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Abstract: Polycyclic aromatic hydrocarbons (PAHs) cause serious stress to biological health and
the soil environment as persistent pollutants. Despite the wide use of biochar in promoting soil
improvement, the mechanism of biochar removing soil PAHs through rhizosphere effect in the pro-
cess of phytoremediation remain uncertain. In this study, the regulation of soil niche and microbial
degradation strategies under plants and biochar were explored by analyzing the effects of plants and
biochar on microbial community composition, soil metabolism and enzyme activity in the process
of PAH degradation. The combination of plants and biochar significantly increased the removal of
phenanthrene (6.10%), pyrene (11.50%), benzo[a]pyrene (106.02%) and PAHs (27.10%) when com-
pared with natural attenuation, and significantly increased the removal of benzo[a]pyrene (34.51%)
and PAHs (5.96%) when compared with phytoremediation. Compared with phytoremediation, the
combination of plants and biochar significantly increased soil nutrient availability, enhanced soil
enzyme activity (urease and catalase), improved soil microbial carbon metabolism and amino acid
metabolism, thereby benefiting microbial resistance to PAH stress. In addition, the activity of soil
enzymes (dehydrogenase, polyphenol oxidase and laccase) and the expression of genes involved
in the degradation and microorganisms (streptomyces, curvularia, mortierella and acremonium) were
up-regulated through the combined action of plants and biochar. In view of the aforementioned
results, the combined application of plants and biochar can enhance the degradation of PAHs and
alleviate the stress of PAH on soil microorganisms.

Keywords: Polycyclic aromatic hydrocarbons; Buchloe dactyloides; biochar; phytoremediation; mi-
croorganism

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are aromatic compounds which widely
distributed in soil and produced in large quantities by industrial activities that are haz-
ardous to human beings and extremely difficult to degrade [1]. Previous studies have
demonstrated that PAHs can diminish soil fertility and quality by impacting the nutrient
cycle, including carbon and nitrogen [2]. The remediation of PAHs in soil largely depends
on indigenous microorganisms [3], whereas PAHs have a negative effect on soil microor-
ganisms by inhibiting soil metabolic processes [2]. This may adversely affect the removal
of PAHs. Therefore, it is important to clarify the effects of different treatments on the PAHs
adaptability of indigenous microorganisms.

Phytoremediation is an environmentally-friendly remediation method that accelerates
the degradation of PAHs through rhizosphere processes. Nutrient cycling, physical and
chemical properties of soil will be affected by roots to form a unique rhizosphere envi-
ronment [4]. Furthermore, plants can shape rhizosphere microorganisms by actively or
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passively releasing root exudation that act as a carbon source or a signal for microorganisms,
recruiting specific beneficial microorganisms and altering the composition of indigenous
microorganisms [5,6]. Other studies have determined that plants also engage in competi-
tion with microorganisms with microorganisms for soil nutrients, thereby influencing the
functionality of microorganisms [7]. This may explain why the degradation efficiency of
PAH remains unchanged or decreases under phytoremediation. Therefore, exploring the
effect of plant roots on soil microorganisms is very important for the removal of PAHs.

