenting the sickle cell trait (that protects them from
malarial anemia) have a lower risk of contracting invasive NTS [79,80]. Hence, there is a
clear causal association between malaria and invasive NTS.

Neutrophils are fundamental for elimination of NTS. Bacteria are phagocytosed by
neutrophils and then killed in the phagosome by ROS. However, during an acute malaria
infection, the capacity of neutrophils to produce an oxidative burst and kill phagocytosed
Salmonella is greatly diminished [81]. Consequently, resistance to invasive NTS is reduced,
and neutrophils become a new niche for these intracellular bacteria to replicate.

The mechanisms triggering inhibition of neutrophil antimicrobial functions are com-
plex and remain unclear. During the Plasmodium life cycle within erythrocytes, parasites
feed on hemoglobin and store the waste product hemozoin in vesicles denominated as
digestive vacuoles (DVs) [82]. Many DVs are also released into the circulation where
they can interact with neutrophils and inhibit some of their functions. Neutrophils can
phagocytose DVs and initially induce an oxidative burst [54]. However, these cells showed
a reduced capacity to kill bacteria due to an impaired subsequent response to produce
ROS [54]. Similarly, hemolysis and some hemoglobin products seem to be a major contribu-
tor to impaired neutrophil functions. During malaria infection, the parasite continuously
ruptures infected erythrocytes. This is also followed by eryptosis of many uninfected
erythrocytes [83]. The destruction of erythrocytes results in the release of hemoglobin
and its breakdown product heme into the plasma. Elevated levels of heme in plasma
were found in both acute [84] and subclinical [85] P. falciparum malaria in humans, and
in acute P. yoelii infection in mice [81,86]. High circulating heme levels resulted in low
phagocytosis capacity of Salmonella by neutrophils [84]. In addition, in vitro pretreatment
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of neutrophils with heme also resulted in reduced phagocytosis of E. coli [87]. Moreover,
during a malaria infection, neutrophils display reduced migration into infected tissues in-
cluding blood [81], intestine [88], and liver [89]. Neutrophils from Plasmodium-infected mice
were reported to express heme oxygenase-1(HO-1) [81], an inducible enzyme that degrades
heme into iron, carbon monoxide, and biliverdin, and that has been reported to inhibit
neutrophil migration into inflamed lungs [90]. Thus, it seems there is a connection between
Plasmodium-induced HO-1 expression and impairment of neutrophil migration. Addition-
ally, elevated levels of systemic IL-10 are found in highly inflammatory diseases such as
sepsis [91,92] and malaria [93,94]. This anti-inflammatory cytokine is well described to
affect neutrophil functions, reducing migration to anaphylatoxins, and decreasing bacterial
clearance [95,96]. Therefore, multiple mechanisms are involved in inhibition of neutrophil
antimicrobial functions, and much more work is needed to fully characterize neutrophil
function during malaria.

3. Trichomoniasis

Trichomoniasis is a common sexually transmitted infection (STI) caused by the highly
motile extracellular flagellated protozoan parasite Trichomonas vaginalis [97,98]. It mainly
affects individuals with multiple sexual partners and concurrent STIs. Trichomoniasis
is most prevalent among women than among men, showing infection rates of 0.5% in
men and 1.8% in women [99]. Epidemiological data on trichomoniasis vary globally,
with over 143 million new cases reported annually. However, due to underreporting
and asymptomatic cases, the true prevalence of trichomoniasis may be underestimated
in many regions [100]. In the United States, trichomoniasis is among the most prevalent
nonviral STIs, with around 3.7 million infections every year [101]. Prevalence rates can vary
significantly among different populations and regions, with higher rates observed in specific
demographic groups such as Black or African American individuals and those with lower
socioeconomic status or a history of other STIs [101]. Infection of both men and women
is, in many instances, asymptomatic. In women, when symptoms develop, they include
vaginal discharge, itching, dysuria, and abdominal pain. In men, symptoms are much less
frequent and may include prostatitis, decreased sperm motility, and epididymitis [102].
Infections are commonly treated with 5-nitroimidazole drugs such as metronidazole or
tinidazole. Unfortunately, antibiotic-resistant T. vaginalis strains are on the rise, making
treatment of trichomoniasis difficult [103].

As an extracellular parasite, T. vaginalis adheres to epithelial cells in the urogenital
tract, such as cervicovaginal and prostate epithelial cells, to colonize the human host [104].
In addition, during trichomoniasis, neutrophils are found in large numbers in wet mount
smears from vaginal discharges and penile urethral samples [28]. Thus, the parasite inter-
acts with these innate immune system cells [28,29]. From mouse models of trichomoniasis,
it is clear that large numbers of neutrophils are recruited quickly to the vagina after inoc-
ulation with the parasite [105], and there is evidence that neutrophils are also able to kill
these parasites [106,107]. However, neutrophils can also cause tissue damage and enhance
inflammatory pathologies [2], and they may therefore be responsible for many symptoms
associated with trichomoniasis. Thus, whether neutrophil activity during trichomoniasis is
beneficial or detrimental to the host remains unclear.

3.1. Neutrophil Response Anti T. vaginalis Parasites
3.1.1. Neutrophil Migration towards T. vaginalis Parasites

Epithelial cells at the infection site produce LTB4, an eicosanoid lipid mediator that
promotes extravasation of neutrophils [108]. Once in the tissues, neutrophils follow chemo-
tactic signals to home directly to parasites. Because T. vaginalis parasites also produce
LTB4 [109], neutrophils follow this cue towards the parasites. In addition, neutrophils
themselves produce LTB4, continuing a positive feedback loop that enrolls more neu-
trophils towards the parasites [110]. In response to LTB4, neutrophils display a swarming
behavior around pathogens [111] (Figure 2). In the case of T. vaginalis, neutrophil swarming
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around parasites has been observed on vaginal smears [112] and on in vitro co-cultures of
neutrophils isolated from blood and axenically grown trichomonads [113]. Additionally,
in response to a T. vaginalis infection, neutrophils [114] and other immune cells [115] also
secrete IL-8. Consequently, large numbers of neutrophils are found in tissues of T. vaginalis
infection, presumably recruited to control the parasites. However, it has also been reported
that higher levels of LTB4 [116] and IL-8 [115] in infected patients correlate with more severe
symptoms, suggesting that neutrophils also contribute to pathogenesis of trichomoniasis.
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Figure 2. Interactions of neutrophils with Trichomonas vaginalis. T. vaginalis, an extracellular
parasite, adheres to epithelial cells in the urogenital tract. This initial interaction induces epithelial
cells at the infection site to produce LTB4 (leukotriene-B4), which promotes extravasation of neu-
trophils. Because T. vaginalis also produces LTB4, neutrophils follow this cue towards the parasites.
In response to LTB4, neutrophils display a swarming behavior around the parasites. Neutrophils
then kill T. vaginalis by taking small pieces, i.e., “bites”, of the parasite membrane, a process known
as trogocytosis.

