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Simple Summary: Cow longevity is a key driver of the beef cattle industry profitability that can be
improved through genetic and genomic selection. Censored data are commonly dealt with in genetic
evaluations of longevity, which can unfavorably impact the accuracy of breeding values and the rates
of genetic progress. In this study, we evaluated alternative scenarios to define the best approaches for
genetically evaluating longevity in North American Angus cattle in the presence of censored data.

Abstract: This study aimed to evaluate the impact of different proportions (i.e., 20%, 40%, 60% and
80%) of censored (CEN) or penalized (PEN) data in the prediction of breeding values (EBVs), genetic
parameters, and computational efficiency for two longevity indicators (i.e., traditional and functional
longevity; TL and FL, respectively). In addition, three different criteria were proposed for PEN: (1)
assuming that all cows with censored records were culled one year after their last reported calving;
(2) assuming that cows with censored records older than nine years were culled one year after their
last reported calving, while censored (missing) records were kept for cows younger than nine years;
and (3) assuming that cows with censored records older than nine years were culled one year after
their last reported calving, while cows younger than nine years were culled two years after their last
reported calving. All analyses were performed using random regression models based on fourth
order Legendre orthogonal polynomials. The proportion of commonly selected animals and EBV
correlations were calculated between the complete dataset (i.e., without censored or penalized data;
COM) and all simulated proportions of CEN or PEN. The computational efficiency was evaluated
based on the total computing time taken by each scenario to complete 150,000 Bayesian iterations. In
summary, increasing the CEN proportion significantly (p-value < 0.05 by paired t-tests) decreased the
heritability estimates for both TL and FL. When compared to CEN, PEN tended to yield heritabilities
closer to COM, especially for FL. Moreover, similar heritability patterns were observed for all three
penalization criteria. High proportions of commonly selected animals and EBV correlations were
found between COM and CEN with 20% censored data (for both TL and FL), and COM and all levels
of PEN (for FL). The proportions of commonly selected animals and EBV correlations were lower
for PEN than CEN for TL, which suggests that the criteria used for PEN are not adequate for TL.
Analyses using COM and CEN took longer to finish than PEN analyses. In addition, increasing
the amount of censored records also tended to increase the computational time. A high proportion
(>20%) of censored data has a negative impact in the genetic evaluation of longevity. The penalization
criteria proposed in this study are useful for genetic evaluations of FL, but they are not recommended
when analyzing TL.
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1. Introduction

Angus is the most common beef cattle breed currently raised in the United States [1,2],
the top beef cattle producer in the world [3]. Longevity was identified by North American
beef cattle stakeholders as the utmost priority for further genetic improvement [4]. Genetic
(and genomic) selection for longevity has the potential to reduce the costs associated with
the replacement of animals in the herd and, depending on the trait definition assumed
for longevity in the breeding program, it can also improve the reproductive potential of
mature cows [5,6]. Moreover, selecting for improved longevity can contribute to increased
genetic progress for other economically important traits, as it can increase the number of
animals available for selection (i.e., greater selection intensity for other traits). The potential
increase in the number of animals in the herd is mainly due to the fact that less animals are
culled due to involuntary reasons, such as disease and structural problems [7].

Genetic selection for increased longevity can be challenging as this is a trait measured
late in life and many cows are still alive at the time of the genetic evaluation [8], or because
their culling might not be recorded or informed to the breeding program [7]. Thus, the use
of censored data is commonly dealt with in the genetic evaluations of longevity. In this
context, Hou et al. [9] showed that merely excluding phenotypes from the genetic analysis
can lead to bias, especially for sires that have a high proportion of daughters with censored
records. Furthermore, eliminating records from cows that are still alive can contribute
to reducing the accuracy of breeding values (EBVs) predicted for them and their parents,
which can considerably reduce the genetic gain per unit time because older animals (which
tend to have lower genetic merit compared to younger animals in a population under
selection) might continue to be selected.

The penalty method [10] has been considered suitable to treat censored records in the
genetic evaluations of fertility related traits, which consists on applying a penalization
criterion for animals with censored records. For age at first calving, for example, censored
records are replaced by a set of augmented data (i.e., penalized data), which is obtained by
adding a constant value of 21 days to the highest value of age at the first calving within
each contemporary group [9–11]. Specifically for longevity-related traits, penalized data
can be obtained by including a culling date for cows without culling information recorded
in the dataset. In this context, the last calving information available for each cow can be
used to define the penalization criterion for longevity. For instance, the culling data for
each cow can be assumed anytime (e.g., one or two years) after its last reported calving.
Therefore, the greatest challenge is to defined the optimal threshold to create the penalized
data for longevity. Using the augmented data instead the censured records has been shown
to increase the prediction accuracy of EBVs for fertility in some studies [11,12]. However,
to our best knowledge, the use of the penalty method has not yet been investigated for the
genetic evaluation of longevity indicator traits, especially when using random regression
models (RRM).

Accounting for censored records in the genetic evaluation is simpler when using RRM,
because they do not require that all animals have information for all time points [13,14]. In
addition, the use of RRM usually results in more accurate EBVs compared to other statistical
models, and it might allow the identification of the most feasible time periods to perform
selection [13,15]. Recently, the optimal RRM to perform selection for longevity in North
American Angus cattle was defined, while comparing the impact of different longevity
indicators in the selection scheme [6]. However, the impact of censored or penalized
data in the selection decisions remains unknown when performing genetic evaluations
for longevity using RRM. In this context, we aimed to evaluate the impact of different
proportions of censored data (i.e., 0%, 20%, 40%, 60%, and 80%) in the prediction of EBVs,
genetic parameters, and computational efficiency for two longevity indicators proposed
for North American Angus cattle [6]: (a) traditional longevity (TL; defined as the time
from first calving to culling); and (b) functional longevity (FL; defined as the time period in
which the cow was alive and calving after its first calving). Additionally, three different
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criteria for the penalty method were proposed and extensively compared to the use of
censored records.

