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Simple Summary: Reproduction plays a pivotal role in dairy cow farming. Good reproductive
performance in cows can decrease the elimination rate of cows, increase the success rate of breeding,
and thereby enhance milk production. Identification of the genetic variants in reproduction-related
traits helps to increase the genetic improvement of cows’ reproductive performance. In this study,
we estimated the genetic parameters of three indicators of reproductive ability, namely, Loin Strength
(LS), Rump Angle (RA), and Pin Width (PW), and conducted a genome-wide association study of
them. The heritability of these three traits was medium, and in total, 11 significant single-nucleotide
polymorphisms (SNPs) were detected. Through a bioinformatics analysis of the genes adjacent
to these variants, 16 candidate genes were identified as being associated with these three traits.
We expect that the results could help with the genetic improvement of Chinese Holstein cows’
reproductive performance.

Abstract: Reproduction is an important production activity for dairy cows, and their reproductive
performance can directly affect the level of farmers’ income. To better understand the genomic
regions and biological pathways of reproduction-related traits of dairy cows, in the present study,
three body shape traits—Loin Strength (LS), Rump Angle (RA), and Pin Width (PW)—were selected
as indicators of the reproductive ability of cows, and we conducted genome-wide association analyses
on them. The heritability of these three traits was medium, ranging from 0.20 to 0.38. A total of
11 significant single-nucleotide polymorphisms (SNPs) were detected associated with these three
traits. Bioinformatics analysis was performed on genes close to the significant SNPs (within 200 Kb)
of LS, RA, and PW, and we found that these genes were totally enriched in 20 gene ontology terms
and six KEGG signaling pathways. Finally, the five genes CDH12, TARP, PCDH9, DTHD1, and
ARAP2 were selected as candidate genes that might affect LS. The six genes LOC781835, FSTL4,
ATG4C, SH3BP4, DMP1, and DSPP were selected as candidate genes that might affect RA. The
five genes USP6NL, CNTN3, LOC101907665, UPF2, and ECHDC3 were selected as candidate genes
that might affect the PW of Chinese Holstein cows. Our results could provide useful biological
information for the improvement of body shape traits and contribute to the genomic selection of
Chinese Holstein cows.

Keywords: reproduction; body-shape traits; GWAS; SNP; Chinese Holstein; cows

1. Introduction

Reproductive performance is an economically important feature of livestock. Suc-
cessful pregnancy and birth of offspring can maintain the scale of a farm, increase the
productivity and profitability of animal production, and improve farmers’ income [1].
Many reproductive traits of cattle, such as conception rate, reproduction rate, and ease of
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calving, are quantitative traits regulated by multiple genes and affected by environmental
factors [2,3]. However, the records of reproductive performance are generally subjective,
and due to the limited group size and poor management conditions of many small and
medium-sized farms, are usually incomplete and inaccurate. This makes it difficult to
conduct research on the reproductive performance of dairy cows and improve these traits
effectively [4].

Body-shape linear scoring is an indispensable activity in dairy cattle breeding that
is generally carried out as part of the national breeding program, and the level of linear
scores expresses the specificity of dairy cow muscle and bone development and function [5].
The current linear scoring standard for Chinese dairy cows refers to the Code of practice
of type classification in Chinese Holstein (GB/T 35568-2017) [6], in which a nine-point
scoring system is used to evaluate 20 cow linear type traits. Of these, three traits are
closely related to the reproductive performance of dairy cows; namely, Loin Strength (LS),
Rump Angle (RA), and Pin Width (PW) [7–10]. LS is used to identify the firmness of the
cow’s loin. Cows with a weak loin often have a sinking uterus, and the secretions in the
uterus are difficult to discharge, which could easily cause reproductive system diseases
and ultimately affect the ease of calving and conception rate of breeding cows [7–9]. In the
previous studies of Holstein cows, LS had a high genetic correlation (0.43) with days open
of cows [7], and the genetic correlations of LS with the first service period and calving ease
of cows were 0.17 [8] and −0.11 [9], respectively. The RA score reflects the inclination angle
of the cow’s loin to the end of the ischial tuberosity of the hip. A proper rump angle is
conducive to the discharge of secretions and postpartum lochia in the cow’s reproductive
tract, thereby increasing the reproductive rate of cows [8–10]. The genetic correlations of
RA with the calving ease and dry period of cows were −0.28 [9] and 0.19 [8], respectively.
The cows with the score of RA between 4.95–5.02 could have a significantly easier course
of parturition [10]. The PW score reflects the width of the two ischial tuberosities at the
buttocks of a cow. PW is related to the reproduction of cows [7,8]; studies have presented
that the genetic correlations of PW with the first service period, dry period, and calving
ease were 0.28, 0.26, and 0.15, respectively [7,8]. Therefore, the accurate determination and
analysis of LS, RA, and PW could reflect the reproductive performance of dairy cows.