3.1.2. Neutrophils Kill T. vaginalis by Trogocytosis

The classical mechanisms used by neutrophil to eliminate microorganisms include
phagocytosis, degranulation of antimicrobial molecules, and the formation of NETs [24,117].
To determine what mechanism was used by neutrophils to kill T. vaginalis parasites, each
of the neutrophil antimicrobial mechanisms were systematically inhibited. Surprisingly,
none of the classical antimicrobial mechanisms were found to be responsible for killing
these parasites. Still, neutrophils rapidly killed T. vaginalis in a dose-dependent and
contact-dependent manner [113] The process involved neutrophils surrounding the parasite
and taking small pieces of the parasite membrane [113] in a novel mechanism known as
trogocytosis [13]. Hence, neutrophils swarm around T. vaginalis parasites and kill them
by damaging their membrane through trogocytosis (Figure 2). Intriguingly, neutrophils
only performed trogocytosis on live T. vaginalis, while dead parasites were eliminated by
phagocytosis [113]. This activity is reminiscent of the amoeba Entamoeba histolytica, which
nibbles live intestinal cells and carries out phagocytosis on dead epithelial cells [118,119].
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3.2. Neutrophil Evasion Tactics of T. vaginalis

In spite of the capability of neutrophils to kill T. vaginalis, many infected patients
cannot clear the parasites on their own, and antibiotic therapy is necessary to control
the infection. This suggests that T. vaginalis uses evasion tactics to prevent killing from
neutrophils. Several anti-neutrophil tactics of T. vaginalis are described next.

We mentioned that neutrophils migrate towards parasites to cover them and perform
trogocytosis. However, it was also reported that trichomonads actively move away from
activated neutrophils. In transwell experiments, parasites displayed reduced migration
towards neutrophils on the other side of the filter. This effect was blocked when activated
neutrophils were treated with catalasa or superoxide dismutase to break down ROS [107].
Thus, T. vaginalis parasites were vigorously kept away from ROS produced by activated
neutrophils [107]. Still, this chemorepulsion process was observed at longer times (45 min)
than trogocytosis (usually within 15 min). So, it is not clear how chemorepulsion would
help parasites to avoid killing by trogocytosis. However, in tissues, the process of chemore-
pulsion may help parasites avoiding zones where active neutrophils could trap them.

T. vaginalis parasites also tend to form aggregates that promote epithelial cell destruc-
tion and induce pathogenesis [120,121]. In fact, more pathogenic strains of T. vaginalis form
more clusters in vitro [122,123], suggesting that aggregation is a virulence factor of this
parasite. Within a cluster, it would be difficult for several neutrophils to cover individual
parasites, thus making trogocytosis inefficient. Also, neutrophils would first trogocytose
parasites on the outside of the cluster, giving the trichomonads inside a better chance
to survive.

Neutrophils are short-lived cells that normally undergo apoptosis at the end of their
lifetime [124]. Yet, in the presence of T. vaginalis parasites, neutrophil apoptosis was signifi-
cantly higher [125,126]. To confirm that apoptosis was the mechanism killing neutrophils
when cultured with T. vaginalis during 12 h, neutrophils and parasites were cultured to-
gether in the presence of a caspase-3 inhibitor. This resulted in inhibition of apoptosis [125].
In addition, since ROS are potent inducers of apoptosis in neutrophils [127], neutrophils
were pretreated with an inhibitor of NADPH oxidase, diphenyleneiodonium chloride (DPI).
This also resulted in inhibition of apoptosis [126]. Together, these reports suggest that
apoptosis of human neutrophils induced by T. vaginalis involves a ROS-dependent activa-
tion of caspase-3. However, the apoptosis process is much longer than the time required
for neutrophils to kill parasites via trogocytosis. Thus, it seems unlikely that individual
parasites could evade killing by inducing neutrophil apoptosis. Still, this mechanism may
be relevant in perpetuating an infection.

Large numbers of neutrophils are found in tissues infected with T. vaginalis, where they
can kill parasites by trogocytosis. However, in infected patients, higher levels of neutrophil
chemoattractants also correlate with more severe disease, probably due to neutrophil-
mediated inflammation and tissue damage. Therefore, whether neutrophil activity during
trichomoniasis is beneficial or detrimental to the host remains unclear.

4. Leishmaniases

Leishmaniases are a group of diseases caused by protozoan parasites of the genus
Leishmania. More than twenty different species of Leishmania are capable of infecting humans
and causing the various forms of leishmaniasis. The main clinical forms of leishmaniasis
are cutaneous, mucocutaneous, and visceral (also known as kala-azar) [128,129]. The
cutaneous form is the most common and usually self-healing, while the mucocutaneous
form is the most disabling because it appears on skin and mucosal tissues of the nose and
mouth. The visceral form develops in spleen and liver and is the most severe form, usually
resulting in death [129]. More than 80 countries in America, Africa, and Asia are endemic
areas for leishmaniasis, with an estimated more than one million new cases of cutaneous
leishmaniasis and about 30,000 new cases of visceral leishmaniasis each year [130]. The
severity of the disease varies among other factors with the Leishmania species involved.
For example, cutaneous lesions caused by L. mexicana or by L. major are resolved within
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three months. In contrast, lesions caused by L. braziliensis take longer to be resolved [131].
Similarly, mucocutaneous leishmaniasis is endemic in Latin America and is caused mainly
by L. braziliensis, L. panamensis, and L. amazonensis [131,132]. Visceral leishmaniasis, in
Africa and Asia, is caused mainly by L. donovani complex (including L. donovani donovani
and L. donovani infantum), and in America by L. infantum chagasi [133].

