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Simple Summary: The selection of genetically superior animals for residual feed intake (RFI) does
not affect animal growth, reproduction or the meat quality but it does lead to animals with lower
consumption and lower maintenance requirements. This trait is difficult and costly to measure
and is influenced by different biological processes and multiple genes. We used the RNA seq
methodology of the liver in Nellore cattle with divergent RFI in two genetic groups. Eighty-eight
common, differentially-expressed genes were identified in the two genetic groups. We highlight the
B2M gene participating in most cellular processes that differentiate groups with a greater or lesser
food efficiency. The biological pathways associated with RFI in the two genetic groups were for
energy metabolism, protein turnover, redox homeostasis and the immune response. Additionally,
we found non-coding RNAs, highlighting microRNA 25, which can act by blocking cytotoxicity
and oxidative stress, and RNase_MRP, as a blocker of mitochondrial damage. This work could help
future approaches in quantitative methods of animal husbandry and management and allow the
use of possible markers for selecting more efficient animals, thus helping meat production costs and
environmental impacts.

Abstract: The identification and selection of genetically superior animals for residual feed intake
(RFI) could enhance productivity and minimize environmental impacts. The aim of this study was to
use RNA-seq data to identify the differentially expressed genes (DEGs), known non-coding RNAs
(ncRNAs), specific biomarkers and enriched biological processes associated with RFI of the liver in
Nellore cattle in two genetic groups. In genetic group 1 (G1), 24 extreme RFI animals (12 low RFI
(LRFI) versus 12 high RFI (HRFI)) were selected from a population of 60 Nellore bulls. The RNA-seq
of the samples from their liver tissues was performed using an Illumina HiSeq 2000. In genetic group
2 (G2), 20 samples of liver tissue of Nellore bulls divergent for RFI (LRFI, n = 10 versus HRFI, n = 10)
were selected from 83 animals. The raw data of the G2 were chosen from the ENA repository. A total
of 1811 DEGs were found for the G1 and 2054 for the G2 (p-value ≤ 0.05). We detected 88 common
genes in both genetic groups, of which 33 were involved in the immune response and in blocking
oxidative stress. In addition, seven (B2M, ADSS, SNX2, TUBA4A, ARHGAP18, MECR, and ABCF3)
possible gene biomarkers were identified through a receiver operating characteristic analysis (ROC)
considering an AUC > 0.70. The B2M gene was overexpressed in the LRFI group. This gene regulates
the lipid metabolism protein turnover and inhibits cell death. We also found non-coding RNAs in
both groups. MIR25 was up-regulated and SNORD16 was down-regulated in the LRFI for G1. For
G2, up-regulated RNase_MRP and SCARNA10 were found. We highlight MIR25 as being able to
act by blocking cytotoxicity and oxidative stress and RMRP as a blocker of mitochondrial damage.
The biological pathways associated with RFI of the liver in Nellore cattle in the two genetic groups
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were for energy metabolism, protein turnover, redox homeostasis and the immune response. The
common transcripts, biomarkers and metabolic pathways found in the two genetic groups make
this unprecedented work even more relevant, since the results are valid for different herds raised
in different ways. The results reinforce the biological importance of these known processes but also
reveal new insights into the complexity of the liver tissue transcriptome of Nellore cattle.

Keywords: bovine; biomarkers; feed efficiency; liver tissue; non-coding RNAs; RNA-Seq

1. Introduction

The world population is concerned about the environment and fulfilling the Sustain-
able Development Goals (SDGs), such as SDG 13 (Climate Action); moreover, growing
pressure from the media is putting the focus, in recent times, on livestock. Thirty-seven
percent of greenhouse gas (GHG) emissions are partly brought about by the global food
supply even though the world population, particularly the high-income countries, has been
recommended to reduce the global meat consumption [1,2], despite the recommendation
of the World Health Organization (WHO) to consume 500 g per week [3]. Brazil has the
advantage of mostly having an extensive production system, which is more sustainable. It
produces and exports most of the meat consumed by European countries, but it could ben-
efit from increasing its market, as long as it seeks sustainable production [4]. Furthermore,
Brazil is the second highest meat consumer per capita (42.12 kg/year) [5], 80% of which
is beef consumption. In the context of climate change and more restrictive environmental
legislation, bovine meat production is under close observation. The European market is
particularly demanding with regard to increasing sustainability.

Feed intake on farms is approximately 60% of the total cost of a livestock farm,
therefore, a selection of more efficient animals would reduce the production costs and
increase the profitability of the agricultural system [6,7]. Residual feed intake (RFI) has
been used to estimate the feed efficiency (FE) in beef cattle [8]. The RFI is defined as the
difference between the observed and predicted dry matter intake with an average daily
gain and metabolic body weight of a given feeding period [9]. A low or negative RFI value
stands for a high feed efficiency, while a high or positive RFI value indicates a low efficiency.
As a linear trait, RFI has been reported to be independent of growth, both phenotypically
and genetically [10–12]. The more efficient animals ingest less feed than is estimated for
the same weight gain compared with less efficient animals. Heritability estimates for feed
efficiency-related traits are moderate in the Nellore breed [13]; however, it has a high cost
and technical difficulty in measuring the trait [14].

The identification and selection of genetically superior animals for their RFI
would reduce feed costs, thereby increasing profits and minimizing the environmental
impact [15–17]. There are various studies on the RFI trait in bovines from different breeds,
sexes, and management systems [18–23], but little experimental information has been
published that is thorough enough to unravel the biological regulation of the trait. The
expression of the potential for feed efficiency is complex and depends on the interaction
of numerous biochemical pathways through a multitude of tissues [24]. The liver consti-
tutes the main location of energy and substance metabolism [15]. It can maintain glucose
homeostasis in the blood and participates in protein biosynthesis as well as immune and
detoxification functions [25]. According to Ferrell and Jenkins [26], in beef cattle, 70% of
the total energy is used for maintenance, which illustrates the need for understanding
the biological mechanisms to optimize the regulation of maintenance. The non-coding
RNAs have been shown to regulate gene expression [27]. Non-coding RNAs (ncRNAs) are
generated from the larger part of the genome that does not encode proteins but produces
transcripts that regulate gene expression and protein function [28]. NcRNAs also have the
potential to be superior to established protein-based biomarkers [29]; however, the use of
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these is still limited by a wide range of concentrations and difficult detection when there is
low abundance [30].