A genome-wide association study (GWAS) is a powerful method to screen a whole
genome for genetic factors related to phenotypic traits by using single-nucleotide poly-
morphisms (SNPs) as genetic markers, and has been widely applied in domestic animals.
Many GWAS studies have been carried out on dairy cows in recent years, but previous
studies mainly focused on the important economic and disease traits of cows, including
milk production, milk protein, body height, body weight, and ketosis [11–14]. In beef cattle,
some QTLs and candidate genes have been predicted to be associated with reproductive
performance, such as MHC class II genes, which were significantly associated with preg-
nancy success in Nellore cattle [15]. The 44 to 50 Mb region on the fifth chromosome was
screened and found to be associated with the age at puberty of Nellore–Angus crossbred
cattle [16], and LOC511981, KIF1A, and EPRS genes were related to the age at first calving of
Xinjiang Brown cattle [17]. Although there are reports about GWAS research on pregnancy
rate and calving interval of dairy cows in Iran and Europe [18,19], there are few GWAS
reports on the reproductive performance of Chinese Holstein cows.

In this study, we conducted GWAS studies on LS, RA, and PW traits to identify the
significant SNPs and candidate genes related to these traits of Chinese Holstein cows.
We expect our results to become valuable resources for genetic evaluation and provide
a theoretical basis for improving the genomic selection of reproductive performance in
dairy cows.

2. Materials and Methods
2.1. Ethics Statement

The collection of hair-follicle samples and the measurement of traits in this study
were conducted in accordance with the Institutional Animal Care and Use Committee of
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the School of the Yangzhou University Animal Experiments Ethics Committee (License
Number: SYXK (Su) IACUC 2012-0029), and no animals were anesthetized or euthanized
during the study.

2.2. Animals and Phenotypic Data

A total of 1730 healthy Chinese Holstein cows from four dairy farms in Jiangsu
Province, China were used in this study (Farm 1: 407 cows; Farm 2: 209 cows; Farm 3:
739 cows; Farm 4: 375 cows). Three body-shape traits, Loin Strength (LS), Rump Angle
(RA), and Pin Width (PW), of 1730 cows were measured according to the China National
Standard (GB/T 35568-2017); at least three professionals performed the measurement of
traits for each cow, and the average of the measurements taken by the different technicians
was used as the phenotype of each trait to ensure the accuracy of the data. All cows were in
the dry period when they were measured. The parities of cows were between 1 and 4, and
the pedigree of the cows could be traced back at least three generations. The phenotype
distribution of the three traits across the farms is shown in Figure S1. Of the 1730 cows,
214 cows in the Farm 4 were selected. They were all in their first lactation at the time
of measurement, and the reproductive and calving traits’ records in the first parity of
these cows, including the occurrence of pregnancy after one breeding, the occurrence of
premature birth, and the ease of calving, were collected from farm to test their relationship
with LS, RA, and PW (Table S1).

2.3. Adjustment of Phenotypes for Analysis

The three body-type traits used for subsequent analysis were all adjusted with fixed
environmental factors using the following two steps:

Step 1: We estimated genetic parameters in the following multiple-trait animal model:

y = Xb + Za + e (1)

where y is a vector containing individual phenotype observations of the three traits; X is a
design matrix for the fixed effects (farm, age, and parity); b is the vector of fixed effects; Z
is a matrix designed to link a to y and the variation between animals determined by the
pedigree; a is the vector of individual additive genetic effects; and e is a vector of random
residuals. It was assumed that the parameters in the model had the following independent
normal distributions: a ∼ N

(
0, Aσ2

a
)

and e ∼ N
(
0, Iσ2

e
)
, where I is a matrix for

unit vector, A is the relationship matrix built through the pedigree,σ2
a is additive genetic

variance, and σ2
e is residual variance. The variance components of σ2

a and σ2
e were estimated

by the restricted maximum likelihood (REML) procedure in DMU software (v5.6) [20].
Finally, the impact of fixed environmental factors could be avoided. The heritability of
each trait was calculated as h2 = σ2

a /
(
σ2

a + σ2
e
)
. The genetic correlation of each two traits

was calculated as rA = Cov(a1, a2)/
√

σ2
a1
∗ σ2

a2
, where Cov(a1, a2) is the additive effect

covariance of every two traits, and σ2
a1

and σ2
a2

are the additive genetic variance of traits
1 and 2, respectively. The standard errors of heritability and genetic correlations were
computed based on a Taylor series approximation [20].

Step 2: We adjusted the phenotypes using the following model:

yadj =
(
Z′Z

)−1Z′
(
y−Xb̂

)
(2)

where yadj is the vector of adjusted phenotypes of traits; y, Z, and X are the same as in
Formula (1), and b̂ is an estimate of b, which was calculated in Formula (1).