Leishmania protozoa are obligated intracellular parasites. They exist in two stages
during their life cycle: a flagellated promastigote that lives in the midgut of an infected
female sandfly and an amastigote that lives within cells of a vertebrate host. Leishmania pro-
mastigotes are transmitted to humans when a female sandfly of Phlebotomus (in Africa and
Asia) or Lutzomia (in New World) genera takes a bloodmeal. Promastigotes are deposited
in the skin epidermis or the upper layer of the dermis, where they are rapidly internalized
by immune cells, mainly neutrophils and macrophages. Within the cell, promastigotes
transform into amastigotes, which rapidly replicate and disseminate to other cells causing
disease [134]. The life cycle of the parasite is completed when a sandfly takes a bloodmeal
with parasitized cells. In the midgut of the sandfly, amastigotes quickly transform back
into promastigotes.

During a bloodmeal, a sandfly causes skin damage and, as a result, inflammation is gen-
erated, leading to recruitment of immune cells, predominantly neutrophils. Skin keratinocytes
sense the presence of promastigotes through innate immune receptors. Particularly, Toll-like
receptor (TLR) 2 detects Leishmania phosphoglycans and activates these cells to release CXCL1,
CXCL2, and CXCL5 chemokines for neutrophil recruitment [135,136]. In addition, some
factors in the sandfly saliva, such as the sand fly salivary yellow proteins (~45 kDa) [137],
and the promastigote secretory gel [138] may also contribute to neutrophil recruitment [136].
The promastigote secretory gel is made of proteophosphoglycans secreted from Leishmania
in the sand fly midgut. The gel forms a plug in the insect gut to facilitate the regurgitation
of infective parasites [138]. Thus, neutrophils are the first innate immune cells that interact
with Leishmania promastigotes and have an important part in phagocytosis and destruction
of these parasites [139] (Figure 3). However, since Leishmania are intracellular parasites, they
have also evolved mechanisms to avoid elimination by neutrophils [140].
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Phlebotomus (in Africa and Asia) or Lutzomia (in New World) genera takes a bloodmeal. Promastig-
otes are deposited in the skin epidermis or the upper layer of the dermis, where they are rapidly
internalized by phagocytic cells, mainly neutrophils. This initial interaction induces neutrophil
activation, resulting in production of LTB4 (leukotriene-B4), which promotes extravasation of more
neutrophils. Neutrophils can also produce neutrophil extracellular traps (NETs) to prevent parasite
spreading. Within the neutrophil, promastigotes transform into amastigotes, which rapidly replicate
and disseminate to other cells. Although Leishmania promastigotes can be killed by phagocytosis,
destruction of parasites varies among Leishmania species. For example, L. braziliensis and L. donovani
are susceptible, while L. amazonensis and L. mexicana can survive within neutrophils; most likely by
preventing phagolysosome maturation. In addition, parasites stimulate the apoptosis of neutrophils.
Then, infected apoptotic neutrophils are taken up by macrophages, the parasite final host cells. This
process, which allows parasites to infect macrophages unnoticed, has been described as neutrophils
being a “Trojan horse” into macrophages.

4.1. Dual Role of Neutrophils in Leishmaniasis

The cellular mechanisms related to Leishmania infection are only partially known,
and most of our current understanding comes from experimental models of leishmaniasis.
Based on these models, it is clear that the early and abundant presence of neutrophils at the
site of Leishmania inoculation is not sufficient to control this parasite. Instead, it seems that
neutrophils help in spreading the infection to other cells. Initially, neutrophils recognize
the promastigote lipophosphoglycan via receptors, such as TLR2 and TLR4 [135,141], or
complement receptors, such as CR3 [142]. This interaction induces neutrophil activation,
resulting in degranulation, phagocytosis, and LTB4 production [143,144]. LTB4, in turn,
causes neutrophil swarming [145] and more accumulation of cells around the parasite. In
addition, neutrophils produce cytokines, particularly IL-1β, TNF (tumor necrosis factor)-α,
TGF (tumor growth factor)-β, and IL-6, that stimulate recruitment of macrophages and
activation of other immune cells [139,146].

Neutrophils quickly phagocytose many promastigotes [147] (Figure 3). However,
destruction of promastigotes by neutrophil phagocytosis varies among Leishmania species.
For example, L. braziliensis [148] and L. donovani [149] are susceptible to degradation within
neutrophils. In contrast, L. amazonensis [150] and L. mexicana [151] can survive within
neutrophils. But, in the case of L. amazonensis, killing seems to depend on the stage
of the parasite. Promastigotes were killed while amastigotes could survive within neu-
trophils [150]. The mechanism for this difference is not known. However, it might be
related to the cytokines induced by each form of the parasite. Promastigotes trigger more
TNF-α secretion, and by 18 h, more than 65% of promastigotes were killed by neutrophils.
In contrast, amastigotes induced secretion of anti-inflammatory IL-10, and by 18 h, most
amastigotes were still alive [150]. These reports clearly show that phagocytosis efficiency
of neutrophils is different for the various Leishmania species. In fact, because both pro-
mastigotes and amastigotes, depending on the species, can survive in neutrophils, they
use these leukocytes transitorily to finally gain access to macrophages, their final host cell.
Parasites may be released by dying neutrophils and be taken up by macrophages. However,
macrophages more frequently take up infected apoptotic neutrophils by a process known
as efferocytosis [146]. In this way, parasites can infect macrophages unnoticed. The process
has been described as neutrophils being a “Trojan horse” into macrophages [152] (Figure 3).
Hence, by resisting the antimicrobial activity and stimulating the apoptosis of neutrophils,
Leishmania enhances parasite spread into other phagocytic cells, such as macrophages and
dendritic cells [153,154]. Therefore, neutrophils play a dual role, preventing or promot-
ing leishmaniasis. First, shortly after promastigote infection, neutrophils reduce parasite
numbers, but later neutrophils facilitate safe passage of surviving parasites to other host
cells [29,155].
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4.2. Neutrophil Response Anti-Leishmania
4.2.1. Phagocytosis and Degranulation

Phagocytosis is arguably the most important antimicrobial function of neutrophils [11].
Microorganisms are taken up inside a new vesicle, the phagosome, which undergoes a
maturation process by fusing with other neutrophil vesicles and granules to become a
phagolysosome [20,156]. Inside the phagolysosome, an acidic, oxidative, and degradative
environment is formed. Most microorganisms cannot survive in this hostile environment.
For this reason, several microorganisms have evolved various mechanisms to avoid phago-
cytosis or to escape from phagolysosomes [157]. In contrast, Leishmania parasites do not
avoid phagocytosis. Instead, they have evolved various strategies that allow them to
survive and even replicate within phagolysosomes.