Soil additives have widely emerged as a treatment for degrading pollution in recent
years [8]. Additives can significantly affect soil remediation by improving the soil en-
vironment due to their own characteristics, such as rich nutrient elements and special
structure [9]. Among these, biochar has been found to enhance remediation efficiency by
modulating soil microbial structure and improving microbial metabolism due to its abun-
dant nutrient content [9,10]. Moreover, biochar, as a potential source of soil PAHs [11], may
also reduce the bioavailability of PAHs [12]. Although the feasibility of the combined appli-
cation of phytoremediation and biochar is still controversial, it has been proved that biochar
can improve the reduced soil fertility and soil metabolism under stress [13,14]. In addition,
biochar applied may affect the composition of root exudates and the root morphology, such
as increasing the content of organic acids and root area [15]. The elevated concentration of
organic acids could potentially facilitate the degradation of PAH [16]. Therefore, biochar
may promote the rhizodegradation of PAH by changing the root exudation strategy. Hence,
when biochar and plants combine for remediating PAH contaminated soil, they can mediate
the function of soil microorganisms and establish intricate interactions with microorganisms
during the microbial degradation process of PAH, and ultimately affect the bioremediation.
However, adverse results have been observed in studies of biochar remediation for the
remediation of PAH contamination [17]. This may be due to the fact that biochar not
only stimulates microbial biodegradation but also competes for the nutrients needed for
rhizosphere microbial growth while stimulating the growth of plant roots [18–20]. This
shows that the complex interaction between plants and microorganisms will be affected by
biochar and ultimately promote or inhibit the adaptation of soil microorganisms to PAHs
stress. And the adaptation of microorganisms to PAHs will affect the removal of PAHs in
soil. However, the existing studies have not systematically studied the PAHs degradation
and adaptability of microorganisms. Therefore, it is urgent to fully clarify the effects of
biochar on PAHs degradation, microorganisms and rhizosphere soil environment, thereby
assess the adaptability and degradation of biochar and plants to microorganisms to PAHs.

The resistance of microorganisms to PAH stress can be clarified, and the role of
microorganisms in PAH degradation can be revealed by analysis of soil enzyme activity,
microbial structure and function combined with soil metabolism. Buchloe dactyloides is
a highly tolerant herbaceous plant [21]. In this study, we conducted 60-day experiment
on potted plants in greenhouse to clarify the mechanism of soil remediation for PAH
pollution and the effects on soil adaptability by combining B. dactyloides and biochar. The
following hypotheses were addressed: (1) The combination of B. dactyloides roots and
biochar stimulate microorganisms involved in PAH degradation, including changing the
structure and functional patterns of microorganisms. (2) B. dactyloides roots and biochar can
improve soil health and metabolism. This study may provide guidance for the remediation
of PAH contaminated soil by plants combined with biochar.

2. Materials and Methods
2.1. Pot Experiment

The soil was collected at depths of 0–20 cm from an agricultural field in Beijing,
China (40◦0′27′′ N, 116◦15′22′′ E). The properties of soil and biochar were detailed in the
Tables S1 and S2. The PAHs contaminated soil containing phenanthrene (Phe), pyrene
(Pyr) and benzo(a)pyrene (Bap), with or without 1% of biochar addition, was prepared.
Preparation of PAHs-contaminated soil was performed as previously reported [14].
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Three B. dactyloides were transferred to a pot full of 0.7 kg soil and placed under
natural light at a temperature of 25–35 ◦C. The following four treatments were utilized:
PAH contaminated soil (N); PAH contaminated soil with biochar (B); PAH contaminated
soil with B. dactyloides (P); PAH contaminated soil with B. dactyloides and biochar (PB). The
field capacity of soil was maintained at 60% by regularly weighing the pots and adding
distilled water. The position of the pot changes randomly every week. After 60 days of
incubation, the loose soil attached to the roots was removed by shaking roots vigorously,
and the rhizosphere soil was carefully collected with a sterilized brush. Additionally,
non-rhizosphere soil was also collected. The soil samples were sieved (2-mm mesh). Soil
was stored in liquid nitrogen for further analysis. The soil properties after treatment were
detailed in the Table S3.

2.2. Determination of PAHs

Freeze-dried soil (Christ-Alpha 1–4 LD plus) was subjected to ultrasonic extraction
with a 30 mL mixture of n-hexane and acetone (2:1, v/v). The contents of Phe, Pyr and Bap
in soil were quantitatively analyzed by the internal standard method [22]. Determination
of PAHs content by Agilent HP 7890 gas chromatograph combined with Agilent HP 5975C
inert mass selective detector (7890/5975C).