2.4. Genotypic Data

Of the 1730 cows measured for body-type traits, hair-follicle samples of 999 cows
were collected (Farm 1: 198 cows; Farm 2: 214 cows; Farm 3: 224 cows; Farm 4: 363 cows).
DNA was extracted and genotyped using the GGP Bovine 100K SNP Chip by Neogen
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Biotechnology (Shanghai, China) Co., Ltd. (http://www.neogenchina.com.cn, accessed
on 20 March 2021), and the ARS-UCD1.2 (bosTau9) was used as the reference genome.
Then, the following quality-control criteria were implemented for the variants detected
and individuals by Plink software (v 1.90) [21]: (1) the call rate of a single variant had to
exceed 90%; (2) the minor allele frequency (MAF) of every SNP genotype had to exceed 5%
and meet the Hardy–Weinberg Equilibrium (HWE) (p > 1.0 × 10−6); (3) SNP information
on sex chromosomes had to be eliminated; and (4) the call rate of individual genotypes had
to exceed 95%. Then, the variants and individuals that did not meet the quality-control
requirements were removed. In this study, the SNPs on the sex chromosomes were also
removed for the following three reasons: (1) the inheritance pattern of sex chromosomes
is more complicated than that of autosomes [22,23]; (2) one of the two X chromosomes
in female mammalian cells will lose activity (lyonization) for ‘dosage compensation’ of
X-linked genes with males, which would cause a false positive of GWAS results [24]; and
(3) the lyonization of X chromosomes is sometimes related to individual reproductive
performance and disease occurrence, such as abortion and skin disease [25,26]. In total,
984 individuals and 84,407 variants were retained for subsequent analysis.

2.5. Linkage Disequilibrium Decay Analysis and Principal Component Analysis

Plink software (v1.90) [21] was used to detect the change of linkage disequilibrium
(LD) with the increase of average distance between SNPs in the current population based
on R2. Principal component analysis (PCA) was conducted using the FactoMineR package
in the statistical software program R (v4.0.4) using the 84,407 variants of the 984 cows to
estimate the population structure [27]. Then, the ggplot2 package in R (v4.0.4) was used
for visual analysis of the results [28].

2.6. Genome-Wide Association Studies

The multilocus linear mixed model was used to conduct the association analysis
between the SNPs and traits by the fixed- and random-model circulating probability
unification (FarmCPU) method [29]. The FarmCPU method conducted GWAS by iterative
usage of fixed- and random-effect models, and it could eliminate the confounding between
testing markers and kinship. The fixed-effect model contained testing markers, one at a
time, and multiple pseudo-quantitative trait nucleotides (QTNs) as covariates to control
false positives. Possible association markers were calculated in each round of the fixed-
effect model, and pseudo-QTNs were selected from the possible association markers in
random-effect model by the SUPER (Settlement of MLM Under Progressively Exclusive
Relationship) algorithm [30]. Pseudo-QTNs were used to define kinship of individuals
to avoid a model over-fitting problem in the fixed-effect model [29]. To reduce the false
positives caused by the population stratification, the three highest principal components
(PCs) were used as covariate variables in the GWAS models. The following is the fixed-
effect model [29]:

yadj = XbX + Mtbt + Sjdj + e (3)

where yadj is the vector of adjusted phenotypes of traits; X is a fixed-effects matrix con-
structed by the three highest PCs; Mt is the matrix of t pseudo-quantitative trait nucleotide
(QTN) genotypes, initiated as an empty set; bX and bt are the corresponding effects of
the three PCs and t pseudo-QTNs, respectively; Sj is the genotype of the j marker; dj is
the effect of the j marker; and e is a vector of random residuals with a distribution with
zero mean and variance of σ2

e . The SUPER algorithm was used to update the selection of
pseudo-QTNs in a random-effect model using the following three steps [30]: (1) We sort the
SNPs by their p-Values calculated using Formula (3) for one trait. (2) For each bin (segment)
on a chromosome, we chose one SNP with the lowest p-Value as the representative for the
bin. Then, we selected the most influential bins to build kinship. The size and number of
bins chosen were treated as parameters to maximize the restricted maximum likelihood for
a trait. The selected SNPs (each representing a bin) were then used as a base of a SNP pool
to define individual relationships for the later association test. (3) We excluded the SNPs in

http://www.neogenchina.com.cn
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the SNP pool that were in LD (r2 > 0.7) with the testing SNP to derive a complementary
trait-specific kinship. The random-effect model is as follows [29,30]:

y = u + e (4)

where y and e are the same as in Formula (3); and u ∼ N
(
0, Kσ2

u
)
, in which u is the

genetic effect of the individual, K is the kinship matrix derived from the pseudo QTNs,
and σ2

u is an unknown genetic variance.
The SNP genotypes coded for the association analyses were 0, 1, and 2, which were

converted by Plink software (v 1.90) [21]. The explained genetic variation (EVG) of each
SNP was calculated as follows:

EVG =
2p(1− p) ∗ e f f ect2

σ2
a

(5)

where p is the minor allele frequency (MAF) of each variant; e f f ect is the result of dj for
each significant variant in Formula (3), which means the regression coefficient of adjusted
phenotype to each variation; and σ2

a is additive genetic variance.
We set the significance threshold for selecting the significant SNPs using the Bonferroni

correction method [31]. The type I error rate was controlled at 5%, and the genome-wide
significance threshold was 5.90 × 10−7 (0.05/84407).