2. Materials and Methods
2.1. Ethics Statement

All information used in this study was obtained from existing datasets provided
by the American Angus Association (Saint Joseph, MO, USA) and the Canadian Angus
Association (Rocky View County, AB, Canada). Therefore, no animal care committee
approval was necessary.

2.2. Dataset, Quality Control, Designs, Scenarios, and Sub-Scenarios

Only cows with information of natural death (i.e., cows that died due to natural causes
or were culled after they were 15 years old) were analyzed in this study. The phenotypic
quality control excluded data from cows born before 1990 or that did not have their first
calving before 30 months-old, as well as cows with culling age greater than 20 years.
Additional details about the original dataset and phenotypic quality control performed can
be found in Oliveira et al. [6].

A total of 100,000 cows were randomly chosen from the 150,229 cows used in Oliveira
et al. [6]. Thereafter, different proportions (i.e., 20%, 40%, 60%, and 80%) of cows were
randomly assigned to have their culling information censored, which were used to create
the sub-scenarios for censored data evaluated in this study. Cows that had their culling
information censored in one sub-scenario were kept as censored in the next sub-scenario,
in order to avoid any extra confounding effect. Therefore, an algorithm was created
to randomly sample 20% cows and censor their records. Thenceforth, the algorithm
would randomly sample 20% cows with uncensored records from each previous sub-
scenario, in order to censor their records and create the next sub-scenario (with 40%,
60%, and 80% censored data, respectively). No constraints regarding the number of
cows with censored/uncensored records per contemporary group were imposed, because
contemporary groups (concatenation of herd-year-season) were assumed as random effects
in this study.

The same sub-scenarios evaluated for censored data (in terms of proportion of cen-
sored/penalized data and cows sampled) were used to create the sub-scenarios for penal-
ized data (i.e., a penalization criterion was used for cows that had their records previously
censored). Three different criteria were proposed for the penalty method [10] used in
this study. The first criterion assumed that all cows with censored records were culled
one year after their last reported calving. The second criterion assumed that cows with
censored records older than nine years were culled one year after their last reported calving,
while censored records were kept for cows younger than nine years. Finally, the third
criterion assumed that cows with censored records older than nine years were culled one
year after their last reported calving, while cows younger than nine years were culled two
years after their last reported calving. The threshold of nine years and the penalization
of one or two years were defined based on the average culling age estimated for cows
that died due to natural reasons [6], the number of cows culled per age (Supplementary
Figure S1), and the proportion of reappearance in the dataset after one missing calving
(Supplementary Figure S2).

To facilitate the comparison of results and subsequent discussion, hereafter scenarios
based on the complete (i.e., 0% censored or penalized data), censored, and penalized data
will be called COM, CEN, and PEN, respectively. The notation of the sub-scenarios is
CEN20, CEN40, CEN60, and CEN80 to represent 20%, 40%, 60%, and 80% censored data,
respectively. Similarly, the notation of the sub-scenarios used for PEN follows the pattern:
PENxmy with x referring to the amount of penalized data and y to the penalty method
used. For instance, PEN using 20% penalized data and the first penalty method (which
assumes that all cows with censored records were culled one year after their last reported
calving) was coded as PEN20m1.
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In order to avoid any statistical confounding between the number of animals and the
number of censored/uncensored records in the results, two designs were used for each
scenario/sub-scenario: (1) always including 55,000 cows with uncensored data; and (2)
always including a total of 100,000 cows in the analyses. In this context, the first design
considered a total of 55,000; 66,000; 77,000; 88,000; and 99,000 cows (i.e., 55,000 cows with
uncensored records plus 0%, 20%, 40%, 60%, and 80% cows with censored or penalized
records, respectively), while the second design considered always 100,000 cows, from
which 100,000; 80,000; 60,000; 40,000; and 20,000 cows had uncensored data (plus 0; 20,000;
40,000; 60,000; and 80,000 cows with censored or penalized records, respectively). A total
of three replicates were performed for each analysis, which differed according to the cows
randomly sampled to have their records censored. The initial 100,000 cows were kept the
same in all replicates. A scheme of the designs, scenarios and sub-scenarios used in this
study is shown in Figure 1.
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using penalized data.

2.3. Longevity Indicators and Statistical Analyses

Two different longevity indicators were used to evaluate the impact of censored and
penalized data in the prediction of EBVs, genetic parameters, and computational efficiency
for the genetic analyses. For the first indicator, longevity was coded as 1 when the cow
was alive, and 0 after the cow was culled (i.e., TL). For the second one, longevity was
codified as 1 for cows that had calved at the specific age, 0 after the cow was culled, and as
missing record when no information of calving was found at the specific age (i.e., FL). Both
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longevity indicators were evaluated from 2 to 15 years-old, using RRM. The RRM used in
this study were defined as follows:

y = Xb + Hq + Za + Wp + e, (1)

in which y is the vector of observations, assumed as y
∣∣b, q, a, p, Rq, G0, Rp,σ2

e ∼ N(
Xb + Hq + Za + Wp, Iσ2

e
)
; b is the vector of systematic effects (embryo transfer and

coefficients of systematic regressions for year-season of birth), which was assumed as
b ∼ N(0, Σb ⊗ I); q is the vector of random regression coefficients for the herd-year-
season effects, which was assumed as q

∣∣Rq ∼ N
(
0, Rq ⊗ I

)
; a is the vector of random

regression coefficients for the animal additive genetic effects, which was assumed as
a|G0, A ∼ N(0, G0 ⊗A); p is the vector random of regression coefficients for the per-
manent environmental effects, which was assumed as p

∣∣Rp ∼ N
(
0, Rp ⊗ I

)
; and e is the

random vector of residuals, which was assumed as e
∣∣σ2

e ∼ N
(
0, Iσ2

e
)
. Fourth order Leg-

endre orthogonal polynomials [16] were used for all regressions, as defined in a previous
study using the same data [6].