2.3. Determination of Enzyme Activity

The soil polyphenol oxidase (PPO) activity was measured using the pyrogallol col-
orimetric method. Soil dehydrogenases (DHA) activity was measured as previously re-
ported [23]. Soil laccase activity was determined by measuring the oxidation of ABTS. The
soil catalase (CAT) activity was measured using a soil catalase activity assay kit (Solarbio,
Beijing, China). The soil urease activity was determined by using the indophenol blue
colorimetry method.

2.4. High-Throughput Sequencing and Quantitative Polymerase Chain Reaction (qPCR)

The DNA extraction, Illumina sequencing and qPCR were carried out with reference
to previous reports [22]. Soil DNA was extracted from 0.5 g of each soil sample using the
E.Z.N.A. Soil DNA Kit (Omega Biotek, Norcross, GA, USA) according to the manufacturer’s
protocol. 16S rRNA and ITS genes of distinct regions (16S V3–V4, ITS1) were amplified
using specific primers with the barcode. The primer pairs and standard curve of 16S and
ITS qPCR genes were shown in Supporting Information (Table S4, Figure S1).

2.5. Soil Metabolite Assay

Soil metabolites were extracted and determination was performed as previously re-
ported [24–26]. The LC analysis was performed on a Vanquish UHPLC System (Thermo
Fisher Scientific, Waltham, MA, USA). Chromatography was carried out with an ACQUITY
UPLC ® HSS T3 (150 × 2.1 mm, 1.8 µm) (Waters, Milford, MA, USA). The column main-
tained at 40 ◦C. The flow rate and injection volume were set at 0.25 mL/min and 2 µL,
respectively. For LC-ESI (+)-MS analysis, the mobile phases consisted of (C) 0.1% formic
acid in acetonitrile (v/v) and (D) 0.1% formic acid in water (v/v). Separation was conducted
under the following gradient: 0~1 min, 2% C; 1~9 min, 2~50% C; 9~12 min, 50~98% C;
12~13.5 min, 98% C; 13.5~14 min, 98~2% C; 14~20 min, 2% C. For LC-ESI (−)-MS analysis,
the analytes was carried out with (A) acetonitrile and (B) ammonium formate (5 mM).
Separation was conducted under the following gradient: 0~1 min, 2%A; 1~9 min, 2~50%A;
9~12 min, 50~98%A; 12~13.5 min, 98%A; 13.5~14 min, 98~2%A; 14~17 min, 2%A.

Mass spectrometric detection of metabolites was performed on Orbitrap Exploris
120 with ESI ion source. Simultaneous MS1 and MS/MS (Full MS-ddMS2 mode, data-
dependent MS/MS) acquisition was used. The parameters were as follows: sheath gas
pressure, 30 arb; aux gas flow, 10 arb; spray voltage, 3.50 kV and −2.50 kV for ESI(+)
and ESI(−), respectively; capillary temperature, 325 ◦C; MS1 range, m/z 100–1000; MS1
resolving power, 60,000 FWHM; number of data dependant scans per cycle, 4; MS/MS
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resolving power, 15,000 FWHM; normalized collision energy, 30%; dynamic exclusion
time, automatic.

2.6. Date Analysis

The normality of the datasets was tested using SPSS 22.0 (SPSS Inc., Chicago, IL,
USA). The variables were analyzed using two-way analysis of variance, and using the
statistical package IBM SPSS Statistics software (SPSS 22.0). The co-occurrence network,
non-metric multidimensional scaling (NMDS), PICRUSt (KEGG, http://www.kegg.jp/,
accessed on 17 April 2023), mantel test and metabolomics date analysis were measured
using a modified method [2,22]. Linear discriminant analysis effect size (LEfSe) was utilized
to identify significant microbial responders (LDA > 3.0). Adonis, Anosim, environmental
niche width, Variance Partitioning Analysis (VPA) and Envfit analysis were conducted
using the retatix R packages. Envfit analysis was used to determine the correlation between
environment, microbial communities and KEGG.