2.7. Annotation of Candidate Gene and Bioinformatic Analysis

Genes within 200 Kb (LD > 0.35) upstream and downstream of the significant SNPs
detected from the three indicators of reproductive ability (LS, RA, and PW) were selected
as candidate genes at “https://www.ensembl.org/Bos_taurus/Info/Index” (accessed on
20 March 2021), and ARS-UCD1.2 (bosTau9) was used as the reference genome in this
process. Then, the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis (https://www.genome.jp/kegg, accessed on 20 March 2021)
was conducted on the candidate genes using the cluster profiler package in R (v4.0.4) [32].

3. Results
3.1. The Relationship between Phenotype Data and Reproductive Performance

The relationship between the phenotype traits studied in this article (LS, RA, and PW)
and the reproductive and calving traits of cows in the first parity, including the occurrence
of pregnancy after one breeding, the occurrence of premature birth, and the ease of calving,
were evaluated using the method of Independent Sample t-Test in SPSS (v26.0) software
(IBM, NewYork, NY, USA). Because these 214 cows were all from same farm (Farm 4),
they were all in their first lactation at the time of measurement, the technicians were the
same, and the measurement work was all finished in one week, we used the raw measured
scores (not the adjusted phenotypes) to check the relationship between LS, RA, and PW
and reproductive traits.

As shown in Figure 1, the RA and PW scores significantly affected the occurrence of
pregnancy after one breeding (Figure 1a, p < 0.05), the LS and PW scores were significantly
associated with the occurrence of premature birth in the parity (Figure 1b, p < 0.05), and
the LS and PW scores were significantly related to the ease of calving of cows (Figure 1c,
p < 0.05).

3.2. Phenotypic Data and Genetic Parameters Estimation

The adjusted body-type traits of the 984 cows including LS, RA, and PW presented
approximately normal distributions in this study (Figure 2). The descriptive statistics,
as well as estimation of the genetic parameters of the traits, are shown in Table 1. The
animal model was used to estimate the genetic parameters for each trait and the heritability
estimated for LS, RA, and PW, and was 0.38, 0.22, and 0.20, respectively. It was also found
that the phenotypic correlations of the three traits were −0.06 (LS and RA), −0.14 (LS and

https://www.ensembl.org/Bos_taurus/Info/Index
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PW), and 0.13 (RA and PW), and the genetic correlations were 0.36 (LS and RA), −0.08 (LS
and PW), and 0.27 (RA and PW) (Table S2).

Figure 1. Relationship between the scores of Loin Strength (LS), Rump Angle (RA), and Pin Width (PW), and the reproductive
performance, including the occurrence of pregnancy after one breeding (a), the occurrence of premature birth (b), and the
ease of calving (c) (mean ± Standard error; the asterisks signify p < 0.05). The Loin Strength (LS), Rump Angle (RA), and
Pin Width (PW) scores were related to the reproductive performance of cows.

Figure 2. Frequency distribution of the adjusted phenotypes of Loin Strength (a), Rump Angle (b), and Pin Width (PW) (c),
of the population in this study. The adjusted phenotypes of the three traits all presented approximately normal distributions.

Table 1. Descriptive statistics for adjustment of LS, RA, and PW of cows; n = 984.

Traits Arithmetic Mean Minimum Maximum SD CV (%) Kurtosis Skewness h2 (SE)

LS −0.08 −5.78 4.91 1.53 −18.19 3.84 −0.27 0.38 (0.05)
RA −0.04 −4.95 3.58 1.37 −38.49 3.51 −0.35 0.22 (0.02)
PW 0.05 −5.45 2.56 1.09 23.67 3.56 −0.44 0.20 (0.02)

LS: Loin Strength; RA: Rump Angle; PW: Pin Width; SD: standard deviation; CV: coefficient of variation; h2: heritability; SE: standard error.

3.3. SNP Data Statistics

After quality control, 84,407 SNPs on 29 chromosomes remained for subsequent
marker analysis. The distribution of the SNP information within 200 Kb windows on the
different chromosomes is shown in Figure 3a. The change of LD decay with the increase of
the average distance between SNPs in the current population is presented in Figure 3b; the
R2 was lower than 0.35 when the average distance between SNPs was around 200 Kb.
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Figure 3. Genotyping chip information used in this study. (a) SNPs’ density distribution on 29 autosomes of the bovine
genome. The SNP density was calculated per 0.2 Mbp window. (b) LD decay plot according to the average distance between
SNPs. The R2 was lower than 0.35 when the average distance between SNPs was around 200 Kb.

3.4. Population Structure Analysis

The three highest principal components (PCs) were used to determine the population
stratification level. As shown in Figure 4, the population in this study was stratified into
several unevenly sized groups. Therefore, in order to avoid the false positive caused by
group stratification, these three PCs were used as covariates in the fixed-effect model for
association analysis. In total, the three highest PCs explained 28.3% of the variation, of
which they respectively occupied 11.8%, 9.2%, and 7.3% (Figure 4).