Despite the importance of neutrophil phagocytosis in the early stages of Leishmania infec-
tions [140,151], little is known about phagolysosome formation in neutrophils after phagocy-
tosis of promastigotes. Most of our current knowledge comes from studies of phagocytosis of
Leishmania by macrophages. After being phagocytosed, promastigotes must transform into
amastigotes to continue the infection process. An initial strategy for survival is to allow time
for the parasite to complete this transformation. Some Leishmania species, such as L. donovani
and L. major, can interrupt phagolysosome maturation by inhibiting acidification [158], the
assembly of the NADPH oxidase for production of ROS [159], or the fusion of the phagosome
with endosomes [160]. In contrast, L. amazonensis does not seem to restrict phagolysosome
maturation. Phagosomes containing parasites become acidic and display lysosomal markers,
such as the GTPase Rab7 and LAMP1 (lysosomal associated membrane protein 1), on their
membranes within 30 min post infection [161,162]. This process is even faster when infection
begins with amastigotes [161]. Thus, Leishmania amastigotes are clearly more resistant to
lysosomal enzymes. In addition, the final parasite-containing phagosome is not a mature
phagolysosome, but rather a hybrid vesicle that displays molecules associated with the
endoplasmic reticulum. This hybrid vesicle is called the parasitophorous vacuole [163].
Moreover, the organization of the parasitophorous vacuole varies among different Leishma-
nia species. For L. major and L. donovani, parasitophorous vacuoles are tight and contain
a single amastigote, while for L. mexicana and L. amazonensis, the vacuoles are large and
contain several amastigotes, usually connected to the vacuole membrane [162].

In the case of neutrophils, parasitophorous vacuoles seem to be formed mainly with
the granules present in these cells. In particular, fusion of parasite-containing vesicles with
myeloperoxidase-containing azurophilic granules has been reported for human neutrophils
infected in vitro with L. major and L. donovani [164]. Also, parasitophorous vacuoles in
neutrophils are less acidic and capable of producing much more ROS than the vacuoles in
macrophages. These differences are due to lower expression of V-ATPase molecules (which
pump proton ions into the phagosome) and higher activity of NADPH oxidase [165,166].
Despite the high production of ROS, this antimicrobial mechanism does not appear to cause
damage to the parasites. In vitro infection of neutrophils with L. amazonensis results in effi-
cient ROS production, but this does not seem to significantly affect the survival of parasites
nor the development of disease [150,167]. Instead, ROS seem to be required for proper
induction of neutrophil apoptosis, which is relevant for perpetuating the infection, particu-
larly during chronic disease [168]. Clearly, Leishmania parasites, particularly amastigotes,
are resistant to antimicrobial functions of neutrophils and are even capable of replicating
within these leukocytes [151]. Still, much is unknown about the biology of parasitophorous
vacuoles in neutrophils. Particular interesting questions are how the different species of
Leishmania resist the various antimicrobial mechanisms of neutrophils, as well as how
differences in phagolysosome maturation affect the promastigote to amastigote transition
for each Leishmania species, and what consequences these differences have on disease.

4.2.2. Neutrophil Extracellular Traps (NETs)

NETs have been found in biopsies of cutaneous leishmaniasis lesions and in vitro
can be induced by promastigotes or amastigotes of various Leishmania species, including
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L. major, L. mexicana, L. amazonensis, and L. infantum [140,169] (Figure 3). Also, the puri-
fied lipophosphoglycan of L. amazonensis is capable of inducing NET formation [169,170].
Promastigotes seem to be more efficient than amastigotes at inducing NETosis [169,171],
but both parasite forms are susceptible to the toxic activity of histones, in a process that is
also dependent on neutrophil elastase activity [170]. Opposing this, Leishmania parasites
can resist the effect of NETs through increased expression of the surface protein gp63 (a
zinc-metalloproteinase), making them less susceptible to histone H2A [170], and also by
reducing expression of the lipophosphoglycan protein. In addition, the parasite enzyme
3′nucleotidase/nuclease, which can degrade NETs, allows the release of promastigotes
from NETs [172].

A critical unresolved issue about NETosis is how neutrophils “decide” between per-
forming phagocytosis or forming NETs. Our current interpretation is that the two functions
are mechanistically irreversible and mutually exclusive [173]. In the case of Leishmania,
NETs can kill the parasites. However, phagocytosis, which is advantageous for perpetuating
infection, is observed more frequently.

5. Chagas Disease

Chagas disease, also known as American trypanosomiasis, is a complicated serious and
potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi [174,175].
Chagas disease is the most important parasitic disease in Latin America, concentrating
in endemic areas of many countries. However, it is estimated that 6–7 million people
are infected worldwide [176,177]. The WHO has included Chagas disease among the
20 neglected tropical diseases, since 28,000 new infections and 14,000–50,000 deaths occur
every year, and 70–100 million people are at risk of infection [178]. Chagas disease was
discovered by the Brazilian medical researcher Carlos Chagas in 1909, who also identified
the etiological agent T. cruzi [177,179]. This parasite is mostly transmitted to humans
by contact with feces of blood-feeding triatomine insects known as “kissing bugs” [177].
Triatoma infestans, Rhodnius prolixus, and Triatoma dimidiata are the only competent insect
vectors capable of transmitting T. cruzi to humans. T. infestans is found mainly in sub-
Amazonian endemic regions, R. prolixus is found in South and Central America, and
T. dimidiata is found in Mexico [180]. Chagas disease also becomes a complex disease due to
variation among insect vectors, which results in numerous ways to infest homes, become
resistant to insecticides, and transmit T. cruzi [181,182]; and also due to a wide genetic
diversity in the parasite itself. At least six genetic lineages or DTUs (discrete typing units)
of T. cruzi have been identified: TcI− TcVI [183,184].