The X, H, Z, and W are the incidence matrices for b, q, a, and p, respectively. In
addition, Rq, G0, and Rp are the herd-year-season, additive genetic, and permanent en-
vironmental variance components matrices, respectively. The matrices A and I are the
pedigree-based additive relationship and the identity matrices, respectively. The matrix Σb
is a diagonal matrix with large variances (1010) to represent vague prior knowledge. The
matrices Rq, G0, and Rp were assumed to follow an inverted Wishart distribution (IW)
with small prior knowledge, i.e., Rq ∼ IW(3, R̂q), G0 ∼ IW(3, Ĝ0), and Rq ∼ IW(3, R̂q).
A scaled inverted chi-squared distribution was assumed for σ2

e.
Gibbs sampler based on the Markov Chain Monte Carlo (MCMC) algorithm was used

to estimate the variance components and predict the breeding values for the regression
coefficients using the Best Linear Unbiased Prediction (BLUP) method implemented in
the gibbs3f90 software [17]. The MCMC chain length, burn-in, and thin used in this
study were 150,000, 50,000, and 10, respectively. Convergence criteria were verified using
the Heidelberger and Welch [18] and Geweke [19] criteria, both available in the package
“boa—Bayesian Output Analysis” [20] of the R software [21].

2.4. Estimation of Heritabilities and EBVs over Time

Heritabilities over time for each scenario/sub-scenario in each replicate were calcu-
lated as:

ĥ
2
j =

σ̂2
aj

σ̂2
aj
+ σ̂2

qj
+ σ̂2

pj
+ σ̂2

e
, (2)

in which ĥ
2
j is the heritability estimated for the age j (j = 2, 3, . . . , 15), σ̂2

aj
, σ̂2

qj
, and σ̂2

pj
are

the additive genetic, herd-year-season, and permanent environmental variances estimated
for the age j, respectively, and σ̂2

e is the residual variance. The additive genetic, herd-year-
season, and permanent environmental variances were obtained from the jth diagonal of the
respective covariance matrices for the ages (i.e., ∑, ϕ, and θ, respectively). The matrices ∑,
ϕ, and θwere calculated using the posterior mean of the variance components estimated
for the random regression coefficients of these effects, i.e.,:

∑ = TG0T′, ϕ = TRqT′, and θ = TRpT′, (3)

where T is a matrix of independent covariates including all ages associated with the Legen-
dre orthogonal polynomial, and G0, Rq, and Rp are the previously mentioned additive
genetic, herd-year-season, and permanent environmental variance components matrices
for the random regression coefficients, respectively. The heritability estimates reported for
each scenario/sub-scenario are the averages (and SE) obtained from three replicates.
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The EBVs for all different ages of the animal i, for each scenario/sub-scenario in each
replicate, were obtained as:

EBVi = Tâi, (4)

in which EBVi is the vector of EBVs for animal i that includes all analyzed ages, âi is the
vector of breeding values for the regression coefficients of animal i, and T is the previously
mentioned matrix of independent covariates associated with the Legendre polynomial.

2.5. Proportion of Commonly Selected Animals, EBV Correlation, and Computational Efficiency

The proportion of commonly selected animals between COM and the sub-scenarios
of CEN, or COM and the sub-scenarios of PEN, was calculated for the top 1% and 10%
animals of each age. Similarly, the EBV correlation was calculated as the Pearson correlation
coefficient between EBVs predicted using COM and the sub-scenarios of CEN (or PEN), but
considering all animals and ages together. Additionally, EBV correlations for the age of four
years were calculated using either animals with or without censored/penalized records.
Proportions and correlations shown in this study are the averages (and SD) obtained from
the three replicates.

All analyses were performed using a Unix server available at the American Angus
Association [Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30 GHz](Intel Corporation, Santa Clara,
CA, USA), which contains 72 CPUs and considers up to two threads per core. The total
computing time for each replicate of each scenario/sub-scenario was estimated as the
amount of CPU time spent in user-mode code plus the amount of CPU time spent in the
kernel [22] needed to complete the 150,000 Bayesian iterations. The average (SD) computing
time calculated between all three replicates is presented in this study.

2.6. Statistical Significance

Statistically significant (p-value < 0.05) differences between scenarios, for each longevity
indicator, were accessed using paired t-tests [23].

3. Results

Similar pattern of results was observed using both designs (i.e., always including
55,000 cows with uncensored data; or always including a total of 100,000 cows in the
analyses). Thus, only results based on the second design will be presented. Results
obtained when using the first design are included in the Supplementary Material and
mentioned in the text for comparison purposes, when appropriate.

3.1. Heritabilities

Heritabilities estimated for TL and FL across the different ages using COM and the
sub-scenarios of CEN and PEN are shown in Figure 2. Heritabilities estimated based on the
design that always included 55,000 cows with uncensored data are shown in Supplementary
Figure S3.