3.5. Genome-Wide Association Study

To ensure the accuracy of the association analysis between phenotypes and variants,
quantile–quantile (QQ) plots of the three traits were drawn according to the p-Value of each
SNP. The vast majority of the variants did not deviate from the expected p-Value, which
revealed that the models and methods for GWAS analysis were reasonable (Figure 5).

As mentioned before, the threshold for selecting significant SNPs in the GWAS study
was 5.9 × 10−7 (0.05/84407). Four SNPs (rs43162548, rs133475777, rs109073659, and
rs42946768) located on chromosome 4, 6, 12, and 20, respectively, were detected to be
associated with trait LS, and the genes nearest to the four SNPs were TARP (5 Kb), DTHD1
(within), PCDH9 (within), and CDH12 (within), respectively. Four SNPs (rs43352090,
rs43366267, rs43486059, and rs13724035) located on chromosome 3, 3, 6, and 7, respectively,
were detected to be associated with trait RA, and the genes nearest to the four SNPs were
ATG4C (200 Kb), SH3BP4 (50 Kb), LOC781835 (within), and FSTL4 (within), respectively.
Three SNPs (rs109578471, rs43430205, and rs42051017) located on chromosome 12, 22, and
29, respectively, were detected to be associated with trait PW, and the genes nearest to
the three SNPs were USP6NL (within), CNTN3 (200 Kb), and LOC101907665 (200 Kb),
respectively (Table 2, Figure 6).
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Figure 4. Population structure plots demonstrated by the 84,407 SNPs of 984 cows. The three
highest principal components (PCs) were used to display the population structure by pairwise scatter
plots (a–c) and the 3D plot (d). The PC1, PC2, and PC3 explained 11.8%, 9.2%, and 7.3% of the
variation, respectively.

Figure 5. Quantile–quantile (QQ) plots of the three traits drawn by the expected p-Value (the
uniformly distributed quantile from 0 to 1) and observed p-Value of each SNP. The red dots are SNPs
that exceeded the threshold; the shaded parts are the confidence intervals. λ: genomic inflation factor;
nQTNs: number of pseudo-QTNs in the traits.
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Table 2. Information relating to the identified significant single-nucleotide polymorphisms (SNPs) and the nearest genes.

Trait SNP CHR Position Nearest
Gene Distance MAF Effect EVG p-Value

LS

rs42946768 20 51505605 CDH12 Within (intronic) 0.373476 −0.31 1.30% 3.08 × 10−8

rs109073659 12 40319808 PCDH9 Within (intronic) 0.489837 0.29 1.22% 2.23 × 10−7

rs43162548 4 50163217 TARP 5 Kb 0.172764 0.33 0.97% 2.99 × 10−7

rs133475777 6 55719468 DTHD1 Within (intronic) 0.272358 0.29 0.91% 4.29 × 10−7

RA

rs43486059 6 102570596 LOC781835 Within (intronic) 0.489329 −0.29 1.38% 3.61 × 10−9

rs137244035 7 45115020 FSTL4 Within (intronic) 0.455285 −0.28 1.32% 1.88 × 10−8

rs43352090 3 82508654 ATG4C 200 kb 0.365854 −0.29 1.05% 9.91 × 10−8

rs43366267 3 114684449 SH3BP4 50 Kb 0.318089 0.27 0.93% 4.10 × 10−7

PW
rs109578471 13 12679178 USP6NL Within (intronic) 0.315041 −0.18 0.96% 1.18 × 10−7

rs42051017 29 3370134 LOC101907665 200 Kb 0.21748 −0.20 0.87% 1.45 × 10−7

rs43430205 22 26807183 CNTN3 200 Kb 0.272358 −0.18 0.87% 2.24 × 10−7

CHR: chromosome; LS: Loin Strength; RA: Rump Angle; PW: Pin Width; MAF: minor allele frequency; Effect: the regression coefficient of
each variation; EVG: explained genetic variation.

Figure 6. Manhattan plots of the LS (a), RA (b), and PW (c) drawn by the observed p-Value of each SNP and the location
of the gene closest to each significant SNP of the three traits in the Manhattan plots (d). The gray horizontal lines in the
Manhattan plots are significance thresholds (5.90 × 10−7); the red dots are SNPs that exceeded the threshold.
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3.6. Enrichment Analysis

For an in-depth understanding of the function of the 11 significant SNPs related to the
indicators of the reproductive ability of cows (LS, RA, and PW), the genes within 200 Kb
of significant SNPs for each trait were selected for enrichment analysis, and a total of
45 genes were obtained, of which 11 belonged to LS, 23 to RA, and 11 to PW (Table S3).
These candidate genes of LS, RA, and PW were enriched into 12, 8, and 0 GO terms,
respectively, and were clustered into 3, 2, and 0 categories using FunSet online software
(http://funset.uno; Table S4) [33]. The three categories of LS were: cell-adhesion progress,
cell–cell adhesion via plasma-membrane adhesion molecule progress, and cell–cell junction
organization progress, and the two categories of RA were the protein-deglycosylation
process and protein-modification process (Figure 7). The KEGG results (Table 3) showed
that the candidate genes of each trait were significantly enriched in the following six
pathways (p < 0.05): endocytosis, other glycan degradation, ECM-receptor interaction,
autophagy—other, mRNA surveillance pathway, and RNA transport; 7 of 45 candidate
genes were involved in pathway regulation (Table 3).