In bovines, ncRNAs were reported as being regulators of adipose tissue deposition [31]
and fertility traits [32,33]. In Nellore cattle, ncRNAs were associated with an intramuscular
fat trait [34]. For the RFI trait, there are studies on the Bos Indicus Cattle [35] and Bos taurus
breeds [36,37]. Furthermore, studies to detect non-coding RNAs for Nellore cattle are
still limited.

Studying the transcriptome in liver tissue associated with the RFI trait allows us to
observe the influence and complexity of gene network interactions. Furthermore, it allows
us to understand the molecular mechanisms involved in more efficient animals. The aim of
this study was to use RNA-seq data to identify the DEGs, specific biomarkers, non-coding
RNAs detection and enriched biological processes associated with RFI of the liver in Nellore
cattle in two genetic groups.

2. Materials and Methods
2.1. Sampling Method

In this study, the authors describe and compare the transcriptome from two different
Nellore cattle genetic groups. Genetic Group 1 (G1) was from the Zebu Breeding Program,
created at the Instituto de Zootecnia in 1976, with the aim of increasing the post-weaning
weight of animals based on individual performances in weight gain tests. At the beginning
of the program, the Nellore herd was divided into three selection lines: Control Nellore
(NeC), Selection Nellore (NeS) and Traditional Nellore (NeT). We used animals from the
NeT line, in which the animals had been chosen based on maximum selection differentials
for the weight gain tests. For the evaluation of RFI, the animals were kept in individual pens
for a minimum period of 70 days, following 28 days of adaptation, during weight gain tests
in 2009. The RFI was calculated as the difference between the individual dry matter intake
observed and that predicted by the regression model according to Koch et al. [9]. Briefly,
the G1 were fed a diet with a roughage: concentrate ratio of 19:81, with 82% total digestible
nutrients and 14% crude protein, which consisted of hay, corn, cottonseed, cottonseed meal,
citrus pulp, and a mineral mixture. Details about the animal experiment can be found
in Zorzi et al. [38]. From the animals with an initial mean age of 19 months and mean
live weight of 369 kg that were submitted to the RFI test (n = 60), 24 extreme animals
were selected based in the RFI phenotype, 12 more efficient animals (i.e., a low RFI (LRFI))
where the mean was −0.28 kg/day and 12 less efficient animals (i.e., a high RFI (HRFI))
where the mean was 0.45 kg/day. The LRFI and HRFI groups were significantly different
(t-test < 0.05). The sires were slaughtered and samples from their liver tissue were collected
immediately and stored in an RNA holder (BioAgency, São Paulo, Brazil) at −80 ◦C until
an RNA extraction. The liver tissue samples (50–80 mg) were collected immediately after
slaughter and stored in a 15 mL Falcon tube containing 5 mL of RNA holder (BioAgency,
São Paulo, SP, Brazil). The samples were frozen at −80 ◦C for a subsequent total RNA
extraction. For more details, see Fonseca et al. [18] and Zorzi et al. [38].

Genetic Group 2 (G2) was from the public RNA-Seq data generated by the Brazilian
Agricultural Research Corporation—EMBRAPA, Brazil. The animals used in the EMBRAPA
study were from the artificial insemination of commercial and purebred Nellore dams,
derived from 18 sires chosen to represent the main genealogies based on the information
of the principal summaries of Brazilian Associations and to represent the average price
of semen in use by Brazilian beef cattle farmers. The RFI was estimated according to
Koch et al. [9] from a population of 83 sires with an average weight of 382.5 kg and an
initial mean age of 21 months. The adaptation period was approximately 28 days and the
individual dry matter intake was measured for at least 70 days. Briefly, the G2 were fed
with diets formulated to contain 40% dry matter in the form of corn silage: crude protein at
13.5% and with energy densities of 2.8. Details about the animal experiment can be found
in Oliveira et al. [13]. After the RFI evaluation, 20 extreme animals were selected based
on the BLUP estimates (n = 585) of their additive genetic merits, 10 more efficient animals
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(a low RFI (LRFI)), in which the mean was −0.68 kg/day, and 10 less efficient animals (a
high RFI (HRFI)), in which the mean was 0.53 kg/day (t-test < 0.05). For more details, see
Tizioto et al. [19].

The RNA-Seq data from the G1 were generated by the authors in partnership with the
Instituto de Zootecnia. The total RNA was extracted using the RNeasy Lipid Tissue Mini
Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol. The purity of the
extracted RNA was determined by evaluating the absorbance at 260, 280 and 230 nm using a
NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Santa Clara, CA, USA, 2007).
The reference values were ratios of 1.8 to 2 and ≥2, respectively. The total RNA quality
was tested in an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA, 2009) using the
Agilent RNA 6000 Nano Kit (Agilent). Values of the RNA Integrity Number (RIN) equal or
higher than 7.0 were classified as satisfactory. In addition, the absence of contamination of
the samples with genomic DNA was confirmed in a Qubit® 2.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA, 2010). The mRNA libraries for sequencing were prepared using the
TruSeq RNA Sample Preparation Kit® (Illumina, San Diego, CA, USA) according to the
manufacturer’s protocol. Libraries were pooled to enable multiplexed sequencing and,
on average, generated 25 million reads per sample. The RNA sequencing (RNA-Seq) was
performed using a HiSeq 2500 System (Illumina®) that generated 100 bp paired-end reads.

The raw data of the G2 were chosen from the ENA repository (EMBL-EBI) under
accession PRJEB7696. The total RNA from the liver tissue samples of 20 Nellore animals
divergent for RFI were selected. The RNA-Seq was performed using the HiSeq 2000 System
(Illumina®), and paired-end reads (2 × 100 bp) were produced. All the information about
the methodology used can be found in Tizioto et al. [19].

2.2. Transcriptome Analyses

Analyses were performed separately for each genetic group, using the same pipeline.
All the samples from G1 and G2 were compared using two groups: LRFI and HRFI groups.