Up to about 12 years old, increasing the proportion of censored data decreased the
heritability estimates for both longevity indicators (Figure 2a,b). An overestimation of
heritabilities was observed when including censored records at high ages (>12 years),
especially for FL (Figure 2b). However, the overall impact of censored data in the heritability
estimates was greater for TL than FL. For instance, heritabilities estimated for TL, from 2 to
12 years, reduced on average by 17.13% from COM to CEN20, 55.15% from COM to CEN40,
68.21% from COM to CEN60, and 81.01% from COM to CEN80. For FL, heritabilities
reduced on average by 4.06%, 13.27%, 41.54%, and 62.78% over the same mentioned
scenarios. Heritabilities estimated using the design that always included 55,000 cows with
uncensored data followed a similar pattern than the current design. However, a smaller
decrease/increase in the heritability estimates was observed (Supplementary Figure S3).
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A similar pattern of heritability was observed among the different sub-scenarios of
PEN, within each longevity indicator (Figure 2c–h). In this context, heritabilities estimated
for TL tended to be sub-estimated at ages lower than about nine years, and overestimated
at greater ages (Figure 2c,e,g). Heritabilities estimated for FL tended to be overestimated
until 12 years old, and they were close to the heritabilities estimated using COM after that
(Figure 2d,f,h). For both TL and FL, increasing the amount of penalized data emphasized
the behavior observed for the heritability pattern (i.e., heritabilities were more under or
overestimated when increasing the amount of penalized data). Compared to the use of
censored data, the penalty methods tended to yield heritabilities closer to COM, especially
for FL (Figure 2b,d,f,h). Heritabilities estimated using the second and third penalization
criteria were more similar among them than with the first penalization criterion using both
longevity indicators (Figure 2c–h). For the design with 55,000 cows with uncensored data,
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all sub-scenarios of PEN yielded heritabilities closer to COM compared to the 100,000 cows
design (Figure S3, Supplementary Material).

Significant statistical differences were observed between average heritabilities esti-
mated using different proportions of censored data for TL. On the other hand, no statistical
differences were observed between heritabilities estimated for FL using COM (i.e., 0%)
and smaller proportions of censored data (i.e., 20% and 40%). Using penalized data sig-
nificantly increased the average heritabilities for both longevity indicators. Consequently,
no statistical differences were observed between average heritabilities estimated using
COM and the majority of sub-scenarios of PEN, for both longevity indicators. The average
heritability estimates and significance of the associated differences in estimates across
scenarios within each longevity indicator (TL or FL) are shown in Table S1 (Supplementary
Material). No significant statistical differences were observed for the design that always
included 55,000 cows with uncensored data (results not shown).

3.2. Proportion of Commonly Selected Animals

The average proportions (and SE) of top 10% animals selected in common for each
age between COM and the different sub-scenarios of CEN and PEN are shown in Figure 3.
The average proportions (and SE) of the top 1% animals commonly selected are shown
in Supplementary Figure S4. Corresponding results obtained based on the design us-
ing 55,000 cows with uncensored data are shown in Supplementary Figures S5 and S6,
respectively.
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Figure 3. Average proportion (and SE) of the top 10% animals commonly selected for each age (black bars; from 2 to 15 years
old) across the different scenarios, using the traditional (TL; a,c,e,g) and functional (FL; b,d,f,h) longevity indicators. The
contrasted scenarios are: complete (COM; without censored/penalized records); randomly censoring different proportions
of data (CEN20, CEN40, CEN60, and CEN80 for 20%, 40%, 60% and 80% censored, respectively; (a,b); penalizing data
assuming that all cows with censored records were culled one year after their last reported calving (PEN20m1, PEN40m1,
PEN60m1, and PEN80m1 for 20%, 40%, 60% and 80% penalized, respectively; (c,d); penalizing data assuming that only cows
with censored records older than nine years were culled one year after their last reported calving (PEN20m2, PEN40m2,
PEN60m2, and PEN80m2 for 20%, 40%, 60% and 80% penalized, respectively; (e,f); and penalizing data assuming that cows
with censored records older than nine years were culled one year after their last reported calving, while cows younger than
nine years were culled two years after their last reported calving (PEN20m3, PEN40m3, PEN60m3, and PEN80m3 for 20%,
40%, 60% and 80% penalized, respectively; (g,h). The averages (and SE) shown here were obtained from three replicates.
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In summary, the proportion of animals commonly selected between COM and CEN
reduced when the proportion of cows with censored data increased (Figure 3a,b). Includ-
ing penalized data while analyzing TL tended to increase re-ranking of animals between
COM and PEN compared to COM and CEN (Figure 3a,c,e,g). On the other hand, in-
cluding penalized data for FL increased the proportion of commonly selected animals,
specially under sub-scenarios with great amount of censored/penalized data (i.e., >40%;
Figure 3b,d,f,h). Higher variability in the proportion of animals commonly selected across
ages was observed for TL compared to FL, for all sub-scenarios of PEN (Figure 3c–h). In
addition, higher variability between ages tended to be observed when considering the
top 1% animals selected in common (Supplementary Figure S4) instead of the top 10%.
Similar patterns were observed for the design with 55,000 cows with uncensored data
(Figures S5 and S6, Supplementary Material).