Chagas disease presents two clinical phases: acute and chronic. In the acute phase,
high parasitemia is present, often accompanied by systemic symptoms, such as fever,
headache, and diarrhea [175]. Afterwards, most infected people continue with an asymp-
tomatic phase, in which infection persists undetected while the parasite slowly replicates in
tissues. However, around 30% of infected people advance to the chronic phase 10–30 years
after the initial infection. In the chronic phase, several organs are affected by a strong
inflammatory response leading to cardiac, digestive, or neurological alterations, which can
lead to death [174]. Particularly, Chagas cardiomyopathy is the main cause of fatality [185].
Despite the fact that Chagas disease is also classified by the WHO as the most prevalent
of the poverty-caused and poverty-promoting neglected tropical diseases [186], clinical
treatment involves only two drugs: nifurtimox (developed in 1960) and benznidazole
(developed in 1972). Both drugs have low cure rates and, in addition, present side effects
that may result in the interruption of the treatment. Thus, new drugs against Trypanosoma
are urgently needed [187].

The life cycle of T. cruzi involves two hosts and four parasite stages. The infection
of a mammalian host begins with non-replicative flagellated metacyclic trypomastigotes
present in feces from a triatomine insect. Metacyclic trypomastigotes penetrate the skin
through the insect bite wound. They can also enter via several mucosal membranes. Once
in tissues, metacyclic trypomastigotes can infect many types of nucleated cells, entering into
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a parasitophorous vacuole, where they differentiate into small round-shaped amastigotes.
Later, amastigotes exit the parasitophorous vacuole into the cell cytoplasm, where they pro-
liferate by binary fission until the cell fills with these replicative forms [188]. At this point,
some amastigotes elongate, regain a long flagellum, and differentiate into non-replicative
trypomastigotes, which induce host cell lysis. Once released, trypomastigotes can infect
other cells or enter the blood and disseminate to distant tissues. These trypomastigotes in
the bloodstream can be taken up by triatomine insects during a blood meal. Inside the insect
midgut, trypomastigotes become replicative epimastigotes. Finally, epimastigotes migrate
to the insect hindgut, where they differentiate into metacyclic trypomastigotes [182,189].
More recently, other parasite stages have been suggested including quiescent forms of
amastigotes [186].

5.1. Innate Immune Response against T. cruzi

Cells of the innate immunity, mainly phagocytes including macrophages, neutrophils,
and dendritic cells, constitute the first line of defense against invading T. cruzi para-
sites [190]. In the acute phase, macrophages recognize and phagocytose parasites. Within
the phagolysosome, parasites are destroyed by ROS and also reactive nitrogen species
(RNS) [191,192]. However, T. cruzi has peroxidase and superoxide dismutase enzymes,
which allow it to survive within the macrophage [166]. This allows the parasite to continue
its invasion of other cells. In addition, T. cruzi antigens can be recognized by TLR2, and in
response, macrophages secrete cytokines such as IL-1, IL-12, and TNF-α, which promote
inflammation and induce activation of other immune cells such as T cells [180].

In addition to macrophages, neutrophils have always been observed in Trypanosoma
infection sites [30]. Therefore, it is very surprising that there are very few reports exploring
the role of neutrophils in Chagas disease. This may be in part due to the old idea that
neutrophils were only a reflection of inflammation and also to the fact that the acute phase
has nonspecific symptoms. Thus, many cases of T. cruzi infection go undetected. Despite
this, it is becoming evident that neutrophils have an important role in Chagas disease.

5.2. Dual Role of Neutrophils in Chagas Disease

In the acute phase of Chagas disease, neutrophils were always associated only with
inflammation. Nevertheless, old reports showed that the presence of neutrophils in cardiac
lesions of Chagas disease patients correlated with the severity of the disease [193]. Also,
neutrophils stimulated by T. cruzi amastigotes were capable of causing damage to cardiac
cells [194]. However, neutrophils could kill T. cruzi trypomastigotes by antibody-dependent
cell-mediated cytotoxicity [195] and also by phagocytosis and myeloperoxidase activity
and ROS [196]. Thus, neutrophils seemed to be capable of eliminating T. cruzi parasites but
also to exacerbate chronic disease.

More recently, in a mouse model of Chagas disease, specific depletion of neutrophils
with anti-Ly6G+ antibody resulted in increased parasitemia and serum interferon (IFN)-γ
concentration, leading to increased liver pathology [197]. This suggested a protective
role for neutrophils. However, neutrophils seem to be able to increase or decrease the
severity of the disease. Neutrophil depletion in BALB/c mice resulted in exacerbation of
the disease with reduced expression of mRNA for Th1 cytokines. In contrast, depletion of
neutrophils in C57BL/6 mice resulted in resistance to the disease with enhanced expression
of Th1 cytokines [198]. In addition, in vitro co-cultures of BALB/c neutrophils with T. cruzi-
infected peritoneal macrophages resulted in increased production of anti-inflammatory
mediators such as prostaglandin-E2 (PGE2) and TGF-β, leading to increased replication of
the parasites. In contrast, co-cultures of C57BL/6 neutrophils with infected macrophages
resulted in the production of inflammatory mediators such as TNF-α and nitric oxide (NO),
leading to decreased numbers of trypomastigotes [199].

These observations reveal that resistance or susceptibility to T. cruzi infection in these
animal models is regulated in part by neutrophil functions. However, the mechanisms
involved are still unknown. One possible way for controlling T. cruzi infection was revealed
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while using IL-17A−/−-deficient mice. These mice, when infected with T. cruzi, had
lower survival rates than wild mice, due to increased parasitemia in several peripheral
organs [200]. Mechanistically, IL-17 receptor (IL-17RA) is required for the recruitment of
regulatory IL-10-producing neutrophils that destroy the parasite and control inflammatory
responses [197]. In this way, IL-17 seems to be important for neutrophil activation required
for killing T. cruzi parasites (Figure 4).
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As suggested by the previous reports, neutrophils seem to have a protective role during
the acute phase of Chagas disease. However, these cells also seem to be detrimental during
the chronic phase of the disease, in which about 30% of patients develop cardiomyopathy, a
condition generated by extracellular matrix remodeling. The MMP enzymes, together with
some cytokines, are responsible for matrix remodeling. Neutrophils from patients with
indeterminate Chagas disease produced more MMP-2, TGF-β, and IL-10 than neutrophils
from patients with chronic cardiac disease. The latter cells produced more MMP-9, TNF-
α, and IL-1β [201]. In addition, mice infected with T. cruzi and treated with apocynin,
an inhibitor of NADPH oxidase, presented a reduction in myocarditis [202]. Together,
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these reports suggest that neutrophils may be involved in cardiac muscle remodeling and
contribute to establishing the clinical forms of Chagas disease.