Figure 7. Clustering of enriched terms of LS and RA. In total, 12 GO terms (a) and 8 GO terms (b) were enriched in the
biological process namespace using the genes within 200 Kb of the significant SNPs of LS and RA. (The results of PW are not
listed because the genes within 200 Kb of the significant SNPs of PW were enriched to non-significant GO terms.) FunSet
software automatically identified 3 and 2 clusters of LS and RA, respectively, using the eigengap approach [28].

Table 3. Details of the pathways enriched by the genes within 200 Kb of the significant SNPs of traits.

Traits Pathway Description Gene Name p-Value

LS bta04144 Endocytosis ARAP2 0.0279

RA
bta00511 Other glycan

degradation
LOC781835,
LOC523503 0.0003

bta04512 ECM-receptor
interaction DSPP, DMP1 0.0041

bta04136 Autophagy—other ATG4C 0.0361

PW
bta03015 mRNA surveillance

pathway UPF2 0.0113

bta03013 RNA transport UPF2 0.0210
LS: Loin Strength; RA: Rump Angle; PW: Pin Width.

4. Discussion

Reproduction is a key factor in dairy cows’ postpartum lactation and herd expansion.
Cows with good reproductive performance show pregnancy symptoms on time and can
become pregnant after the first mating, which can directly increase production perfor-
mance and the economic situation of dairy farms [34]. Due to the limited management in
some small and medium-sized farms in China, records of the reproductive traits, such as

http://funset.uno
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conception rate, reproduction rate, and ease of calving, are often incomplete and subjective.
To improve the reproductive performance of dairy cows, in this study, we selected three
body-type traits that were easy to measure; namely, LS, RA, and PW, as indicators of the
reproductive ability of dairy cows, and conducted genome-wide association analyses of
them, hoping to find new QTLs that might affect these traits.

Studies have reported that body-type traits could be the indicator traits of reproduc-
tion of pigs and cattle. The vulva score categories (VSC) had the potential to improve
reproductive efficiency in the first parity performance, and had been proposed as an in-
dicator trait of efficient reproductive performance in sows [35]. The estimated genetic
correlation of number born alive (NBA) was 0.47 with front width and 0.55 with chest
width, implying that front width and chest width could be promising indicator traits for
efficiently improving NBA [36]. The loin depth had strong positive genetic correlations
with litter weight gain (LWG) (0.24 to 0.54), and it could be used as indicator traits of
reproduction in sows [37]. The score of subcutaneous body fat thickness of the dairy
cow has a medium genetic correlation with the interval between first and second calving
(−0.27) and conception rate (0.22), and it could affect the future reproductive performance
of cows [38,39], and the body condition score of the subcutaneous body-fat thickness in the
first month after calving could be the favorable indicators of cows’ reproduction [38,40].
In this study, we selected three body-type traits that were easy to measure; namely, LS,
RA, and PW, as indicators of the reproductive ability of dairy cows. Although we did not
estimate the impact of the three traits on reproductive traits at the genetic level, there was a
clear impact of them on reproductive traits at the phenotypic level (Figure 1), such as RA
and PW being significantly related to the occurrence of pregnancy after one breeding. A
higher LS score could significantly reduce the incidence rate of premature birth in dairy
cows, and cows with a higher LS score were easier to calve (Figure 1). This shows that
the three traits used in this study were reasonable indicators of dairy cow reproductive
performance. As in the previous study results [10], we also found that a trait score that is
too high might be detrimental to the cows, such as a PW score >7.5, which might result in
lower pregnancy rates, premature delivery, and difficulty of calving (Figure 1). Therefore,
genetic improvement and genome-selection work on the body traits of dairy cows must be
combined with the actual production situation of the farm to find the best score for each
trait, and should not blindly pursue the high trait scores.

However, some studies also presented the limitations of using body-type traits as
indicator traits to improve reproductive performance, such as the environmental factors
that would influence the score of measurement [41,42], although a well-trained scorer
would have problems in consistently detecting scores within a deviation of about 0.25 [39].
We also found that in this study, the total genetic variation explained by the detected SNPs
of LS, RA, and PW was only 4.40%, 4.68%, and 2.70%, respectively (Table 2), and these SNPs
might mainly affect these three body-type traits, so the effect on the reproduction of dairy
cows might be less, and it needs to be confirmed by follow-up experiments. Therefore,
it is more accurate and suitable to directly conduct research on the reproduction traits to
improve reproductive performance if the records of reproduction in farms are complete.