3. Results
3.1. Degradation Rate of PAHs and Enzymatic Activity

There were significant differences in the removal rate of PAHs under different treat-
ments (Figure 1A–C). The degradation efficiencies of three kinds of PAHs in the B treatment
were lower than N treatment. The degradation rate of PAHs in the rhizosphere was signifi-
cantly higher than that in the N treatment. The combined application of B. dactyloides and
biochar brought the highest removal rate of Bap and total PAHs. The activities of urease
and DHA under N and PB treatments were higher than those under other treatments. The
activity of PPO was the highest in rhizosphere soil containing biochar. Under P treatment,
the activities of laccase and CAT were lowest.
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Figure 1. The removal rate of Phenanthrene (A), Pyrene (B), Benzo[a]pyrene (C) and total PAHs
(D) in different treatment. Effect of different bioremediation treatments on soil enzyme activities,
including urease (E), DHA (F), PPO (G), laccase (H) and CAT (I). N: natural attenuation; B: biochar
remediation; P: phytoremediation; PB: plant−biochar remediation. Averages ± SE were listed (n = 3).
Different letters indicate that values are significantly different (p < 0.05).
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3.2. Shifts in Microbial Community and qPCR

The chao1 index of microbial community and the shannon index of fungal community
in rhizosphere soil were significantly higher than those in non-rhizosphere soil (Figure 2A–D).
This indicated that the abundance and diversity of the rhizosphere microbial community
were higher. NMDS showed that different treatments affected the similarity of microbial
communities (Figure 2E,F). Lefse analysis showed that there were significant differences
in the biomarkers of microbial groups under different treatments. Bacillus.g, Novosphin-
gobium.g, Paenibacillus.g and Pseudomonas.g were the main bacterial participants in PAH
degradation under N treatment, while Streptococcus.g and Massilia.g were the main bacterial
participants in PAH degradation under B treatment. Moreover, Methylibium.g, Devosia.g
and Hydrogenophaga.g were the main bacterial participants in the degradation of PAHs
under P treatment, while Pseudoxanthomonas.g, Streptomyces.g, Sphingomonas.g and Ensifer.g
were the main participants in the degradation of PAHs under PB treatment (Figure 3A).
Mortierella.g, Phoma.g, Aspergillus.g and Trichocladium.g were the main fungal participants
of PAH degradation under N treatment, while Chaetomium.g was the main fungal partici-
pant of PAH degradation under P treatment. In addition, Curvularia.g, Cladosporium.g and
Acremonium.g were the main fungal participants of PAH degradation under PB treatment
(Figure 3B). In the PB group, the bacterial biomass was the highest, and the fungal biomass
was higher than that of N and B treatments (Figure 3C).
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Figure 3. Chicken breed and line-specific biomarkers. LEfSe analysis shows differentially abundant
genera of bacteria (A) and fungi (B) as biomarkers determined using Kruskal-Wallis test (p < 0.05) and
Wilcoxon test (p < 0.05) with LDA > 3.0. Gene copy numbers of 16S and ITS in different treatments (C).
N: natural attenuation; B: biochar remediation; P: phytoremediation; PB: plant−biochar remediation.
Averages ± SE were listed (n = 3). Different letters indicate that values are significantly different
(p < 0.05).
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3.3. Environmental Factors and Function of Microbial Community

Mantel test and Spearman models were used to screen the soil factors related to
PAH degradation and PAH degrading microorganisms (Figure 4A–C). TN, TK, AK, AN
and NO3

− may be the main factors potentially involved in the degradation of PAHs.
Among them, TK, AN and NO3