The quality of the RNA-Seq reads (i.e., the quality indices, GC content, N content,
length distributions, duplication, overrepresented sequences and K-mer content) were
verified using the Fastqc software (v.0.11.4) [39]. The low quality reads (i.e., adapter se-
quence and reads containing poly-N) were taken from the raw data using Trimmomatic
v.0.36 [40] with the following parameters: java -jar /usr/local/bin/trimmomatic-0.36.jar PE
-phred33 <IN_R1.fastq.gz> <IN_R2.fastq.gz> <OUT_R1.fastq.gz> <OUT_R1_UN.fastq.gz>
<OUT_R2.fastq.gz> <OUT_R2_UN.fastq.gz> LEADING:3 TRAILING:3 SLIDINGWIN-
DOW:4:15 MINLEN:50.

All the downstream analysis was based on the trimmed data with high quality reads.
HISAT2 v.2.0.5 [41] was used to align the paired-end trimmed reads to the bovine reference
genome (ARS-UCD1.2; Bos taurus) deposited in the National Center for Biotechnology
Information (NCBI) (https://www.ncbi.nlm.nih.gov/ (accessed on 10 February 2020).
These read counts were carried out using the in-house script (Supplementary Figure S1)
and Ensembl (Index of /pub/release-105/gtf/bos_taurus/ (ensembl.org (accessed on 10
February 2020) gene annotations.

The EdgeR and Limma packages available from the Bioconductor project were used for
the estimation of normalized CPM reads (counts per million) and to identify differentially-
expressed genes (DEGs) between the RFI groups. EdgeR was used to normalize the data and
Limma software was used for statistical methods (i.e., lineal modeled and empirical Bayes),
following the methodology by Law et al. [42]. We considered a gene to be differentially-
expressed when the p-value ≤ 0.05. The p-value correction (via a FDR calculation) by
multiple tests was not applied in this study since we used a less stringent approach on a
gene by gene basis, and this allowed us to import much more informative lists and assess
the genome-wide data used for functional enrichment analyses and pathway analyses.

https://www.ncbi.nlm.nih.gov/
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2.3. Gene Set Enrichment Analysis

To investigate the biological processes and differentially-expressed molecular functions
(i.e., an enrichment analysis), we used a functional annotation gene set enrichment analysis,
with the GSEA software [43] using the MSigDB database v7.5. The Pathway Studio software
v.10 (https://www.elsevier.com/es-es/solutions/pathway-studio-biological-research (ac-
cessed on 12 May 2020), Elsevier Inc., Rockville, MD, USA) was used to identify the main
biological processes and pathways with database ResNet v11.

2.4. Non-Coding RNAs Analysis

An alignment of the paired-end trimmed reads were performed with the Bos taurus
bovine reference genome ncRNAs file, downloaded from the Ensembl database:
https://www.ensembl.org/Bos_taurus/Info/Index (accessed on 02 March 2021) through
HISAT2 v.2.0.5 [41]. Only reads showing a MAPQ equal to 0 were filtered out in order
to remove the noise related to multiple mapping sites. Counts for each non-coding RNA
detected were obtained by using an in-house script (Supplementary Figure S1), keeping
only those non-coding RNAs with a mean count value higher or equal to 25 mean reads
per sample. The EdgeR and Limma packages available from the Bioconductor project
were used for the estimation of normalized CPM reads and to identify the differentially-
expressed genes (DEGs) between the RFI groups. EdgeR was used to normalize the data
and the Limma software was used for the statistical methods (i.e., lineal modeled and
empirical Bayes), following the methodology by Law et al. [42]. We considered a gene to be
differentially-expressed when the p-value ≤ 0.05. The Pathway Studio software (Elsevier)
was used on the ncRNAs detected, and a pathway analysis was applied on the target genes
predicted by the software.

2.5. Prediction of Footprint Gene Profile

To obtain the RFI predictors or biomarkers, receiver operating characteristic curves
(ROC) were generated. For the analysis, the genefilters package (Bioconductor) was used
with the used function of “rowpAUCs”. The function has applied on the normalized values
(CPMs) in the two genetic groups (independent). A statistical correction (FDR) was not
applied. An area under the ROC curve of 0.5 represents a test with no discriminating
ability (i.e., no better than chance), while an AUC of 1.0 represents a test with a perfect
discrimination [44]. The AUC of the proposed test was estimated to be >0.70.

3. Results
3.1. Alignment Statistics

The alignment parameters pipelines were the same to genetic group 1 and genetic
group 2. The mean number of paired-end reads per sample after filtering was approximately
19.4 million reads for the G1 and for the G2 they were 20 million reads. The trimmed reads
were around 86% for the G1 and around 88% for the G2 mapped with a reference genome
(Supplementary Table S1). The box plot containing the CPMs for each group, and the plot
of principal component analysis (PCA) indicating differences in the expression of genes
between the LRFI and HRFI groups are shown in Supplementary Figure S2. The distribution
of quartiles on the box plot was consistent between the groups, indicating a high quality of
the data. In addition, the medians were similar in the two groups, indicating that the level
of the sequencing coverage permitted the identification of low-expressed genes.

3.2. Differential Expression Analysis of RNA Seq Data

Nellore animals from two genetic groups (i.e., G1 and G2), with each divided into
two groups and divergent for RFI, were compared. The results from the analysis of the
differential expression between the LRFI and HRFI (p ≤ 0.05) for G1 showed 1811 DEGs, of
which 1007 were under-expressed, with a negative logFC value in the LRFI group (55.6%)
and 804 were over-expressed, with a positive logFC value in the LRFI group (44.4%).
Genetic group 2 showed 2054 DEGs, of which 1140 were under-expressed, with a negative

https://www.elsevier.com/es-es/solutions/pathway-studio-biological-research
https://www.ensembl.org/Bos_taurus/Info/Index
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logFC value in the LRFI group (55.5%) and 914 were over-expressed, with a positive logFC
value in the LRFI group (44.5%). There were 88 common DEGs obtained for both the
genetic groups with the same biological orientation (i.e., fold-change) (shown in Figure 1
and Supplementary Table S2).
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Figure 1. Distribution of the differentially-expressed genes across the chromosomes in G1 and G2.