In this study, the heritability of reproductive traits of cattle was medium (Table 1). The
heritability of the calving ease of Nellore cattle ranged from 0.18 to 0.39 [43]; Yamazaki
et al. reported that the heritability of the conception rate at first insemination of Japanese
Holstein cows was 0.393 [44]; and Pablo estimated that the heritability of the calving
interval of Japanese Black cows ranged from 0.12 to 0.20 [45]. The heritability of the three
reproduction-related traits studied in this paper was between 0.20 and 0.38 (LS 0.38, RA
0.22, and PW 0.20; Table 1). Therefore, to improve the selection and breeding of these
three traits of dairy cows, it is necessary to pay attention to the influence of environmental
factors, such as age, climate, and nutritional status, on the measurements [1]. Although
phenotypic correlations existed among LS, RA, and PW, the genetic correlations were low
(<0.2; Table S2). Therefore, these three traits should be selected separately in dairy cattle.
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The linkage disequilibrium (LD) analysis of the population is the basis of association
studies. In the present study, the level of LD (r2) between SNPs decreased as the distance
increased, and the R2 was lower than 0.35 when the average distance between SNPs was
around 200 Kb (Figure 3b). Therefore, 200 Kb was used to search for candidate genes that
were in LD with the significant SNPs, and this was also a common distance used to search
for genes in other GWAS studies [46,47]. The decay rate of Chinese Holstein cows in this
study was much lower than in Simmental cattle, Wagyu cattle, and Iranian water buffalo,
which indicated that the degree of artificial selection of Chinese Holstein cows was higher
than in beef cattle [48]. From the SNPs’ density distribution on 29 autosomes, we could
find that the SNP information of the GGP Bovine 100K SNP Chip used in this study was
evenly distributed across each chromosome, and the number of SNPs within 200 Kb was
generally less than 22. There were still some blank areas that had no variant information
on certain chromosomes, such as Chr 7, Chr 10, Chr 12, and Chr 16 (Figure 3a), and these
could be used as key areas to discover new variants in the future.

Population stratification is an important confounding factor in GWAS studies. When
samples with different genetic structures are included in a GWAS study, the genetic dif-
ferences caused by the evolutionary selection of individuals from different groups and
regions might be interpreted as phenotypic differences in the GWAS process and result in
false-positive association results [49]. In the PCA scatter plot, the population was separated
into several different subgroups, which showed that there was population stratification
in this study (Figure 4). The stratification may have been caused by the semen used on
the four farms coming from different countries, and some of the semen may have been
from local bulls. To correct the effects of population stratification, the genetic population
structure of each individual was fitted as a fixed effect in the GWAS models. The inflation
factors (λ) of LS, RA, and PW were 0.95, 0.94, and 1.04, respectively, and they were all close
to 1 (Figure 4). This result, combined with QQ plots based on the observed and expected
p-Values of the SNPs (Figure 4), indicated that there was negligible inflation caused by
population stratification [50,51].

In addition to the population stratification, the cryptic relationship among individuals
is another important reason for the inflation of false positives in GWAS, and considering
the kinship of individuals in the GWAS model could decrease the influences [52,53]. An
alternative way to derive kinship is relying on genetic markers, which more precisely spec-
ifies the actual difference between individuals than does relying on the pedigree, because
some of these differences are not distinguishable when using the kinship derived from
pedigree [54]. The best kinship to define the individual genetic relationship on a complex
trait is the one derived from all the quantitative trait nucleotides (QTNs) underlying the
trait [55], but the markers defining the kinship are always confounded with the tested
markers and consequently decrease the statistical power of GWAS [30]. The SUPER method
used in FarmCPU could dramatically reduce the number of genetic markers used to define
individual relationships and remarkably decrease the confounding created by tested mark-
ers, because only the associated genetic markers are used to predict pseudo-QTNs [30].
In general, the number of pseudo-QTNs used as covariates for traits from 20 to 40 could
well improve statistical power compared to deriving the overall kinship from all, or a
random sample of genetic markers [30]. The statistical power could be doubled when
using 26 pseudo-QTNs as covariates in the GWAS analysis of maize inbred lines [30]. In
a simulation GWAS study of human data, 15–25 pseudo-QTNs were selected to define
individual relationships, and the genetic background of individuals was well controlled in
FarmCPU [29]. Another study also reported that using 40 QTNs as covariates in the GWAS
study of wheat could reduce the false-positive rate [56]. In this study, the pseudo-QTNs
used as covariates in the GWAS models were 33, 34, and 36, respectively (Figure 5). Al-
though the selection of the pseudo-QTNs might not be able to capture all the effect caused
by gene background, most of the effect could be captured by the SUPER method used in the
random-effect model in FarmCPU [30]. The QQ plots and the inflation factors of the three
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traits all presented well (Figure 5), and we thought the effect of the cryptic relationship
among individuals was effectively controlled in this study.

