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Simple Summary: The effectiveness of selecting individuals based on pedigree information (MCA)
and genomic information (MCG) as a reference population for genotype imputation was assessed
using a Japanese Black cow population. Pedigree depth to construct the pedigree-based additive
genetic relationship matrix (A matrix) affected the results of MCA, and the method of calculating the
genomic relationship matrix (G matrix) affected the results of MCG. For the studied population, MCG
appeared to be a better choice than MCA to select cows as a reference population for higher-density
genotype imputation to perform genomic prediction and a genome-wide association study.

Abstract: As optimization methods to identify the best animals for dense genotyping to construct a
reference population for genotype imputation, the MCA and MCG methods, which use the pedigree-
based additive genetic relationship matrix (A matrix) and the genomic relationship matrix (G matrix),
respectively, have been proposed. We assessed the performance of MCA and MCG methods using
575 Japanese Black cows. Pedigree data were provided to trace back up to five generations to con-
struct the A matrix with changing the pedigree depth from 1 to 5 (five MCA methods). Genotype
information on 36,426 single-nucleotide polymorphisms was used to calculate the G matrix based on
VanRaden’s methods 1 and 2 (two MCG methods). The MCG always selected one cow per iteration,
while MCA sometimes selected multiple cows. The number of commonly selected cows between the
MCA and MCG methods was generally lower than that between different MCA methods or between
different MCG methods. For the studied population, MCG appeared to be more reasonable than
MCA in selecting cows as a reference population for higher-density genotype imputation to perform
genomic prediction and a genome-wide association study.

Keywords: high-density genotyping; imputation; Japanese Black cattle; pedigree; reference population;
single-nucleotide polymorphism

1. Introduction

Japanese Black cattle are a breed famous for excellent meat quality (e.g., [1–3]). For
this breed, it has been important to improve not only carcass characteristics including
the degree of marbling but also traits relating to reproductive efficiency, feed efficiency,
and meat quality [4–6]. Introducing a genomic prediction (GP) scheme is expected to
contribute to further efficient genetic improvement of this breed, and GP for carcass traits
(e.g., [7–9]) and other important traits (e.g., [10–12]) has been studied. Recently, we assessed
the performance of pedigree-based breeding-value evaluation for superovulatory response
traits in Japanese Black cattle [13–15]. As the superovulatory response traits are sex-limited
traits and their heritabilities were estimated to be lower than those of carcass traits [14], it
might be more desirable to introduce GP for the superovulatory response traits.
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Under conditions where it is difficult and expensive to immediately collect geno-
type information on high-density single-nucleotide polymorphism (SNP) markers for all
individuals, accurate genotype imputation from low-density genotypes to high-density
genotypes is crucial for performing cost-effective GP and genome-wide association study
(GWAS) (e.g., [16–18]). Studies on genotype imputation using commercial SNP markers
have been performed in Japanese Black cattle. For example, Ogawa et al. [19] assessed
the performance of imputing genotype data from low-density SNP genotypes (<50 K) in
GP for carcass traits. In addition, Ogawa et al. [20] and Takeda et al. [21] compared the
performance of GP with real genotype information on ~30,000 SNPs genotyped with the
Illumina 50 K chip (Illumina Inc., San Diego, California USA) with imputed genotype infor-
mation from low-density genotypes on ~550,000 SNPs, which can be genotyped with the
Illumina HD chip, for carcass and feed efficiency traits, respectively. When the size of the
reference population was approximately 400, the imputation from low-density genotype
information using Beagle software (v3.3.2 or v4.0) [22] appeared to be completely accurate
for cost-effective GP [23,24].

Most of the studies on GP in Japanese Black cattle have used tens of thousands of SNP
markers (e.g., [19–21]), and we have been promoting genotyping using the Illumina 50 K
chip in order to perform GP for superovulatory response traits. Meanwhile, to improve the
performance of GP and GWAS by increasing the marker density via genotype imputation,
a strategy to re-genotype some individuals with higher-density SNP chips and use them as
a reference population appears to be available. Several studies have investigated strategies
to choose individuals as a reference population for genotype imputation (e.g., [25–27]).
Yu et al. [26] proposed two approaches, namely, selecting a candidate to minimize the
conditional additive genetic variance of the target animals using either the pedigree-based
additive genetic relationship matrix (A matrix) (MCA) or genomic relationship matrix (G
matrix) (MCG). These approaches use A and G matrices as sources of information on the
genetic structure of the population, so their performance may be population-dependent.
On the other hand, the content of the A matrix was also shown to be affected by the
quality of pedigree information, such as the number of generations traced back. Moreover,
different methodologies were proposed to calculate the G matrix, including methods 1 and
2 proposed by VanRaden [28]. These might affect the results of MCA and MCG methods.
In this study, aiming at future efficient re-genotyping to produce higher-density genotype
information, we assessed the MCA and MCG methods while varying both the pedigree
depth used to construct the A matrix and the method used to calculate the G matrix in our
Japanese Black donor cows.