3.3. Biomarkers

To find the most important biomarkers that describe our trait, we performed ROC
curves using an AUC > 0.70. We found seven genes: B2M, ADSS, SNX2, TUBA4A,
ARHGAP18, MECR, and ABCF3 that were on our list of the 88 DEGs, and the changes
in the expression and significance can be observed in Supplementary Table S2. These
biomarkers were associated with important biological processes, such as cell proliferation,
insulin release, apoptosis, regulated cell death, lipid metabolism, fatty acid synthesis, lipid
homeostasis, protein targeting, protein metabolic process, protein folding, glucose import,
carbohydrate metabolism, reactive oxygen species generation, immune response, cell cycle,
cell renewal and cell death (Figure 2).
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Figure 2. Biological processes associated with biomarkers related to the residual feed intake trait
(RFI). The genes highlighted in red are up-regulated in low residual feed intake (LRFI) group, the
blue circles present the down-regulated genes in the LRFI group compared with the high residual
feed intake (HRFI) group; the green arrows indicate a positive regulation effect, while the red arrows
denote a negative regulation effect.
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3.4. Gene Set Enrichment Analysis

We followed two strategies to address the biological analysis, one using all transcripts
with a significant fold-change for each genetic group and the other filtering the 88 DEGs
common in the two genetic groups.

3.4.1. Biological Analysis of the Whole Transcriptome Data

The gene enrichment analysis (adjusted p-value < 0.05) showed 1275 biological pro-
cesses in G1 (1163 with an up-regulation and 112 with a down-regulation), 124 molecular
functions (95 up-regulated and 29 down-regulated), and 200 cellular components (148 up-
regulated and 52 down-regulated), when comparing the LRFI and HRFI. For G2, 375 biolog-
ical processes were detected (214 with an up-regulation and 161 with a down-regulation),
65 molecular functions (38 with a down-regulation and 27 with an up-regulation) and
90 cellular components (38 with a down-regulation and 52 with an up-regulation) when
comparing the LRFI and HRFI (Supplementary Table S3).

Out of all the biological processes we highlighted, the ones related to energy metabolism,
protein turnover, redox homeostasis and the immune system were all common to G1
(Supplementary Table S4) and G2 (Supplementary Table S5). These biological processes
were described previously in the analysis of biomarkers (Figure 2).

The following describes each general biological process found and studied for each
genetic group:

Energy Metabolism

Biological processes were identified for G1 related to a negative energy balance in
more efficient cattle such as a negative regulation of energy derivation by the oxidation
of organic compounds (GO:0015980) through body use to produce energy and the adeno-
sine triphosphate (ATP) metabolic process (GO:0046034), and furthermore, in the liver
synthesis of lipids, lipoproteins or phospholipids which are then used in the rest of the
tissues of the organism. However, in the LRFI group, an inhibited lipoprotein biosynthetic
process was found (GO:0042158), as was the lipoprotein metabolic process (GO:0042157),
namely, the oligosaccharide-lipid intermediate biosynthetic process (GO:0006490), and
there may have been less lipid accumulation in the more efficient group (LRFI). On the
other hand, in the LRFI group, we saw a regulation of phospholipase activity (GO:0010517),
a regulation of lipid kinase activity (GO:0043550) and a positive regulation of lipid kinase
activity (GO:0090218).

This tendency was also observed for G2 where we found, in the LRFI animals, an
inactive regulation of the generation of precursor metabolites and energy (GO:0043467),
even though we observed that a fatty acid derivative biosynthetic process was activated
(GO:1901570), and the lipopolysaccharide-mediated signaling pathway (GO:0031663).

The liver regulates glucose in the blood, converting glucose to glycogen or triacyl-
glycerides or converting glycogen to glucose to elevate its level. When there is a lack of
glucose and glycogen, the liver can convert amino acids and lipids to glucose. In the more
efficient group (LRFI), an inactive glycogen biosynthetic process (GO:0005978), a glucan
biosynthetic process (GO:0009250), a regulation of the glycolytic process (GO:0006110), and
the cellular response to glucose starvation (GO:0042149) could be observed.

Protein Turnover

The renewal of proteins (protein turnover) is related to both the synthesis of new
proteins and the degradation of already existing proteins that provide essential components
to synthesize other proteins.

The LRFI group of the G1 displayed tyrosine phosphorylation of STAT (GO:0007260)
protein processes, a regulation of protein serine/threonine kinase activity (GO:0071900),
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protein autophosphorylation (GO:0046777), an activation of protein kinase activity
(GO:0032147), a positive regulation of protein-containing complex assembly (GO:0031334),
a positive regulation of cellular protein localization (GO:1903829), a negative regulation of
protein phosphorylation (GO:0001933), and the regulation of protein binding (GO:0043393).

The LRFI group of G2 exhibited processes such as a positive regulation of peptidase
activity (GO:0010952), and SRP-dependent co-translational protein targeting to a mem-
brane (GO:0006614) in conjunction with essential proteins to carry out the translation in
the ribosome, while we also found an inactivated amino-acid betaine metabolic process
(GO:0006577) in the LRFI.

Redox Homeostasis

Various biological processes stood out in both genetic groups that were related to an
increase in the oxidative processes in less efficient bovine. Several biological processes re-
lated to the mitochondrial function were observed in G1: a mitochondrial respiratory chain
complex I assembly (GO:0032981), a mitochondrial respiratory chain complex assembly
(GO:0033108), mitochondrial ATP synthesis coupled with proton transport (GO:0042776), a
respiratory chain complex IV assembly (GO:0008535), and a respiratory electron transport
chain (GO:0022904) in the LRFI group. In addition, we found that the Wnt signaling path-
way (GO:0016055) was activated in the LRFI group. The Wnt controls multiple processes of
development, cell proliferation and apoptosis [45].