5.3. Neutrophil Functions against T. cruzi Parasites
5.3.1. Phagocytosis

We have mentioned that neutrophils from healthy individuals are capable of recogniz-
ing T. cruzi amastigotes, phagocytose them, and destroy most of them within phagolyso-
somes [196] (Figure 4). Moreover, neutrophils from patients with the chronic cardiac form
of Chagas disease displayed enhanced phagocytosis of T. cruzi parasites in vitro [203].
However, in another study, neutrophils from patients with indeterminate and cardiac
forms of the disease presented comparable phagocytic capacity; although neutrophils from
patients with indeterminate disease displayed a lower ability to produce cytokines, such as
IL-17, IFN-γ, IL-4, and IL-10 [204]. The differences in both reports highlight the complex
interaction of these parasites with neutrophils. Still, together they confirm that neutrophils
are able to recognize, phagocytose, and eliminate T. cruzi.

5.3.2. Reactive Oxygen Species (ROS)

Similar to macrophages, it is believed that neutrophils can kill T. cruzi parasites after
phagocytosis via the production of ROS within the phagolysosome. This idea is reinforced
by the fact that T. cruzi has very efficient antioxidant mechanisms to deal with the oxidative
burst [166]. Still, there is no direct evidence that neutrophils can eliminate these parasites
via ROS (Figure 4). Moreover, the nuclear factor, erythroid-derived 2, like 2 (NRF2),
regulates antioxidant mechanisms. In mice infected with T. cruzi, NRF2 induction with
cobalt protoporphyrin resulted in reduced parasitemia, and exogenous expression of NRF2
also reduced macrophage parasitism [205], suggesting that oxidative stress contributes to
parasite persistence in host tissues. In addition, mice deficient in NADPH oxidase (phox-/-)
and infected with T. cruzi had similar parasitemia and similar levels of IFN-γ and TNF-α in
serum as those of wild-type control mice [206]. However, all phox-/- mice died between
days 15 and 21 after inoculation with the parasite, while 60% of wild-type mice survived
50 days after infection [206]. Hence, whilst ROS from phagocytes did not play a critical role
in parasite control in the phox-/- mice, its production still had a protective effect during
infection with T. cruzi. Authors suggested that this effect was probably the control of blood
pressure decline during infection [206]. In contrast, mice infected with T. cruzi and treated
with apocynin, an inhibitor of NADPH oxidase, showed a reduction in myocarditis [202].
Together, these reports indicate that our understanding of the role of ROS for controlling
T. cruzi infections is still very limited, and further research in this area is required.

5.3.3. Neutrophil Extracellular Traps (NETs)

In the case of T. cruzi, it was found that both live and dead parasites could induce
NET formation, after parasites were recognized by TLR-2 and TLR-4 [207] (Figure 4). These
NETs efficiently trapped the parasites, but they did not kill them. However, NETs interfered
with infectivity and pathogenicity [207]. Similarly, neutrophils from dogs and opossums
responded to T. cruzi parasites by releasing NETs. These NETs ensnared, but again did not
kill, the parasites [208]. Therefore, NETs do not seem to play a major role in elimination of
the parasite from the blood, and consequently T. cruzi can survive in multiple niches of the
body. Nevertheless, neutrophil activation and excessive NET formation can contribute to
the destruction of surrounding tissues [209]. There is no information about the presence of
NETs in the heart of patients with Chagas disease cardiomyopathy. Clearly, NETs can trap
parasites, but their effect on the different forms of the disease are still controversial.

From these reports, it is evident that neutrophils can recognize T. cruzi parasites.
However, it is still not clear to what extent neutrophils can destroy T. cruzi parasites and
may also affect the pathogenicity of the parasite. Further research is necessary to elucidate
the mechanisms that allow neutrophils to prevent or to allow progression of Chagas disease.
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6. Amoebiasis

Amoebiasis is a disease caused by another protozoan parasite, the amoeba Entamoeba
histolytica [210]. Amoebiasis is a serious public health problem in many parts of the world,
particularly in tropical zones where this parasite is endemic [211]. According to The Global
Burden of Diseases Study of 2016, it is estimated that over 123 million new cases of infection
with E. histolytica are reported worldwide [212]. Amoebiasis is responsible for more than
26,000 deaths annually and 2.5 million disability-adjusted life year (DALY) cases [213].
E. histolytica infections remain a heavy burden among children younger than 5 years,
particularly in areas with a low sociodemographic index [213]. However, a significant
increasing trend for new infections is found among adults of all ages in regions with
a high sociodemographic index [213]. In addition to the more pathogenic E. histolytica,
there is also another amoeba, Entamoeba dispar, that can infect humans and other primates,
causing, in rare instances, disease [214]. E. histolytica invades the intestinal tract, where
it can live feeding on bacteria without causing any symptoms [215,216]. However, in
some cases for reasons not completely elucidated, amoebas can penetrate the intestinal
barrier triggering diarrhea, dysentery, and colitis. From the intestine, amoebas can invade
other organs, principally the liver via the portal vein, where the parasite forms amoebic
liver abscesses [217]. An interesting feature of amoebic liver abscesses is that they are
10 times more frequent in men than in women [218,219]. The reasons for this gender bias
are not understood. One possible cause is complement activation. Serum from women
was more effective in complement-mediated killing E. histolytica trophozoites than serum
from men [220]. Another possible cause is testosterone. In mice, higher concentrations of
testosterone increased the susceptibility to amoebic liver abscess by inhibiting the secretion
of IFN-γ [221,222]. In rare cases, amoebas can also invade other organs such as lungs,
heart, and even the brain. In these organs, amoebiasis is associated with a high mortality
rate [223].

People get infected with Entamoeba histolytica through fecal–oral dissemination [224].
In contaminated water and food, there are E. histolytica dormant cysts which are resistant
to the environment [225]. When ingested, the protective covering of cysts allows them to
pass through the stomach unharmed. In the intestinal tract, excystation takes place, and the
vegetative form of the parasite, the trophozoite, is liberated [226]. Trophozoites colonize
the outer mucus layer of the large intestine. When the number of trophozoites increase,
they group and form new cysts [227], which are released in feces [223].