2. Materials and Methods
2.1. Ethics Statement

Animal Care and Use Committee approval was not needed because the data were
obtained from existing databases.

2.2. Pedigree and SNP Genotype Data

A total of 575 Japanese Black cows, who were donors for superovulation treatments
and born between 2000 and 2015, reared in the Zen-noh Embryo Transfer Center (Kamishi-
horo, Hokkaido) were used. Most of them were also part of 1546 Japanese Black donor
cows with superovulation performance records of their own used in our previous stud-
ies [13–15]. The donor cows consisted of individuals introduced from the markets and their
(grand)daughters. Genotype information of the 575 cows was obtained using the Illumina
BovineSNP50 v2 BeadChip. Quality control (QC) was performed on 52,524 SNPs located
on each of the 29 Bos taurus autosomes after updating the annotation to ARS-UCD1.2
using the LiftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver) (accessed on 19
October 2022) out of the 52,524 SNPs. For each SNP, the criteria of QC were set as minor
allele frequency >0.01, call rate >0.95, and p-value > 0.001 for Hardy–Weinberg equilibrium
(HWE) test. For each cow, the criterion of QC was set as call rate >0.95. After quality control,

https://genome.ucsc.edu/cgi-bin/hgLiftOver


Animals 2023, 13, 638 3 of 10

missing genotypes were filled using Beagle v3.3.2 [22]. Finally, genotype information on
36,426 SNPs on the Illumina BovineSNP50 v2 BeadChip was used. Pedigree data were
constructed by tracing back up to five generations from the 1874 donor cows, including
the 575 cows with genotype information. Finally, in this study the number of individuals
included in the pedigree data was 4684 (Table 1).

Table 1. Number of animals in each generation traced back from the 1874 cows.

Number of Generations Traced Back 0 1 2 3 4 5 Total

Number of animals 1874 1521 1129 141 17 2 4684

2.3. Selection Based on MCA and MCG Methods

We iteratively selected individual(s) from the 575 cows by the MCA with pedigree-
based relationship information and MCG methods with genome-based relationship infor-
mation using the procedure described in [26] and exploited in previous studies [26,27].
Here, five matrices were used for MCA and two matrices were used for MCG.

The MCA method aims to minimize the trace of the following matrix A11* for each
iteration [26,27]:

A11∗ = A11 −A12A−1
22 A21

where A is the block for the 575 cows of the entire A matrix; subscript 1 means a group
of n cows already selected as candidates from the 575 cows; and subscript 2 means a
group of the remaining 575—n cows. In MCA, the goal is to identify the population that
minimizes the trace of the matrix A11*. When more than one cow was selected within
a single iteration, all of the selected cows were simultaneously added to the candidate
group. We provided the blocks for the 575 cows from A matrices varying in the number of
generations tracing back. This was done to obtain information on the effect of the quality
of pedigree information on the results of the MCA method.

For MCG, two G matrices for the 575 cows were used instead of the block of the A
matrix. The first G matrix for the 575 cows, denoted as GV1, was calculated according to
VanRaden’s method 1 as follows:

(M− 2p)(M− 2p)′/∑36,426
n=1 2pi(1− pi)

where M is the matrix containing the number of a counted SNP allele (0, 1, or 2); and p
is the vector of the frequencies of counted SNP alleles. The second G matrix, GV2, was
calculated according to VanRaden’s method 2 as follows:

(M− 2p)D(M− 2p)′/36426

where D is the diagonal matrix with its ith diagonal element as 2pi(1 − pi). Here, Van-
Raden’s methods 1 and 2 were selected because previous studies on GP in Japanese Black
cattle also used G matrices calculated based on these methods (e.g., [19–21,29]).