We highlight several antioxidant processes in G2 in the LRFI group, such as mitochon-
drial electron transport, NADH to ubiquinone (GO:0006120), ATP synthesis-coupled electron
transport (GO:0042773), the glutathione derivative metabolic process (GO:1901685), the glu-
tathione derivative biosynthetic process (GO:1901687), cellular detoxification (GO:1990748)
and a cellular response to toxic substances (GO:0097237). It is of utmost importance to
maintain enough liver antioxidants given the large number of oxidation compounds in the
liver that can trigger inflammation. In the LRFI group, there was a positive regulation of
cysteine-type endopeptidase activity (GO:2001056), which was involved in the apoptotic
process of the superoxide metabolic process.

Immune System

Additionally, hepatocytes are responsible for the synthesis of various enzymes and
proteins with relevant functions in the immune system. Their main tasks are to ensure
the peripheral immunotolerance of the organism with the help of hematopoietic cells
and transforming growth factor-β. The liver participates in determining the shape of the
immune response [46]. We observed the activation of an immune response (GO:0002253)
and an adaptive immune response (GO:0002250) in both G1 and G2.

3.4.2. Biological Analysis of Differentially-Expressed Genes

Here we present the biological analysis aimed at detecting the signaling pathways in-
volving the 88 genes detected between both genetic groups showing the relevant biological
processes. The results from the biological analysis showed processes that had already been
observed in the analysis of the entire transcriptome, such as an immune response (p-value
3.4 × 10−2) and an actin cytoskeleton reorganization (p-value 1.7 × 10−2) (Table 1).

In addition, the analysis delved into the genes that were integrated into the gen-
eral processes highlighted in the analysis of all transcriptomes: energy homeostasis and
lipid metabolism, the protein metabolic process, oxidative stress and the immune system
(Figures 3–5).

We have potentially identified genes involved in antioxidant mechanisms that play a
key role in hepatic metabolic adaptation by inhibiting oxidative stress, such as TMSB4X,
COTL1, RPS6KA1, VIM, STMN1, TNFAIP3, IFI30, ANXA1, TLR5 and others by activating
the immune system, such as MYO1F, ITM2B, CYBB, TLR2 and LUM (Figure 4).
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Table 1. The biological processes based on an enrichment p-value ≤ 0.05 involving the 88 genes
detected between both genetic groups.

Go Term Biological Processes Genes p-Value

GO:0071803 positive regulation of
podosome assembly ARGEF5, LCP1, MSN 8.0 × 10−4

GO:0045087 innate immune response
FGR, ANXA1, B2M,

CYBB, JCHAIN, LYA,
TLR2, TLR5

2.4 × 10−3

GO:0051493 regulation of cytoskeleton organization ARGEF5, CAPN2, STMN1 3.0 × 10−3

GO:0008360 regulation of cell shape FGR, ARHGAP18, ANXA1,
ITGB2, MSN 3.1 × 10−3

GO:0001666 response to hypoxia CAPN2, NR4A2, PAK1,
PKM, TLR2 6.4 × 10−3

GO:0035556 intracellular signal transduction ARHGEP5, ADRAIA, ASB8,
DAPK1, LCP1, ARS6KA1, STMN1 7.6 × 10−3

GO:0032366 intracellular sterol transport ARV1, NPC2 8.6 × 10−3

GO:0007409 axonogenesis CNTN4.LUM, PAK, STMN1 8.6 × 10−3

GO:0007165 signal transduction
CD74, ARHGAP30, ADRAIA, APBBIKP,
AMXA1, DAPK1, GRN, MRC2, NR4A2,

RPS6KA1, STMN1, TLR2
1.0 × 10−2

GO:0006915 apoptotic process TNFAIP8, ADRAIA, DAPK1, ITGB2,
MZB1, PAK1, RPRGKA1, TLR2 1.1 × 10−2

GO:0001895 retina homeostasis ACTB, B2M, JCHAIN 1.3 × 10−2

GO:0031532 actin cytoskeleton reorganization ANXA1, PAK1, PARVG 1.7 × 10−2

GO:0006886 intracellular protein transport CD74, AP4B1, SNX2,
SNX6, STX7 1.9 × 10−2

GO:0034123 positive regulation of toll-like receptor
signaling pathway TLR2, TLR5 2.1 × 10−2

GO:0006897 endocytosis LRP5, MRC2, SNX2, SNX6 2.2 × 10−2

GO:0098609 cell–cell adhesion ABI3, LRRFIPI, ARHGAP18,
PKM, SNX2 2.9 × 10−2

GO:0006955 immune response CD74, B2M, CTSS, JCHAIN,
LCP2, TLR2 3.4 × 10−2

GO:0022617 extracellular matrix disassembly CAPN2, CTSS, LCP1 4.2 × 10−2

GO:0050707 regulation of cytokine secretion TLR2, TLR5 4.6 × 10−2
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Figure 4. DEGs involved in the immune response and oxidative stress with an effect known using
Pathway Studio software. Highlighted in red are genes over-expressed in the LRFI group and in blue
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effect, red arrows indicate a known negative regulation effect and gray arrows indicate an unknown
regulation effect.
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Figure 5. DEGs involved in protein metabolism, energy homeostasis and lipid metabolism using
Pathway Studio software. Highlighted in red are genes over-expressed in the LRFI group and in blue
are under-expressed genes in the LRFI group. Gray arrows indicate an unknown regulation effect.
Previously, in Figure 3, we showed 33 genes involved in the immune response and oxidative stress,
i.e., almost 38% of the total 88 DEGs.

3.5. Analysis of Non-Coding RNAs

A transcriptome analysis was performed to investigate ncRNAs. For G1, there were
226 non-coding RNAs and 49 non-coding RNAs for G2. Applying the filter (i.e., 25 mean
count/samples), there were 14 for G1 and 4 for G2. A differential analysis without a
filter found two significant non-coding RNAs in the LRFI group for G1: small nucleolar
RNA, namely, C/D box 16 (SNORD16) and microRNA 25 (MIR25). For G2, we found
two significant non-coding RNAs in the LRFI group; small Cajal body-specific RNA 10
(SCARNA10), a nuclear-retained long non-coding RNA, and RMRP (RNase_MRP), a long
non-coding RNA (Table 2).