− were significantly correlated with microorganisms.
There were significant differences in niche breadths of soil microbial bacteria and fungi
communities under different treatments (Figure 4D). The niche breadth of rhizosphere
bacteria under biochar conditions was lower than P treatment, which indicated that the
bacterial community tended to be specialized species. PICRUSt was used to predict the
biodegradation intensity of genes involved in PAH degradation (Figure 5A). The expression
levels of PAH degradation gene in PB treatment was significantly higher than that in
other treatments. Bacterial functions in amino acid, carbohydrate, terpene, and flavonoid
metabolism, as well as exogenous biodegradation and metabolism were significantly
improved under PB treatments (Figure 5B). And soil microflora, soil metabolism and soil
environment were significantly related to microbial function (Figure 6B). Finally, VPA
showed that the difference in PAH removal rate was mainly attributed to soil microflora,
soil metabolism, soil environment and microbial function (Figure 6A).
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Figure 4. (A) Mantel tests between PAHs and soil property. (B) Correlation coefficients among soil
property and PAH-degrading microorganism. (C) Mantel tests between microorganism and soil
property. (D) The environmental niche width of bacterial (left) and fungal (right) under different
treatments. N: natural attenuation; B: biochar remediation; P: phytoremediation; PB: plant−biochar
remediation. Averages ± SE were listed (n = 6). Different letters indicate that values are significantly
different (p < 0.05). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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rial function profiles of KEGG (PAHs degradation genes) explained by metabolic, metabolic and
environmental variables based on the Envfit analysis. **, p < 0.01; ***, p < 0.001.

3.4. Soil Metabolism and Co-Occurrence Network Analysis

The differential metabolite pathway showed that the combined application of biochar
and plants significantly improved the main metabolic processes in PAH contaminated soil.
Compared with P treatment, the amino acid metabolism, secondary metabolite biosynthesis,
terpenoid and flavonoid metabolism, carbohydrate metabolism, and lipid metabolism of
the bacterial community under PB treatment exhibited significant improvements. Further-
more, the secondary metabolite biosynthesis and amino acid metabolism of the bacterial
community under P treatment were significantly improved compared with N treatment
(Figure 7A). Compared with P treatment, the amino acid metabolism, secondary metabo-
lite biosynthesis, carbohydrate metabolism and lipid metabolism of fungal community
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under PB treatment were significantly improved. The secondary metabolite biosynthesis
and amino acid metabolism of fungal community under P treatment were significantly
improved compared with N treatment (Figure 7B).
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of the line represents the correlation coefficient. N: natural attenuation; P: phytoremediation; PB:
plant−biochar remediation.

For the soil bacterial community, Sphingomonas.g, Streptomyces.g, Bacillus.g, which may be
involved in the degradation of PAHs, are the core bacteria. Theobromine, 3-Hydroxybenzyl
alcohol glucoside and 9, and 10-Epoxyoctadecenoic acid are the metabolites with signif-
icant positive correlation with Sphingomonas.g, Streptomyces.g (Figure 7C). Acremonium.g,
Mortierella.g, Chaetomium.g, Curvularia.g are fungi involved in PAH degradation and consti-
tute the core fungal community. Catechol, Gingerol, Quercetin, 3-Hydroxybenzyl alcohol
glucoside and 9, 10-Epoxyoctadecenoic acid are the metabolites with significant positive
correlation with Mortierella.g, Curvularia.g, Chaetomium.g (Figure 7D).