2.4. Preparing Relationship Matrices for the 575 Cows from Pedigree and Genotype Information

We obtained the block A for the 575 cows based on the pedigree data containing
4684 individuals with the saveA22 option of BLUPF90+ software [30–32]. To assess the
effect of pedigree depth on the results of the MCA method, the number of generations
traced back from the 1874 cows for A matrix calculation, or setting for PED_DEPTH in
parameter file, was changed from 1 to 5, and the blocks of resulting five A matrices for
the 575 cows were denoted as A1, A2, . . . , and A5, respectively. For example, A1 was
obtained as the block for the 575 cows from the A matrix constructed using pedigree
information containing the 1874 cows and the 1521 parents (Table 1) when one generation
was traced back. We also obtained two G matrices for the 575 cows, GV1 and GV2, with
the saveG option of BLUPF90+. The whichG option was set to be 1 and 2 to obtain GV1
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and GV2, respectively. Allele frequencies of the 36,426 SNPs were calculated using the
575 cows. For detailed explanation about calculating A and G matrices by BLUPF90+, see
Lourenco et al. [33] for instance.

3. Results and Discussion
3.1. Comparing Matrices for MCA and MCG Methods

For the block of A matrix for the 575 cows, as expected, the average values of the
diagonal and upper-triangular elements increased when the number of generations traced
back was greater (Table 2), while the changes were negligible between A4 and A5. This was
mainly due to an increased number of common ancestors when the number of generation
traced back was greater. The pedigree-based inbreeding coefficient can be obtained as the
diagonal element minus 1, and in this study, the pedigree-based inbreeding coefficients of
the 575 cows ranged from 0 to 0.172 when the number of generations traced back was five.
The base population of this study was likely more recent than those of previous studies. For
example, Nomura et al. [34] calculated the inbreeding coefficients of Japanese Black bulls
and heifers registered at the Wagyu Registry Association using pedigree data constructed by
tracing back to ancestors born in 1945 or before. Honda et al. [35] calculated the inbreeding
coefficients of a closed population of Japanese Black cattle in Hyogo prefecture using
pedigree data traced back to the population in 1937 or before. Therefore, the pedigree-
based inbreeding coefficients obtained here would be underestimated. To overcome this,
a future task will be to develop a method to evaluate the degree of inbreeding for our
Japanese Black donor cows using genome-wide DNA marker information.

Table 2. Basic statistics of the elements of the seven relationship matrices for the 575 cows.

Matrix
Diagonal Elements Upper-Triangular Elements

Mean SD Min Max Mean SD Min Max

Pedigree-based additive genetic relationship matrix (A matrix)

A1 1 0 1 1 0.025 0.075 0 0.5
A2 1.005 0.024 1 1.125 0.067 0.087 0 0.625
A3 1.012 0.030 1 1.156 0.084 0.090 0 0.625
A4 1.014 0.032 1 1.172 0.088 0.092 0 0.641
A5 1.014 0.032 1 1.172 0.088 0.092 0 0.641

Genomic relationship matrix (G matrix)

GV1 0.967 0.080 0.785 1.189 0.003 0.087 −0.227 0.613
GV2 0.970 0.130 0.725 1.409 0.003 0.080 −0.189 0.651

SD: standard deviation; Min: minimum value; Max: maximum value.

For GV1 and GV2, the minimum value of diagonal elements was <1 and that of
the upper-triangular elements was negative [28]. Note that genotypes of each SNP were
weighted by the expected heterozygosity under HWE in VanRaden’s method 2 but not in
method 1 [28], which produced the differences between GV1 and GV2. Previous studies
have shown that the population structure of Japanese Black cattle could be captured
with commercial SNP markers (e.g., [36–38]). Therefore, in this study, we concluded
that both GV1 and GV2 calculated here could be used as the relationship matrix for
MCG containing information on population structure of the 575 cows used. On the other
hand, it might be also important that the A matrix is twice the matrix of identity-by-
descent probabilities while the G matrix was the twice the matrix of identity-by-state
probabilities [39]. VanRaden [28] stated that the genomic inbreeding coefficient, calculated
as the value of diagonal element of the G matrix minus 1, is greater if the individual is
homozygous for minor alleles than if it is homozygous for major alleles. Recently, various
methods for inbreeding measures using genome-wide marker information have been
proposed [40], and an investigation assessing the genomic inbreeding is also necessary for
Japanese Black cattle.
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3.2. Differences in the Number of Cows Selected in Each Iteration