We now show the cellular processes for all the differentially-expressed non-coding
RNAs found in the G1 and G2 in the LRFI (Figure 6). For G1, the MIR25 acts by blocking
oxidative stress, cell death, and toxicity and by activating cell survival, angiogenesis and cell
proliferation, among others. The SNORD16 acts by blocking cell invasion, although it also
activates apoptosis. For G2, RMRP was associated with important cellular processes such
as the inactivation of mitochondrial damage, apoptosis, cellular aging and the activation of
cell growth and cell proliferation. The SCARNA10 acts by activating apoptosis.
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Table 2. The differential analysis of non-coding RNAs in G1 and G2.

Genetic group1

ID Name Fold change (log2) * p-value
SNORD16 Small nucleolar RNA, C/D box 16 −0.356 0.01276

MIR25 MicroRNA 25 0.511 0.04741

Genetic group 2

ID Name Fold-change (log2) * p-value
SCARNA10 Small Cajal body-specific RNA 10 0.636 0.01855
RNase_MRP RNA component of mitochondrial RNA processing endoribonuclease 0.664 0.02635

* The fold-change estimates (relative expression) refer to the LRFI group.
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Figure 6. The main cellular processes for non-coding differentially-expressed RNAs associated with
the RFI trait using the Pathway Studio software. The cellular processes are highlighted in yellow
rectangles. The non-coding RNAs highlighted in red are up-regulated in the LRFI, the blue rectangles
present the down-regulated non-coding RNA in the LRFI group compared with the HRFI; green
arrows indicate a positive regulation effect, while red arrows indicate a negative regulation effect and
gray arrows indicate an unknown regulation effect.

4. Discussion

There is a clear lack of similarity of the key genes that contribute to RFI in the literature.
Despite this, our work stands out for being the first in the literature to compare the gene
expression of two divergent genetic groups for RFI, in the male Nellore breed with a similar
age and weight, and the first to find common genes. The lines compared (i.e., G1 and G2)
have different genetic origins and are from two important and independent researcher
institutes in Brazil, which aim to enable sustainable technological solutions for the cattle
production chain for the benefit of Brazilian society.

Despite the difference between the lines studied, common genes (n = 88) for RFI were
found, indicating the discovery of new biomarkers that can be used for improving feed
efficiency in the Brazilian herd. In addition, the observation of the biological function of all
genes that exhibited changes in expression can give a more realistic view of the influence of
the RFI trait in Nellore cattle.

Although undoubtedly due to the quantitative nature of the RFI, the environmental
factors, such as the farm, production management and feeding, thus contributed to dif-
ferences in the transcriptome between the genetic groups. We believe that the few genes
found to be common between the groups further enrich the results found in our work, since
they appear to be even more relevant for the RFI trait, as they influence its expression in
Nellore animals, despite differences in management and genetic lines.
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RNA-seq analysis is an exploratory approach that provides new hypotheses to be
investigated by other complementary approaches. This helps to contribute to genomic
selection programs to improve feed efficiency in beef cattle. Therefore, even though there
are other studies that have provided information on RFI regulation through the liver
physiology, the biological processes that govern differences in feed efficiency are not fully
elucidated and more research is needed.

The results of this study may help to clarify the biological processes involved in the
liver of Nellore cattle. Steers with a low RFI exhibited a greater feed efficiency as they use
energy to increase protein synthesis and turnover to the detriment of glucose and lipid
utilization. In addition, a decrease in oxidative stress was observed in the LRFI groups,
which confers a greater liver protection against infections and pathologies and a better
immune response. Moreover, an increase in antioxidant capacity and strength, a greater
cell proliferation capacity and protection against cell death were observed in the efficient
group. Important biological processes were observed that explain the differences between
groups with divergent RFI phenotypes.

4.1. Energy Metabolism

We observed the participation of several biological processes related to mitochondrial
and lipid metabolism in G1 and G2 (Supplementary Tables S4 and S5). Hepatocytes have a
great metabolic capacity contributing to a variation in energy utilization. They generate 90%
of the energy produced in the body, mainly in the mitochondria [47]. Furthermore, they
are responsible for metabolizing lipids, proteins and carbohydrates into biologically-useful
molecules [48,49]. Bottje et al. [50] were the first to demonstrate that energy metabolism
could be a true determinant of variation in feed efficiency. It is estimated that two-thirds of
RFI variation is due to differences in the resting energy expenditure [51]. Moreover, LRFI
cattle consume 20% less food for the same level of yield [52,53]. The variation in the total
energy expenditure of cattle of the same breed and of a similar management may be due to
differences in the physiological processes, such as lipid metabolism [54].

Both G1 and G2 presented a down-regulation of the activation of the MAPKK pathway
activity (see Additional Table 2 and Table S3) in the LRFI group. The MAPK pathway
regulates food consumption and energy expenditure [55,56]. The inactivation in our
more efficient group could have resulted in an inhibition of gluconeogenesis [57] and
lipogenesis [58] which could have favored fewer lipids being stored or formed in the liver,
because a constant activation of the MAKPP pathway causes fat accumulation [59].

The animals in the HRFI group could, consequently, have had an increased fat accumu-
lation in hepatic cells, which could have led to the development of fatty liver [60], thereby
exposing the animals to several metabolic stressors [61]. In addition, we observed a nega-
tive trend for lipid synthesis in the LRFI animals which may have been caused by processes
that increased the flow and hepatic uptake of fatty acids and/or altered its metabolism
(e.g., synthesis, oxidation or esterification) [62] (Figure 5). Our results are consistent with
different studies of the liver transcriptome in bovine that dictate the great importance of
lipid regulation for the RFI trait [63,64], as well as those of a study on pig liver [65].