The average proportion of the top 10% animals selected in common between COM
and all sub-scenarios of CEN and PEN, considering all ages, are shown in Table S2 (Supple-
mentary Material). In general, similar average proportions of animals selected in common
were found for TL and FL when using censored data. However, when using penalized
data the proportions were higher for FL than for TL, in all scenarios analyzed. For TL, the
highest proportion of animals commonly selected was found between COM and CEN20
(76.5%), while the lowest proportions (about 35.5% animals in common) were found be-
tween COM and the scenarios with a great amount of censored (CEN80) or penalized
(PEN80m1, PEN60m2, PEN80m2, PEN60m3, and PEN80m3) data. For FL, the average
proportions were over 78% when using CEN20 and all scenarios using penalized data. The
lowest proportion of commonly selected animals for FL was found between COM and
CEN80 (39.4%). Similar proportions were observed for the design that always included
55,000 cows with uncensored data (results not shown).

3.3. EBV Correlation

The average correlations estimated between EBV predicted using COM and all sub-
scenarios of CEN and PEN, when considering all ages together, are shown in Table 1.
Similar to the results observed for the proportion of commonly selected animals, high EBV
correlations were estimated between COM and CEN20 (for both TL and FL), and COM
and all sub-scenarios of PEN (for FL). The inclusion of penalized data decreased the EBV
correlations for TL when compared to CEN20 (Table 1). Similar EBV correlations were
calculated for the sub-scenarios of PEN using the design that always included 55,000 cows
with uncensored data (Table S3, Supplementary Material). However, EBV correlations
estimated between COM and the sub-scenarios of CEN tended to decrease less with the
increase in the proportion of censored data for the design using the 55,000 cows compared
to the design using 100,000 cows (Table 1 and Supplementary Table S3). The impact of
the different scenarios in the EBV correlation when considering only cows that had or not
censored/penalized records was calculated at the age of four years (Figure 4). The average
EBV correlation estimated for cows that had or not censored/penalized records, calculated
using the design of 55,000 cows, are shown in Figure S6 (Supplementary Material).

Table 1. Average (SD) correlation estimated between breeding values predicted for traditional (TL) and functional (FL)
longevity using the complete data and all other scenarios, considering all ages combined (i.e., from 2 to 15 years old).

Longevity
Indicator

1 Scenario
Proportion of Censored/Penalized Data

20% 40% 60% 80%

TL

CEN 0.90 (0.03) a 0.80 (0.04) b 0.68 (0.05) d 0.51 (0.11) f,g,h
PENxm1 0.80 (0.03) b 0.69 (0.05) d 0.55 (0.11) e,f,g 0.43 (0.22) h,i
PENxm2 0.73 (0.07) c,d 0.58 (0.10) e,f 0.47 (0.11) h,i 0.39 (0.18) i
PENxm3 0.74 (0.06) c 0.59 (0.08) e 0.49 (0.11) g,h 0.41 (0.24) h,i
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Table 1. Cont.

Longevity
Indicator

1 Scenario
Proportion of Censored/Penalized Data

20% 40% 60% 80%

FL

CEN 0.91 (0.05) d 0.84 (0.07) e 0.73 (0.13) f 0.49 (0.24) g
PENxm1 0.97 (0.03) a 0.97 (0.03) a 0.96 (0.03) a,b 0.95 (0.03) a,b,c
PENxm2 0.93 (0.03) c,d 0.93 (0.04) c,d 0.92 (0.04) c,d 0.90 (0.05) d
PENxm3 0.94 (0.03) b,c 0.94 (0.03) b,c 0.93 (0.03) c,d 0.92 (0.04) c,d

1 Scenarios included different proportions of censored data (CEN); penalized data assuming that all cows with censored records were
culled one year after their last reported calving (PENxm1); penalizing data assuming that only cows with censored records older than nine
years were culled one year after their last reported calving (PENxm2); and penalizing data assuming that cows with censored records older
than nine years were culled one year after their last reported calving, while cows younger than nine years were culled two years after their
last reported calving (PENxm3). Different letters, within each longevity indicator, show significant difference (p-value < 0.05) between
values. Averages (and SD) shown here were obtained across years and three replicates.
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Figure 4. Average correlation (and SE) estimated between breeding values predicted for traditional (TL; a,c,e,g) and
functional (FL; b,d,f,h) longevity, at the age of four years, using different scenarios. Contrasted scenarios are: complete
(COM; without censored/penalized records); randomly censoring different proportions of data (CEN20, CEN40, CEN60,
and CEN80 for 20%, 40%, 60% and 80% censored, respectively; (a,b); penalizing data assuming that all cows with censored
records were culled one year after their last reported calving (PEN20m1, PEN40m1, PEN60m1, and PEN80m1 for 20%, 40%,
60% and 80% penalized, respectively; (c,d); penalizing data assuming that only cows with censored records older than nine
years were culled one year after their last reported calving (PEN20m2, PEN40m2, PEN60m2, and PEN80m2 for 20%, 40%,
60% and 80% penalized, respectively; (e,f); and penalizing data assuming that cows with censored records older than nine
years were culled one year after their last reported calving, while cows younger than nine years were culled two years
after their last reported calving (PEN20m3, PEN40m3, PEN60m3, and PEN80m3 for 20%, 40%, 60% and 80% penalized,
respectively; (g,h). Correlations were estimated considering only cows with or without censored/penalized records
(Censored/Penalized and Uncensored, respectively). Averages (and SE) shown here were obtained from three replicates.
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In all scenarios evaluated, the EBV correlations estimated at four years were lower
when considering only cows that had their culling information censored or penalized
compared to cows that had uncensored records (Figure 4). For both TL and FL, the EBV
correlation decreased as the proportion of censored data increased (Figure 4a,b). Especially
for TL, the EBV correlations tended to be lower for PEN than for CEN (Figure 4a,c,e,g).
However, for FL the EBV correlations estimated when using PEN were higher than the
EBV correlations estimated using CEN (Figure 4b,d,f,h). It is worth noting that the EBV
correlations estimated using the design that always included 55,000 cows with uncensored
data were similar to the ones previously described for cows that had or not their culling
information penalized (i.e., for all sub-scenarios of PEN). However, the EBV correlations
estimated for censored and uncensored cows, using the design that always included
55,000 cows, tended to decrease less with the increase of censored data compared to the
100,000 cows design (Figure 4 and Figure S7). Similar EBV correlations were estimated
using the different penalty methods in both designs (Figure 4c–h and Figure S7c–h).