4. Discussion
4.1. The Effects of Biochar and Plant Roots on PAH Contaminated Soil and Microorganisms

In this study, the application of biochar increased the removal rate of Pyr, while
still decreased the removal of Phe and Bap, which is different from the results of other
studies [14]. This discrepancy may be attributed to variations in the physical and chemical
properties of biochar. The difference in removal of Phe and other PAHs by biochar may be
explained as the variation in bioavailability caused by the number of benzene rings and the
bond angle of ring [17]. P treatment and PB treatment significantly increased the removal
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rate of PAHs, which indicated that phytoremediation was an attractive approach to remove
PAHs from soil. PAH-degrading enzyme activity is generally considered to reflect the
ability of PAH degradation [27]. In this study, the activity of DHA, PPO, laccase involved
in PAH degradation was the highest in PB treatment, and they were significantly related to
the degradation rate of PAH (Figure 4A). The removal rate of Bap increased significantly
under PB treatment may be attributed to the increase in PPO activity contributing to the
degradation of high molecular weight PAH [28,29]. Moreover, the activities of urease
and CAT increased under PB treatment, reflecting the enhancement of soil nitrogen use
efficiency and the improvement of soil health. The decrease in CAT, DHA, laccase, and
urease activities in the rhizosphere soil may be attributed to the competition between
B. dactyloides and indigenous microorganisms for nutrients such as carbon and nitrogen,
and the combined treatment reversed this negative effect (Table S3). Our investigation
revealed a substantial increase in microbial biomass in PAH contaminated soil as a result
of the synergistic effect of B. dactyloides and biochar (Figure 3C). Thus, B. dactyloides and
biochar increased microbial metabolic activity, enhanced microbial PAH degradation ability
and alleviated PAH stress.

The structural composition of microorganisms is considered to be one of the main
drivers of PAH dissipation [30,31]. Pseudoxanthomonas.g, Streptomyces.g, Sphingomonas.g, En-
sifer.g, Methylibium.g, Devosia.g, Hydrogenophaga.g, Bacillus.g, Paenibacillus.g, Pseudomonas.g,
Curvularia.g, Cladosporium.g, Acremonium.g and Chaetomium.g have been identified as poten-
tial participants in the degradation of PAH. We found that biochar and B. dactyloides roots
induced soil microbial community reconstruction (Figure 2E,F). The difference between
different treatments may be due to soil properties. TN, pH, TK, AK, AN, NO3-, SOM and
DOC were identified as soil factors related to the change of microbial community structure
and PAH degradation (Figure 4A). In this study, biochar and B. dactyloides increased soil
nutrient content, while the increased nutrient content increased the bioavailability of PAHs,
and may promote the biodegradation of PAHs through co-metabolic pathway. Pseudox-
anthomonas.g, Sphingomonas.g, Streptomyces.g and Ensifer.g were significantly enriched as
PAH degrading bacteria in rhizosphere soil with the presence of biochar. Biochar provided
protection for Sphingomonas.g that can utilize PAH as carbon source [32], thus promoting the
degradation of PAH under the combined application of plants and biochar. The enrichment
of Pseudoxanthomonas.g may be attributed to the enrichment of soil nutrients subsequent to
biochar application [33], potentially leading to the promotion of NH4+-N transformation
and nitrogen fixation along with Ensifer.g (Table S3) [34,35]. The increase of soil PAH
removal rate could be ascribed to root exudation promoting the degradation of soil PAH by
Streptomyces.g [36]. Devosia.g, Hydrogenophaga.g, and Methylibium.g mainly contributed to
the degradation of low molecular weight PAH [37–39], which supported the significantly
increased Phe and Pyr removal in the rhizosphere of B. dactyloides under P treatment. The
biodegradation intensity of PAH is related to the abundance and composition of genes.
Dioxygenase, dehydrogenase, and hydroxylase genes are directly involved in the oxidative
degradation of PAH [40,41]. The proportions of functional genes related to dioxygenase,
dehydrogenase and hydroxylase in different treatments was consistent with the degrada-
tion of PAHs (Figure 5A). Consistent with previous studies [10,22], this suggests that key
bacteria and functional genes played a pivotal role in soil PAH degradation, and this may
explain the increase in removal rate of PB treatments.