4.2. Protein Turnover

We observed a trend toward protein synthesis and turnover in the LRFI groups (Figure 5,
Supplementary Tables S3 and S4) as other studies have already reported [66,67]. This sug-
gests that feed-efficient animals divert the energy or nutrients consumed toward protein
synthesis. This feature may give feed-efficient animals a great metabolic advantage over
less efficient animals. Our results show a modulation in actin cytoskeleton reorganization
(Supplementary Tables S4 and S5 and Table 1), thereby contributing to the muscle regener-
ation that is usually accompanied by proliferation and fusion into myotubes [68]. It has
been observed that a higher protein turnover results in a decrease in oxidative stress and a
better efficiency in the use of energy in steers [69].
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4.3. Redox Homeostasis

Oxidative stress is caused by an imbalance between the production of reactive oxygen
species (ROS) and the antioxidant capacity of a cell. A malfunction of these mechanisms can
result in excess ROS production or a decrease in ROS reduction capacity, which in turn can
cause lipid peroxidation and apoptosis [70]. In addition, ROS generated by mitochondria
play an important role in the regulation of other proapoptotic proteins [71]. Mitochondria
are intrinsically associated with oxidative stress and cell signaling which are responsible
for maintaining homeostasis and survival [72–75].

The more efficient RFI group (LRFI) would have been more protected against oxidative
stress since many genes involved in its inhibition were observed (Figure 4), and they would
be less likely to have had liver lesions as reported by a study on Nellore cattle [63]. In the
same way, a better ability to modulate oxidative stress was observed in the more efficient
animals [19,76] and a decreased respiratory capacity and increased ROS production in the
HRFI animals [77–79]. Previous studies have suggested a link between the mitochondrial
function and feed efficiency in broilers [50,77]; however, few studies have reported this link
in beef cattle, especially in skeletal muscle tissue [18,80] and liver tissue [18,69,80].

This result is corroborated by the finding of an over-expression of genes common to
the genetic groups that are involved in the reduction of oxidative stress and that may act as
antioxidants in LRFI animals: TMSB4X, COTL1, RPS6KA1, VIM, STMN1, TNFAIP3, IFI30,
ANXA1, and TLR5 (Figure 5).

Antioxidants are molecules that slow down or inhibit the oxidation of diverse species
and oxidative forms capable of attacking the organism, and these include glutathione
peroxidase (GPx) and glutathione (GSH) among others [81]. Our results demonstrate
that the LRFI group experienced an increase in antioxidants such as glutathione
(Supplementary Table S5). The glutathione family has previously been implicated in
food efficiency in several species [66,82–84]. Furthermore, the participation of the Wnt
pathway in the LRFI group was identified (Supplementary Table S4); this pathway acts as
an antioxidant, anti-inflammatory, antitumor and hepatoprotective agent [85] and controls
multiple development processes, such as apoptosis. Its dysregulation has been observed in
various pathologies [45,86].

Our study showed potential biomarkers in the LRFI and HRFI groups (Figures 2 and 5),
highlighting B2M as the biomarker involved in most of the biological processes. B2M was
over-expressed in the LRFI animals when compared to the inefficient group. It has been
identified in more efficient pigs, thus relating it to lipid metabolism [87]. Furthermore,
it plays a key role in lipid homeostasis, regulating its downstream target genes, such as
FAS, and an accumulation of fatty acids and lipid droplets [88]. B2M reduces the secretion
of lipid binding protein-2 [89] and it also participates in protein turnover [90]. This gene
regulates processes such as the inhibition of cell death [91]. Moreover, it seems that its
over-expression could help to reduce infections [92], as it plays an important role in the
regulation of the immune system by binding to T cells and other immune receptors [93].
Additionally, it has been described as a biomarker of kidney filtration and increased cell
turnover [94], as has another biomarker, SNX2 (sorting nexin 2) (Figure 2) [95].

4.4. Immune Response

Genetic group 1 showed a signaling pathway receptor activation via STAT that could
have come from the activation transforming growth factor beta production, subsequently
activating the ERK1 and ERK2 cascade, resulting in greater cell proliferation [96]. Growth fac-
tor pathways such as IGF-1 have already been described as biomarkers of food efficiency [97],
whose function is linked to the immune system and tissue repair, among others, [98]. In
addition, the ERK 1 and 2 pathways are related to immunity regulation, stress response,
survival, and apoptosis [99]. Cytokines also activate the ERK 1 and 2 pathways and the
phosphorylation of threonine appears to be necessary to induce the synthesis of these
cytokines [100]. We found the modulation of this route (i.e., peptidyl-threonine phosphory-
lation) as well as the production of cytokines (Supplementary Tables S4 and S5) in the two
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genetic groups. Moreover, this was corroborated by the analysis of the biological processes
of the genes common to both genetic groups (Table 1 and Figures 3 and 4). An activation of
NF-κB was observed in the LRFI of both genetic groups (Supplementary Tables S4 and S5),
which may play an important role in immune responses and stress awhile retaining its
impact in processes such as apoptosis, proliferation, differentiation and development [101].

The liver has potential functions in controlling the variation in feed efficiency [102],
but little has been said about its immunological properties [103]. The liver is involved
in innate immune defense and the regulation of liver regeneration [104]. The immune
system uses a significant amount of energy, produces metabolic heat and increases oxygen
consumption by 20–30% [105]. Energy metabolism is strongly related to productivity traits
and the immune response could regulate energy metabolism [106]. In cattle, for example,
there are several studies on the RFI-divergent immune system [107,108].

More efficient cattle may have a better response to inflammation and they may expend
less energy fighting pathogens than heifers with a high RFI, while they also respond
differently to pro-inflammatory hepatic stimuli and can have more energy available for
muscle growth and deposition [108]. Furthermore, in humans, it was seen that a high
immune response had a greater average daily weight gain compared to people with a low
immune response [109]. In pigs, a connection between the various hepatic inflammatory
responses was observed in animals with a high versus a low feed efficiency [110], the same
as in cattle [63,108]. A rapid response to hepatic pro-inflammatory stimuli may result in
a lower energy consumption and, therefore, a more efficient utilization of nutrients for
growth and protein accumulation [108].

However, the immune response is said to be an energetically-costly process, which
generates fewer nutrients available for growth [111] and can have a negative impact on
the feed efficiency of the animal. In pigs, the genetic selection for LRFI has been shown to
reduce the total digestive capacity of the growing tract during immune stimulation. [112]. In
chickens, an inflammatory challenge tends to decrease the protein synthesis rates in skeletal
muscles [113], although another study found that selection did not cause differences in the
energy partition but rather increased the energy required for maintenance [114]. Therefore,
the relationship between production and immunity in cattle is still unknown, as there are
few studies that have investigated this topic. Further research is needed to elucidate the
trade-offs between immunity and the RFI trait.