3.4. Computational Efficiency

The averages CPU time used to complete the 150,000 Bayesian iterations using COM
and the sub-scenarios of CEN and PEN are shown in Table 2. In summary, analysis using
COM and CEN tended to take longer than analyses using PEN. In addition, increasing the
amount of censored records also tended to increase the computational time spent in the
analyses. In this context, analysis using only penalized data (i.e., PENxm1 and PENxm3)
tended to be faster than analyses including censored data, especially for FL. Similar results
were observed for the design that always included 55,000 cows with uncensored data
(results not shown).

Table 2. Average (SD) central processing unit (CPU) time (in days) used to complete 150,000 Bayesian iterations in the
genetic evaluation of traditional (TL) and functional (FL) longevity using different scenarios.

Longevity
Indicator

1 Scenario
Proportion of Censored/Penalized Data

0% 20% 40% 60% 80%

TL

CEN 10.32 (0.26) c 10.49 (0.95) c 10.92 (0.77) b,c 11.56 (1.15) a,b 11.75 (0.88) a
PENxm1 10.32 (0.26) c 9.12 (0.03) e 9.30 (0.07) d 9.43 (0.10) d 9.61 (0.07) d
PENxm2 10.32 (0.26) c 9.60 (0.55) d 9.67 (0.72) d 9.61 (0.75) d 9.59 (0.81) d
PENxm3 10.32 (0.26) c 9.38 (0.03) d 9.59 (0.02) d 9.74 (0.05) d 9.74 (0.01) d

FL

CEN 9.74 (1.09) b 10.33 (1.17) a 10.67 (1.12) a 11.30 (1.52) a 11.32 (1.48) a
PENxm1 9.74 (1.09) b 8.26 (0.06) c 8.43 (0.04) c 8.22 (0.02) c 8.20 (0.03) c
PENxm2 9.74 (1.09) b 9.65 (0.19) b 9.71 (0.35) b 9.77 (0.49) b 9.68 (0.67) b
PENxm3 9.74 (1.09) b 8.55 (0.03) c 8.49 (0.02) c 8.48 (0.03) c 8.28 (0.03) c

1 Scenarios included different proportions of censored data (CEN); penalized data assuming that all cows with censored records were
culled one year after their last reported calving (PENxm1); penalizing data assuming that only cows with censored records older than nine
years were culled one year after their last reported calving (PENxm2); and penalizing data assuming that cows with censored records older
than nine years were culled one year after their last reported calving, while cows younger than nine years were culled two years after their
last reported calving (PENxm3). Different letters, within each longevity indicator, show significant difference (p-value < 0.05) between
values. Averages (and SD) shown here were obtained using the three replicates.

4. Discussion

Beef cattle longevity is strongly related to the overall farm profitability [5]. Due to
its importance, several longevity indicators have been proposed over the years [24–27].
Recently, Oliveira et al. [6] contrasted the use of different longevity indicators to genetically
evaluate longevity in North American Angus cattle, but without accounting for the presence
of censored records in the evaluations. Understanding the impact of censored records and
how to account for them in the genetic evaluations of longevity were the main motivations
for this study. Therefore, three criteria were proposed for the penalty methods, which
differed mainly regarding to the threshold used to create the penalized data. In summary,
the first criterion assumed the culling date for each cow as one year after its last reported
calving, which can be very stringent for young cows. Thus, the second and third criteria
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used tried to reduce the possible disadvantage of the first criterion for the young cows, in
order to avoid bias and reduction of genetic gain.

Genetic evaluations of longevity usually rely on animal culling records reported by
the farmers. However, probably because longevity has not been officially evaluated in
North American Angus cattle [28,29], a great proportion of cows (~62%) present in the
pedigree do not have culling records included in the original dataset [6]. This proportion
is higher than the ones previously reported in the literature for other beef cattle breeds.
For instance, Forabosco et al. [30] reported that about 14% of cows had censored data in
longevity analyses of the Chianina beef cattle breed. Brzáková et al. [26] reported that
about 37% of cows from several beef cattle breeds raised in Czech Republic had censored
data. Thus, in order to mimic different scenarios for beef cattle, the proportions of cows
with censored records in the current study were set to 20%, 40%, 60%, and 80%.

Including all animals with censored records in the genetic evaluation can help to
increase the accuracy of EBVs for longevity [9,31]. Moreover, the use of more information
can also improve the estimation of variance components and genetic parameters [31].
However, the great challenge is to determine how to best include censored records in the
evaluations. Methods described in the literature to account for censored data in the genetic
evaluation include the use of augmented data (created using penalization criteria [12,32]
or replacing censored records by simulated values originated from truncated normal
distributions [12,32–34]), and the use of missing values [12,27,32]. Either way, directly
removing censored data from the analysis has not been recommended [9,32].