To gain insight into the function of the significant SNPs, genes that were in linkage
disequilibrium regions (LD > 0.35) with these significant SNPs were used for further
analysis. Of the 11 genes closest to the significant SNPs, some had been confirmed to
be related to bone and muscle-tissue growth. CDH12 was identified in chickens as a
candidate core gene that could control the metatarsus circumference and regulate the traits
of chest width and body weight [57]; the unusual expression of PCDH9 in cells could lead
to growth delay and microcephaly in humans [58]; SH3BP4 could regulate the growth-
factor-regulated mTORC1 pathway, which in turn had an impact on cell growth [59];
USP6NL was primarily implicated in epidermal growth factor in humans [60]; CNTN3
was identified as a candidate gene that relates to the growth of corneal endothelial cells
in the New Zealand rabbit [61]. Interestingly, we found that some of the 11 genes were
also confirmed to be related to the reproductive performance of animals. For example,
CDH12 could regulate the development of the testis of chicken [57]; TARP participated
in the process of AMPA receptor (AMPA-R) transporting, and affected the success rate
of mouse reproduction and litter size [62,63]; FSTL4 played a role in the expression of
follicle-stimulating hormone (FSH), which in turn affected the ovarian follicular and
corpus luteum dynamics, reproductive-hormone secretion, and estrus behavior of dairy
cows [62,64]; the expression of ATG4C in endometrium was closely related to pregnancy
status and affected the reproductive efficiency of beef heifers [65]. We suspect that although
the three traits studied in this article were body-type traits, they were related to the
reproductive performance of dairy cows (Figure 1). Therefore, some of the 11 candidate
genes discovered in this article might affect the reproductive performance of animals by
causing minor changes in body shape.

In the present study, a total of 45 genes within 200 Kb upstream and downstream
of the significant SNPs of the three traits were found (Table S3). The candidate genes
of LS were mainly involved in the cell-adhesion progress, cell–cell adhesion via plasma-
membrane adhesion molecule progress, and cell–cell junction organization progress, and
some of them were related to muscle growth and development in cattle (Figure 7a). It
has been reported that the cell-adhesion progress participated in the cell growth, muscle
development, lipid metabolism, and fat deposition of beef cattle’s muscle [66]. The cell
adhesion progress could also regulate the growth of bone cell [67], and could affect the
growth performance of Ashidan yaks [68]. The cell–cell junction organization progress was
a key factor that could affect the growth of the longissimus dorsi of beef cattle [69]. Just one
KEGG pathway, named endocytosis, was enriched by the candidate genes of LS (Table 3),
and the endocytosis pathway has been reported to participate in the muscle growth of
Nellore cattle [70]. The ARAP2 in the endocytosis pathway was a candidate gene that could
affect the carcass traits, including carcass weight, eye-muscle area, back-fat thickness, and
marbling of Korean cattle [71], and we surmised that ARAP2 might be a candidate gene
that could affect the LS of cows.

The candidate genes of RA were mainly involved in the protein-deglycosylation
process and protein-modification process (Figure 7b). Studies have shown that the protein-
deglycosylation process could affect osteogenesis and bone remodeling, and was critical
for promoting bone morphogenetic protein signaling, which in turn affects bone morphol-
ogy [72,73]. The protein-modification process has also been reported to participate in the
bone morphogenesis of fetal bovine [74]. Three pathways, namely other glycan degrada-
tion, ECM–receptor interaction, and autophagy—other, were enriched by the candidate
genes of RA (Table 3). It was reported that the ECM-receptor interaction pathway could
participate in the osteoblast differentiation of fish [75], and autophagy was an important
pathway affecting the growth and development of animal bones [76]. It is worth noting
that the two genes in the ECM-receptor interaction pathway, DMP1 and DSPP, were im-
portant genes that could regulate bone development and growth [77–79], and they might
be candidate key genes that control the RA of dairy cows.
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Two KEGG pathways; namely, the mRNA surveillance pathway and the RNA trans-
port pathway, were enriched by the candidate genes of PW (Table 3), and the RNA transport
pathway has been reported as potentially affecting the growth of rat bone cells [80]. It was
noted that the UPF2 gene participated in both pathways simultaneously, but there are few
studies on the effect of UPF2 on animal growth and development. ECHDC3 is one of the
candidate genes for PW (Table S3), and ECHDC3 is a kind of testis-tissue sperm-binding
protein-encoded gene, and studies have shown that it was mainly related to metabolic
disease and insulin sensitivity, and might affect the growth of animals [81,82]. We speculate
that UPF2 and ECHDC3 might be key candidate genes that affect the PW of dairy cows.

5. Conclusions

This study focuses on the three body-shape traits, LS, RA, and PW, which were selected
as indicators of the reproductive ability of Chinese Holstein cows. We estimated the genetic
parameters of these three traits and performed genome-wide association analyses on them.
The heritability of these three traits was of medium size, and a total of 11 significant
SNPs were associated with them. We also found some candidate genes associated with
LS, RA, and PW, and these genes might also play roles in these three traits of dairy cows.
Bioinformatics analyses of candidate genes were also performed, and the pathways and
the biological processes they enriched were presented. In general, our study found that the
three body traits, LS, RA and PW, were closely related to the reproductive performance
of dairy cows, and we detected some new variants and candidate genes that might affect
these traits from a genetic perspective. Our findings provide useful biological information
for the improvement of body shape traits and reproductive performance, and therefore
will contribute to the genomic selection of Chinese Holstein cows.
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the significant SNPs identified in the genome-wide association studies for LS, RA, and PW. Table S4:
Enriched GO terms.
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