4.5. Non-Coding RNA

The central dogma of molecular biology states that RNA functions revolve around
protein translation, namely, the messenger RNAs (mRNAs), as temporary copies of genetic
information, and ribosomal RNAs (rRNAs), as a main component of ribosome, or trans-
lators of the codon sequence (tRNAs). It is now known that this process represents less
than 2% of the genome, and this insufficiently explains the functionality of 98% of the RNA
transcripts [115]. The ENCODE (Encyclopedia of DNA Elements) project was launched in
2005 and its recent reports revealed that up to 80% of the human genome has the capacity
to transcribe into ncRNAs [116,117]. Currently, ncRNAs can be defined by length—small
18–200 nts and long >200 nts, and their regulatory functionality, such as the microRNAs
(miRNAs), small nuclear RNAs (SnoRNAs) and long non-coding RNAs (lncRNAs) [118].

MicroRNAs act by regulating the expression of genes that drive numerous cellular
processes. MIR25 is involved in biological processes such as the DNA damage response, cell
cycle regulation, cell proliferation, migration and differentiation. In addition, many MIR25
target molecules can be found among the extracellular matrix components and membrane
receptors [119]. It also has a role in the modulation of oxidative stress by targeting NADPH
oxidase 4 [120]. Its over-expression protects cardiomyocytes against oxidative damage
by inactivating the mitochondrial apoptosis pathway [121–123]. Additionally, MIR25 can
decrease p53 levels, thus impairing the downstream p53 effects including senescence, apop-
tosis and cell cycle arrest [124]. Moreover, MIR25 acts as a negative feedback anti-fibrotic
control during hepatic stellate cell activation by reducing the reactivity of hepatic stellate
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cells to a TGF-β-induced collagen expression, and modulating the cross-talk between Notch,
Wnt and TGF-β signaling [125]. Therefore, this gene could regulate mitochondrial func-
tions in animals with a low RFI. Several other studies have also associated mitochondrial
function with RFI in cattle, including the Nellore breed [18,69,126]. In bovine, the MIR25
was also related to the fertility trait [127,128].

The other small non-coding RNAs observed were SNORD16, which are down-regulated
in LRFI. SnoRNAs are predominately found in the nucleolus, and mainly function as guide
RNAs for the post-transcriptional modification of ribosomal RNAs. The SNORD16 are
categorized according to the modification type as box H/ACA snoRNAs and are associated
with rRNA pseudouridylation [129]. The over-expression of snoRNAs plays a critical role
in the onset and development of diseases, especially cancer [130,131]. This non-coding
may help the immune system response to avoid diseases or assist when confronted by
dysregulation of the immune system.

Long non-coding RNA (lncRNA) are thought to play a role in controlling gene ex-
pression in livestock species [132]. Furthermore, lncRNAs are considered evolutionarily
less-conserved than protein-coding genes, which does not indicate a lack of function, but
rather a possible fast adaptation mechanism [133]. LncRNAs associated with metabolic
efficiency were classified to be functionally-involved in hepatic amino acid metabolism and
protein synthesis in skeletal muscle cells in cattle [134], while in indicus cattle liver lncRNAs
involved with lipid homeostasis and immune responses were detected [35]. LncRNAs have
been suggested as therapeutic targets for metabolic diseases because of their involvement
in lipid metabolism, adipogenesis and fat deposition [135]. Few studies, however, have
attempted to catalogue lncRNAs in bovine, particularly in indicine cattle [136].

SCARNA10 is a lncRNA transcript detected in G2. Hepatic fibrosis is characterized
by the accumulation of excessive amounts of extracellular matrix components in the liver.
This gene could be relevant in liver fibrosis [137]; however, in our model, it may have been
regulating in some way in the extracellular matrix in the LRFI group.

The last detected long non-coding was RNase_MRP l in G2, which is an RNA compo-
nent of mitochondrial RNA processing endoribonuclease (RMRP). RMRP is a recognized
non-coding transcript [138] which inhibits lipopolysaccharide-induced apoptosis of car-
diomyocytes and mitochondrial damage by suppressing the post-transcriptional regulatory
function of miR-1-5p on HSPA4. For example, RMRP lncRNA prevented mitochondrial
dysfunction and cardiomyocyte apoptosis via the miR-1-5p/hsp70 axis in a sepsis model
mouse [139]. Thus, RMRP gene mutations can lead to decreased cell growth by impairing
the ribosomal assembly and altering the cyclin-dependent cell-cycle regulation. An over-
expression of RMRP in human fibroblasts, for example, markedly elevated the production
of cleaved or processed 5.8S ribosomal RNA and, consequently, accelerated cellular growth
rates [140]. In addition, RMRP inhibition attenuated lipid accumulation [141]. This gene
could have been involved in mitochondrial functions and in ribosomal assembly as well as
helping the lipid accumulation in the LRFI group.

5. Conclusions

Eighty-eight common DEGs were identified in the two genetic groups. The biomark-
ers relevant to our trait in liver tissue were identified as B2M, ADSS, SNX2, TUBA4A,
ARHGAP18, MECR, and ABCF3, with the over-expressed B2M gene participating in most
cellular processes that differentiated the groups with a greater or lesser food efficiency. The
biological pathways associated with RFI of the liver in Nellore cattle in the two genetic
groups were energy metabolism, protein turnover, redox homeostasis and the immune
response. The common transcripts, biomarkers and metabolic pathways found in the two
genetic groups make this unprecedented work even more relevant, since the results are
valid for different herds raised and slaughtered in different ways. We found up-regulated
MIR25 and down-regulated SNORD16 non-coding RNAs in the RLFI for G1. G2 exhibited
up-regulated RNase_MRP and SCARNA10. We highlight MIR25 which can act by blocking
cytotoxicity and oxidative stress and RMRP as a blocker of mitochondrial damage. These
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results reinforce the biological importance of these known processes but also reveal new
insights into the complexity of the liver tissue transcriptome of Nellore cattle.
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