Merely excluding censored data from the genetic evaluation of fertility traits was
shown to favor sires that have a greater proportion of daughters with censored records,
because the average value of their censored records is usually greater than the population
mean calculated for the trait [9]. In this context, Donoghue et al. [32], evaluating different
methods to handle censored records for fertility traits in Australian Angus cattle, concluded
that predictions made using augmented data generated by the penalty method and by
the simulated values originated from predictive truncated normal distributions were very
similar. However, the authors comment that both methods perform better than excluding
the censored records from the genetic evaluation. Thus, the use of statistical models that
enable analyzing binary traits over time is proposed to keep censored records (assumed as
missing or augmented records) in the analysis without mischaracterizing the trait [12,32,35].
In this context, using RRM seems an optimal choice, because it combines the information of
all repeated records without requiring all animals having records at all time-points [13,14].
Specifically, for longevity related traits, the use of RRM allows to include animals culled at
different ages in the same genetic evaluation. This feature excludes the need to evaluate
longevity at specific time-points (e.g., six years; [36]), and assures that EBVs are predicted
for all animals within the range of all evaluated ages [13,14].

Using missing values to account for censored data in the RRM significantly decreased
the average heritabilities estimated for TL and FL across ages, especially when high
proportions of censored data where included in the analysis using the design based on
100,000 cows (Table S1 and Figure 2). Moreover, a trend of decrease was observed while
analyzing the heritabilities estimated over the ages, using both data designs (Figure 2 and
Figure S3). The lower heritability estimates observed when increasing the proportion of
censored data is mainly due to the reduction in the additive genetic variance (Supplemen-
tary Figure S8). These results suggest that including high proportions of censored data may
hamper the genetic progress for longevity in North American Angus cattle. However, when
small proportions of censored data (20%) were used, the estimated pattern of heritabilities
was similar to COM. These results corroborate the ones presented by Donoghue et al. [35],
who reported that genetic parameters estimated using 12% and 20% censored data (treated
as missing) were similar to the true values generated in the simulation. On the other hand,
Forabosco et al. [30] reported lower heritability estimates when only uncensored records
were used. The different findings of the current study might be justified by the different
statistical models used (survival versus RRM). A trend of decrease in the sire variances
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similar to the one observed for the additive genetic variances estimated in this study was
reported by Guo et al. [37], while studying the influence of censored data on the genetic
parameters estimated for performance and prolificacy traits in swine. Among the longevity
indicators tested, heritabilities estimated for FL seem to be less impacted by the amount of
censored data compared to TL, probably due to the fact that calving information is also
included in FL.

Heritabilities estimated for FL in the different sub-scenarios of PEN, based on the
design that always included 100,000 cows, tended to be overestimated (Figure 2 and
Supplementary Table S1). This suggests that the use of penalty method can likely contribute
to increasing the genetic variability when the proportion of uncensored cows is reduced
in the analysis (Supplementary Figure S8). However, when the proportion of uncensored
cows remains constant (design with 55,000 cows), genetic parameters predicted using PEN
are very similar to the real ones (COM). For both designs, similar genetic parameters were
estimated using the three penalty criteria. These findings indicate that the criteria proposed
in this study for the penalty method might be useful to estimate genetic parameters for
FL. On the other hand, the criteria used here do not seem adequate for TL, as heritabilities
estimated were mostly biased. A possible explanation for this is that TL (as defined in
this study) does not take into account calving information, and the three penalization
criteria proposed in this study are based on the information of missing calvings. This result
reinforces the importance of using appropriate penalization criteria for the analyzed trait.
Donoghue et al. [32], using data from fertility traits of Australian Angus cattle, found that
different methods used to generate augmented data had small impact in the estimation of
genetic parameters and additive genetic variance. Moreover, the authors reported that the
penalty method does not significantly overestimate the genetic parameters compared to
censored records [32].

Similar pattern of results was found for the proportion of animals commonly selected
using both designs (i.e., always including 55,000 cows with uncensored data, or always
including a total of 100,000 cows in the analysis). For both longevity indicators the propor-
tion of animals commonly selected between COM and CEN reduced when the proportion
of cows with censored data increased (Figure 3 and Supplementary Table S2). These find-
ings corroborate the idea that including great proportions of censored data in the genetic
analysis of longevity can have a negative impact in the selection process. Moreover, the
proportion of animals commonly selected between COM and PEN support the hypothesis
that the penalty methods proposed in this study are appropriate to analyze FL, but not
for TL. In this context, the high average proportions (over 78%) of animals selected in
common between COM and PEN for FL indicate that similar selection decisions are made
when using COM, CEN20, and all sub-scenarios of PEN. However, some re-ranking of
animals is expected. These results seem to corroborate in part with the ones reported
by Donoghue et al. [32,35], as no major re-ranking of sires were reported by the authors
when investigating censored data for days to calving in simulated and real beef cattle data,
respectively.