In certain conditions, not completely known, more pathogenic trophozoites can
destroy the mucosal layer, adhere to the epithelium, and invade tissues, causing dis-
ease [223,228,229]. The factors determining the pathological behavior of amoebas are not
known. But, dysbiosis (changes in the microbiome) is probably a major factor. Other
factors associated with disease severity may include, on the side of the host, malnutri-
tion, pregnancy, cancer, alcoholism, corticosteroid use, lack of urban services [215,230],
and even the host–gut microbiome [231]. On the side of the parasite, another factor for
disease severity is the great genomic variability that exists among E. histolytica strains
with different geographic mobility [232,233]. Under dysbiosis conditions, more pathogenic
amoebas release glycosidases and proteinases that degrade the mucous layer [234]. Par-
ticularly, the cysteine proteinase EhCP-A5 may be the main proteinase in this process,
since it has been found to be important for pathogenesis [235]. After degradation of the
mucous layer, trophozoites adhere directly to epithelial cells using their galactose (Gal) and
N-acetyl-D-galactosamine (GalNAc) lectin [225,228,236]. Then, trophozoites can break the
epithelium by releasing cytotoxic molecules, such as amoebapores, cysteine proteinases,
and phospholipase A2 [237]. In addition, trophozoites can kill epithelial cells by direct
cell-contact mechanisms, which are not completely understood, that include apoptosis and
trogocytosis [13]. Trophozoites induce apoptosis in part by increasing the intracellular cal-
cium concentration and by triggering an efflux of potassium ions [238]. Also, trophozoites
can cause cell death by trogocytosis [119]. Once trophozoites break the epithelium, they
can move into the extra-intestinal space and disseminate to other organs. Epithelium cell
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death and degradation of the extracellular matrix contribute to initiate inflammation of the
tissues [237]. In addition, the amoeba EhCP-A5 can bind to αvβ3 integrins on goblet cells,
activating the NLRP3 inflammasome [239]. This inflammatory response leads to production
of IL-8 [240], which is important for recruiting neutrophils to control parasite invasion.

6.1. Role of Neutrophils in Amoebiasis

When E. histolytica trophozoites invade the extra-intestinal space, strong inflammation
develops, and many neutrophils infiltrate the affected tissue [241] (Figure 5). If trophozoites
disseminate to other organs, such as the liver, again a strong inflammatory reaction is
observed with many infiltrating neutrophils [242]. Early reports described neutrophils
moving vigorously around amoebas [243], and neutrophils could directly kill these parasites
in vitro [244]. More recently, it was reported that lower numbers of neutrophils result in
more severe amoebiasis [245–248] and that the presence of neutrophils also reduces amebic
colitis [249]. Consequently, it is largely recognized that neutrophils play a protective
role against amoebas [245]. However, there are reports indicating that amoebas induce
neutrophil death, leading to the release of their lytic enzymes and tissue damage. This, in
turn, facilitates amoeba invasion and development of amoebiasis [250–252]. Hence, the
role of neutrophils in amoebiasis remains controversial.
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Figure 5. Interaction of neutrophils with pathogenic Entamoeba histolytica. E. histolytica tropho-
zoites colonize the outer mucus layer of the large intestine (gut), where they can live feeding on
commensal bacteria without causing any symptoms. However, in some cases for reasons not com-
pletely elucidated, amoebas can penetrate the intestinal barrier, triggering disease. Once trophozoites
break the epithelium, they can move into the extra-intestinal space, inducing a strong inflammation
that recruits many neutrophils into the affected tissue. Neutrophils can then actively cover E. histolyt-
ica trophozoites and form neutrophil extracellular traps (NETs). Several neutrophils release NETs,
in an explosive manner, around a single amoeba until the trophozoite is immobilized and probably
also killed.
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During inflammation, neutrophils exit the blood and migrate to the affected tissue,
where they destroy small microorganisms through phagocytosis [19]. For large microor-
ganisms, such as amoebas, phagocytosis is not possible. Thus, neutrophils cooperate
by swarming around the large microorganism [253,254]. In the case of amoebiasis, neu-
trophil swarming has not been reported. However, in vitro neutrophils have been observed
to actively cover E. histolytica trophozoites [255]. This suggests that neutrophils indeed
implement swarming around this parasite. Neutrophil swarming is not easily revealed
in vitro. But, novel techniques, such as microfluidics [111,256] and microscale swarming
arrays [257], will contribute to reveal whether neutrophils indeed control large amoeba
parasites via swarming.

6.2. Neutrophil Functions against E. histolytica

The neutrophil mechanisms for controlling an amoebic infection are only partially
understood. It is believed that amoebas are killed by ROS but not very efficiently, and in
consequence, amoebas can then destroy the neutrophils, leading to more tissue damage.
This view is rapidly changing as discussed next.

6.2.1. Reactive Oxygen Species (ROS)

As mentioned, the current belief is that ROS produced by neutrophils can control
amoebas [258,259]. This idea is based on in vitro experiments showing that H2O2 could
induce an apoptosis-like death of trophozoites [260], and on the fact that amoebic peroxire-
doxin could degrade ROS generated by leukocytes [259,261]. However, there are no reports
indicating that ROS generated by neutrophils can directly destroy amoebas. In fact, recent
in vivo data from mouse models of amoebic liver abscess show that ROS exacerbate liver
tissue damage without reducing parasitemia. When mice were treated with antioxidants
(e.g., ascorbic acid), they had a significant decrease in liver lesions [262,263]. Additionally,
recent reports showed that human neutrophils did not produce ROS when in contact
with pathogenic E. histolytica [264,265], or with non-pathogenic E. dispar [255]. Therefore,
contrary to the traditional view, it is probable that neutrophils use other antimicrobial
functions for controlling amoebiasis.