4.2. The Effects of Biochar and Plant Roots on Soil Carbon Metabolism Associated with
PAH Degradation

Microbial metabolism often reflects soil microbial community and function in response
to stress. As an organic pollutant, PAH can inhibit the soil microbial activity, alter the com-
munity structure, function and metabolic activities of microorganisms, ultimately affect the
soil quality [2]. Plants and biochar usually have different strategies for regulating microbial
metabolism. In this study, no significant improvement in metabolic activity of microor-
ganisms under P treatment (Figure 7A,B). Biochar amendment significantly improved the



Microorganisms 2024, 12, 968 11 of 14

microbial carbon metabolism and amino acid metabolism in rhizosphere soil (Figure 7A,B),
and specialized soil niche (Figure 4D), which was beneficial for microorganisms to adapt
to PAH stress. This may be due to the fact that biochar improved the soil environment
and affects the recruitment of rhizosphere microorganisms by altering the composition of
root exudation [42]. In addition, the increased organic acid metabolites can effectively im-
prove the bioavailability and promote the biodegradation of PAH by releasing PAH bound
in organic matter through modifications to the rhizosphere enhanced with biochar [43].
The improvement of microbial amino acid metabolism by B. dactyloides roots and biochar
may also favor the expression of PAH degradation genes [44]. And the involvement of
amino acid metabolism in microbial detoxification reflects the improvement of microbial
tolerance [10]. Similarly, the combination of B. dactyloides roots and biochar improved
PAH bioavailability by significantly increasing lipid metabolism. Intermediate metabolites
produced by indigenous microorganisms involved in the degradation of PAH, especially
high molecular weight PAH, are components of the soil carbon cycle [45]. Therefore, the
promotion of microbial carbon metabolism is beneficial for the in-situ degradation of PAH.

Biochar promoted soil carbon metabolism and bioremediation by increasing the con-
tents of soil organic carbon [46]. Some soil metabolites and root exudation participate in
the process of PAH degradation through the co-metabolic pathway [47]. Therefore, biochar
could affect the in-situ degradation of PAH by regulating the utilization of soil carbon
resources and changing soil metabolites. Moreover, soil metabolism affects microbial func-
tion together with microbial structure and soil characteristics (Figure 6B). This shows that
there are complex interactions among bacteria, fungi, soil metabolites and biodegradation.
Metabolic intermediates (catechol, dibutyl phthalate and 3-amino-4-hydroxybenzoate), root
exudates (deoxycholic acid and taurine), coexisted with microorganisms involved in PAH
degradation (streptomyces, curvularia, mortierella and acremonium) (Figure 7C,D) [48]. This
suggests that plants and microorganisms forming complex interactions under PAHs stress
jointly participate in and influence the removal of PAHs from soil. And it indicates that
these compounds may be involved in the degradation of PAHs as co-metabolic substrates.
This suggests that these compounds may be involved in PAH degradation as co-metabolic
substrates. In addition, VPA showed that the significant improvement of PAH removal
rate under PB treatment was driven by soil enzyme activity, soil metabolism, microflora
and soil characteristics. Our research shows that biochar and B. dactyloides as remediation
methods for PAHs contaminated soil can significantly improve the removal rate of PAHs,
soil environment and the adaptability of microorganisms to PAHs.

5. Conclusions

B. dactyloides and biochar improved the removal rate of PAH. B. dactyloides and
biochar increased soil enzyme activity, affected soil environment, regulated soil metabolism,
changed the structure and function of soil microorganisms, in which the changes of soil
environment, the structural composition of microorganisms and the expression of func-
tional genes were considered to be the main driving forces of PAH removal. In addition,
the microbial activity was increased, and the microbial carbon metabolism and amino acid
metabolism were improved to cope with PAH stress under the combined action of B. dacty-
loides and biochar. These findings are of great significance for elucidating the underlying
mechanism of this bioremediation strategy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms12050968/s1. Table S1: Properties of soil in this study.
Table S2: Main physiochemical characteristics and PAHs concentrations of woody biomass biochar
pyrolyzed at 400 ◦C. Table S3: Properties of soil in this study. Table S4 Primers used for qPCR.
Figure S1: Standard curves of 16S (a) and ITS (b).
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