Correlations of EBVs estimated in this study considering all animals together (with cen-
sored and uncensored records; Table 1), support the results found for the high proportion of
commonly selected animals between COM and CEN20 (for both TL and FL), and COM and
all sub-scenarios of PEN (for FL). In order to investigate the impact of censored records in
the EBV correlations using only cows that had or not censored/penalized records, the age
of four years was used (Figure 4 and Supplementary Figure S6). Breeding values predicted
for the age of four years were previously recommended for genetic selection of longevity in
North American Angus cattle, as they were expected to result in greater selection responses
using the longevity indicators analyzed in this study [6]. As expected, EBV correlations
estimated for cows that had their culling information censored tended to be lower than EBV
correlations estimated for cows that had only uncensored records. However, it is worth
noting that the inclusion of penalized data for cows with previously censored records
impacts the EBVs predicted for uncensored animals (Figure 4 and Figure S7). This impact
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is due to the fact that all related animals contribute to the EBVs predicted using the BLUP
method [38], as they are mostly connected through the A matrix. Moreover, the impact
of the amount of censored records in the EBV correlations calculated using the design
based on the 55,000 cows with uncensored records was lower than the impact observed
using the design based on 100,000 cows (Figure 4 and Supplementary Figure S7). These
findings might be related to the fact that for the design including the 55,000 cows, the
number of informative records were not reduced among sub-scenarios. Setiaji et al. [39],
analyzing different penalty methods to access interval from the first to the last successful
insemination in Japanese Black heifers, concluded that EBV correlations decrease at higher
levels of censored (missing) records. Using only uncensored data and the conventional
linear model was also the most recommended method for the genetic evaluation of age
at first calving in Brahman cattle [11]. However, the authors pointed out that similar EBV
correlations were observed using either uncensored or penalized data, which suggests
that there was not relevant re-ranking of animals when censored records were used [11].
Similarly, Costa et al. [40] also found that the linear-threshold model without censored
data showed the best predictive ability (computed based on the EBV correlation estimated
between the complete and reduced datasets) for the genetic evaluation of both age at first
calving and stayability in Nellore cattle. On the other hand, Veerkamp et al. [41] showed
that RRM were relatively robust to censoring in genetic evaluations of survival in dairy
cattle, as similar EBV predictions were made based on uncensored and censored data.

Even though the scheme of the designs, scenarios, and sub-scenarios evaluated in
the study tried to mimic real data, it is important to highlight here the need to re-estimate
variance components using the complete dataset available for North American Angus. In
addition, further studies comparing the use of different approaches (e.g., multiple-trait
model without censored/penalized records) are required to simplify the pipeline for the
official genetic evaluations. In this regard, it is worth to note that including animals with
censored records in the genetic analysis of longevity might not be relevant if genomic
information is included, as high prediction accuracies are already expected for young
animals using genomic selection [42–44]. Thus, especially for selection of candidates
at young ages (e.g., when animals are still alive), the increase in accuracy observed in
genomic evaluations might enable considerably a reduction in the generation interval.
Reduction in the generation interval is highly recommended when analyzing longevity
because the productive life of beef cows can be relatively long (i.e., they can easily exceed
five years [30]). Moreover, reducing the generation interval can contribute to significantly
increase the genetic gain per unit time. In this regard, Ramos et al. [25] suggested that
genomic information should always be included in the evaluations performed for longevity-
related traits, especially when they are evaluated at early ages. However, further studies
are needed to evaluate the performance of genomic selection for longevity-related traits in
North American Angus cattle.

In order to evaluate the feasibility of the use of censored or penalized data in the
genetic evaluation of longevity using RRM, the computational efficiency was also investi-
gated (Table 2). In summary, for all scenarios/sub-scenarios analyzed in this study, more
than eight days were needed to complete the 150,000 iterations. This indicates that further
improvements to reduce computational time are required to allow genetic evaluations to be
run in a reasonable time frame. However, despite its high computational time, using RRM
seems to be suitable to analyze longevity in North American Angus cattle considering
COM, CEN, and PEN. Concerns regarding computational time are especially relevant for
genomic evaluations, as a recent study showed that incorporating genomic information into
genetic evaluations based on RRM increased the computational demand for the evaluation
of several traits [22].

5. Conclusions

High proportions (>20%) of censored data have a negative impact on the genetic eval-
uation of longevity. The penalization criteria proposed in this study are not recommended
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when analyzing traditional longevity, however, they are useful for genetic evaluations of
functional longevity. In this context, the three penalization criteria will have similar impact
in the breeding program, as small differences were observed in the genetic parameters,
proportion of animals commonly selected, and breeding values estimated. Improvements
to reduce computational time are required for routine genetic and genomic evaluation for
longevity in North American Angus cattle.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-261
5/11/3/800/s1. Figure S1: Distribution of the number of cows culled per age (cumulative). Figure S2:
Proportion of reappearance in the dataset after one missing calving. Figure S3: Heritabilities estimated
for traditional and functional longevity over the different ages using 55,000 cows with uncensored
records. Figure S4: Average proportion (and SE) of top 1% animals selected in common for each age
(from 2 to 15 years) between the different scenarios, using the traditional and functional longevity.
Figure S5: Average proportion (and SE) of top 1% animals selected in common for each age (from 2 to
15 years) between the different scenarios, using the design based on 55,000 cows with uncensored
records for traditional and functional longevity. Figure S6: Average proportion (and SE) of top 10%
animals selected in common for each age (from 2 to 15 years) between the different scenarios, using
the design based on 55,000 cows with uncensored records for traditional and functional longevity.
Figure S7: Average correlation (and SE) estimated between breeding values predicted using the
design of 55,000 cows with uncensored records for traditional and functional longevity, at the age of
four years, using the different scenarios. Figure S8: Additive genetic variance estimated for traditional
and functional longevity over the different ages. Table S1: Average heritability (SD) estimates for
traditional (TL) and functional (FL) longevity considering all ages (i.e., from 2 to 15 years old) for
each scenario. Table S2: Average (SD) proportion of top 10% animals selected in common between the
complete data and all other scenarios for traditional (TL) and functional (FL) longevity, considering
all ages (i.e., from 2 to 15 years old). Table S3: Average (SD) correlation estimated between breeding
values predicted for traditional and functional longevity using the complete data and all other
scenarios, considering all ages (i.e., from 2 to 15 years) together and the design of 55,000 cows with
uncensored records.
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