In this study, all MCA methods sometimes selected more than one individual within
an iteration; this was more prominent when using A1 and A2 for MCA (Figure 1). This
is because some animals have equal contributions to the variation in trace (A11*), which
was remarkable especially when the pedigree depth was shallow and limited information
was available to construct the A matrix. There was little difference in the number of cows
selected in each iteration among MCA methods using A3, A4, and A5. This was due to
there being little difference between matrices A3, A4, and A5, as shown in Table 2. Many of
the 575 cows were the ones introduced from the markets. Therefore, in this study, a cow
whose descendants were among the 575 cows seems to have had a higher possibility of
being selected as a candidate by MCA.
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Meanwhile, all MCG methods selected one cow per iteration. Unlike A, G contains
information on Mendelian sampling. G also seems to capture older relationships compared
to A [41]. In this study, both GV1 and GV2 contained the most detailed information and
therefore MCG could always select one cow per iteration.

3.3. Differences in Selected Cows

For MCA, the results were more similar to those with the A5 matrix when the numbers
of generations traced back were larger (Figure 2). This was expected, because the block
for the 575 cows of the A matrix for MCA became more similar when the number of
generations traced back was similar (Table 1). The selected cows were not completely the
same between the MCG methods with GV1 and GV2 (Figure 3). The number of commonly
selected cows between the MCA and MCG methods was generally lower than that between
different MCA methods or between different MCG methods (Figures 2 and 3). These results
imply that, at least in this study, differences in the information (pedigree or SNP markers)
used to calculate the relationship matrix and the method used to calculate the matrix (the
number of generations traced back for the A matrix and VanRaden’s methods 1 and 2 for
the G matrix) affected the results.
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3.4. General Discussion

Using high-density SNP genotypes for many individuals, generally several thousand
or more, is expected to improve accuracy of GP and increase the number of SNP markers
detected in GWAS that are significantly associated with traits. However, constructing a
large-sized population, in which all individuals have real high-density genotypes seems
to be too costly. Therefore, genotype imputation from low-density genotypes to high-
density genotypes is a possible counterpart for cost-effective GP and GWAS. Genotype
imputation has become available for Japanese Black cattle populations at commercial-chip
level, such as imputation from the Illumina LD to 50 K v2 genotypes or from the 50 K v2 to
HD genotypes (e.g., [21,23,24]). In the future, whole-genome sequence data will become
available for Japanese Black cattle. This could bring the opportunity to perform GP and
GWAS with much denser DNA markers in this breed and more ability to re-genotype some
individuals to construct a reference population for genotype imputation from commercial
SNP genotypes to sequence-level genotypes. Therefore, it is important to study methods
of selecting candidates to be re-genotyped in order to construct a reference population for
genotype imputation in Japanese Black cattle.

There is no study applying MCA and MCG methods to Japanese Black cattle popula-
tions. Furthermore, as far as we know, no previous study has assessed the effects of the
content of pedigree information used to calculate the A matrix on the MCA method and
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the G matrix on the MCG method. Here, we assessed the effect of the pedigree depth on
the MCA method, as well as the effect of the method to calculate the G matrix (VanRaden’s
methods 1 and 2, both of which have been used in previous studies on genomic prediction
in Japanese Black cattle) on the MCG method using our Japanese Black donor cow popula-
tion. We used the iterative procedure of Yu et al. [26] for candidate selection in the MCA
and MCG methods. Recently, Pocrnic et al. [42] introduced this procedure for selecting core
animals for the algorithm for proven and young (APY) [43]. The pedigree depth affected
the number of cows selected as candidates per iteration by the MCA method (Figure 1).
The 575 cows with SNP genotypes included the ones introduced from the markets and
their (grand)daughters. The cows introduced from the markets might have information
on up to three generations of ancestors, namely, sire, maternal grandsire, and great-grand
maternal sire of a cow. Therefore, we set the maximum number of generations traced back
as five. The number of common ancestors in the pedigree data decreased by decreasing the
number of generations traced back, which could be the main reason why the results were
different. It should be noted that the pedigree depth for our population could be shallower
than the pedigree data used in previous studies for Japanese Black cattle (e.g., [4,34,35,44]).
Furthermore, the pedigree structure of a livestock population appears to be affected by
the content of the selection scheme and mating plan. Thus, the performance of the MCA
method is different in each population.