6.2.2. Neutrophil Extracellular Traps (NETs)

Phagocytosis of amoebas is impossible due to the large size of these protozoan par-
asites. However, NETosis is another strategy of neutrophils to control the spreading of
microorganisms. In the case of amoebas, neutrophils can indeed form NETs in response to
E. histolytica trophozoites [264,266] (Figure 5). This more pathogenic amoeba triggers NETo-
sis through a signaling pathway involving Raf/MEK/ERK, but not PKC or ROS [264,265].
Neutrophils in direct contact with trophozoites released NETs in an explosive manner
around the amoebas [255]. Several neutrophils released NETs until the trophozoite was
completely covered with NETs and was immobilized [255]. Moreover, E. histolytica tropho-
zoites inhibited the neutrophil oxidative burst in a dose-dependent manner, and inhibition
of mitochondrial ROS (by the mitochondria-specific ROS scavenger mitoTEMPO) also did
not affect NET formation [267]. These data reinforced the idea that E. histolytica-induced
NETosis was independent of ROS. Surprisingly, however, in the presence of ROS-deficient
amoebas (obtained by pre-treatment with pyrocatechol) neutrophils showed a significant
reduction in NET formation [267]. This created a conundrum of how do amoebas inhibit
neutrophil oxidative burst and, at the same time, provide ROS for NET formation? The
complete answer is not known, but few clues are emerging. Amoebas released extracellular
vesicles (EVs), which were combined into neutrophils, delivering their cargo into the cell.
This resulted in considerable inhibition of the oxidative burst and NET formation from
neutrophils stimulated by PMA, ionophore A23187, or the amoeba itself [268]. Amoebic
EVs contained ROS and were able to transfer them to neutrophils, suggesting that this may
be a way to provide ROS for NET formation. However, amoebic EVs still had a suppressive
effect on NETosis induced by other stimuli [268]. Further research is needed to elucidate
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the mechanisms by which amoebic EVs prevent respiratory burst and NETosis. Although
extracellular vesicles are an important mode of communication between parasites and
immune cells, this topic is beyond the scope of the present review. We direct readers to an
excellent recent review on the topic [269].

Another important observation was that the less-pathogenic Entamoeba dispar did
not trigger NET formation [255]. This finding suggests that neutrophils can distinguish
between pathogenic E. histolytica and less-pathogenic E. dispar and activate NETosis only in
response to pathogenic amoebas. How neutrophils can differentiate between pathogenic
and non-pathogenic amoebas is not known. However, in the presence of Gal or GalNAc,
NET formation was inhibited [255]. This suggested that the mechanism must likely involve
a receptor that recognizes sugar moieties with an axial HO- group at carbon 4 of a hexose.
Further research is needed to confirm this hypothesis.

NETs released around pathogenic E. histolytica not only prevented amoebas from
moving, but were also able to kill the trophozoites [255]. The mechanism for amoeba killing
is not yet clear, but it may require some of the neutrophil granule proteins that decorate
NETs. Myeloperoxidase (MPO) may participate in killing amoebas. Using hamsters
(susceptible) and Balb/c mice (resistant) models of amoebic liver abscess, it was found
that inhibition of MPO resulted in mice with larger abscesses [270]. Also, in vitro, mouse
neutrophils produced more NETs and MPO than hamster neutrophils did [271], and
inhibition of MPO resulted in larger amounts of viable amoeba [272]. Histone proteins on
NETs have also antimicrobial properties. As mentioned in the previous section, histones
on NETs were able to affect the viability of L. amazonensis promastigotes [169]. Thus, it is
likely that histones may also have microbicidal activity against amoebas. Since NETs can
kill E. histolytica trophozoites, the participation of histones in amoeba killing should be
examined in future experiments.

The classical view of amoebas promoting neutrophil death by apoptosis [273] is in
conflict with the recent reports described above. In these recent studies, apoptosis of
neutrophils in contact with E. histolytica trophozoites was not detected. Neutrophils did not
expose phosphatidylserine on their membrane [264,265]. Therefore, a new paradigm for
E. histolytica infection is developing. Invading trophozoites are surrounded by neutrophils,
and only neutrophils in direct contact with pathogenic trophozoites activate NETosis. Then,
NETs are released around the amoebas to prevent their movement and dissemination. Thus,
dead neutrophils around amoebas appear not to be killed by trophozoites but instead are
in fact neutrophils undergoing NETosis.

7. Conclusions

Why, in some cases, neutrophils can control the parasite and in others the infection
proceeds resulting in disease, is a central question that needs future research. Yet, there
are many other particular questions that need to be addressed in order to elucidate the
complex interaction of neutrophils with protozoan parasites. For example, in the case
of Plasmodium, it is still uncertain to what extent phagocytosis of free parasites helps
in controlling parasite proliferation. Also, because multiple mechanisms, both from the
parasite and also from the mosquito, are involved in inhibition of neutrophil antimicrobial
functions in malaria, it is important to investigate each mechanism separately in order to
obtain a complete picture of how Plasmodium avoids neutrophils and causes disease. In the
case of T. vaginalis, although neutrophils can kill parasites by trogocytosis, many parasites
survive and perpetrate the infection. Finding a way to activate neutrophils so that they
could eliminate more parasites, without increasing the severity of the disease, could have a
major impact in the treatment of trichomoniasis. In the case of Leishmania, little is known
about how the parasite inhibits phagolysosome formation in neutrophils after phagocytosis
of promastigotes. In particular, how differences in phagolysosome maturation affect the
promastigote to amastigote transition for each Leishmania species is also an important
question. Also, much is unknown about how the different species of Leishmania resist the
various antimicrobial mechanisms of neutrophils. In addition, the biology of Leishmania
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parasitophorous vacuoles in neutrophils has not been properly studied. Another significant
unsolved issue about NETosis is how neutrophils choose between carrying phagocytosis
out or releasing NETs. Our current understanding is that phagocytosis and NETosis are
mutually exclusive [173]. In the case of Leishmania, NETs can trap and kill the parasites.
However, phagocytosis is more useful to the parasite in order to continue the infection.
Thus, it would be very important to decipher how Leishmania parasites induce neutrophils to
perform phagocytosis over NETosis. In the case of Chagas disease, T. cruzi parasites clearly
activate multiple neutrophil functions including phagocytosis, ROS generation, and NET
formation [166,196,207]. However, in chronic cardiac disease, activated neutrophils seem
to be more detrimental than helpful. Future research will have to look into the different
ways in which neutrophils recognize the parasite and become activated. In the case of
amoebas, neutrophils can release NETs around Entamoeba histolytica trophozoites [264,266],
until parasites are completely covered with NETs and are immobilized [255]. Also, because
NETs could kill E. histolytica trophozoites [255], the participation of histones in amoeba
killing should be examined in future experiments. Interestingly, while the pathogenic
E. histolytica can induce NETosis [264,266], the less-pathogenic E. dispar did not trigger NET
formation [255]. How neutrophils can differentiate between pathogenic and less-pathogenic
amoebas is not known.
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