The MCG method with the G matrix calculated using commercial SNP markers ap-
pears to be more reasonable than MCA to construct a refence population for genotype
imputation. We collected genotype information on genome-wide SNP markers for our
Japanese Black donor cows using Illumina BovineSNP50 BeadChip in order to perform
GP and GWAS for superovulatory response traits. Using higher-density SNP chips might
give improved performance of GP and GWAS due to increased SNP markers (which in-
volve (much) higher cost) to obtain genotype information of all cows. To overcome this,
we are now planning to re-genotype some cows as a reference population of genotype
imputation to higher-density SNP genotypes. We believe that the findings in this study
could contribute to the future high performance of GP and GWAS with accurately im-
puted higher-density SNP genotype information. Meanwhile, the selected cows did not
completely match between GV1 and GV2 when the same number of cows was selected
(Figure 3). McEwin et al. [27] used the G matrix calculated by VanRaden’s method 1 [28],
while Yu et al. [26] used the G matrix calculated using the method of Meuwissen et al. [45].
Many other methods of computing the relational matrix using genome-wide markers have
been proposed (e.g., [28,46,47]), and further study might be valuable to select a suitable
method to calculate the relationship matrix for the MCG method.

Previous studies for Japanese Black cattle populations have used the Beagle software,
which implement population-based algorithm without pedigree data, to perform genotype
imputation (e.g., [21,24,29]). We have also imputed missing genotypes for the 575 cows
using the Beagle, and this study assumed the use of the Beagle for genotype imputation to
high-density genotype information. Under this situation, the MCG method might be a rea-
sonable choice for candidate selection. On the other hand, there is also software, including
LDMIP [48] and FImpute [49], also utilizing family-based algorithm with pedigree data,
which can impute genotypes. One possible merit of higher-density genotype information
is the use of rare variants. It has been reported that imputation accuracy for rare variants
was greater with software utilizing family-based algorithm than software with population-
based algorithm [49,50] and that pedigree-based relatedness between target individuals
and reference individuals had more impact on imputation accuracy with family-based
algorithm than with population-based algorithm [51,52]. The SNP ascertainment bias
might also affect the results [53]. These findings gave us the motivation to use the MCA
method in this study. The A matrix is expected to contain more detailed information on
additive genetic relatedness among the individuals when the pedigree is deeper and more
complete. On the other hand, very deep pedigree might not be necessary especially when
the genetic distance between target individuals and reference individuals is small—for
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instance reference individuals are the (grand)parents of target individuals. This supports
the motivation to use matrices differing in the number of generations traced back, in this
study. Making the information on rare variants available is expected not only to improve
the performance of GP and GWAS but also to contribute better management of genetic
diversity of a population [54]. A more sophisticated study for using high-density genotype
information, such as sequence data, in GP, GWAS, and managing the genetic diversity of
Japanese Black cattle is warranted.

4. Conclusions

We compared the similarity between the results of the MCA and MCG methods
proposed by Yu et al. [26] to select individuals as candidates of a reference population for
genotype imputation in in a Japanese Black cow population. Different A (pedigree depth)
and G (method of calculation) were used for MCA and MCG, respectively. MCG selected
one cow per iteration, while MCA sometimes selected multiple cows, especially when
the number of generations traced back was small. Our results suggest that the results of
the MCA and MCG methods depend on the content of the pedigree information used to
calculate the A matrix and the method to calculate G matrix.
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tion, S.O.; writing—review and editing, A.Z., R.K. and R.O.; funding acquisition, S.O. All authors
have read and agreed to the published version of the manuscript work reported.

Funding: This work was supported by the Kieikai Research Foundation (grant No. 2022C019).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting the findings of this study are shown in the
manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Namikawa, K. Wagyu: Japanese Beef Cattle—Historical Breeding Processes of Japanese Beef Cattle and Preservation of Genetic Resources as

Economic Farm Animal; Wagyu Registry Association: Kyoto, Japan, 1992.
2. Gotoh, T.; Takahashi, H.; Nishimura, T.; Kuchida, K.; Mannen, H. Meat produced by Japanese Black cattle and Wagyu. Anim.

Front. 2014, 4, 46–54. [CrossRef]
3. Motoyama, M.; Sasaki, K.; Watanabe, A. Wagyu and the factors contributing to its beef quality: A Japanese industry overview.

Meat Sci. 2016, 120, 10–18. [CrossRef]
4. Oyama, K.; Katsuta, T.; Anada, K.; Mukai, F. Genetic parameters for reproductive performance of breeding cows and carcass

traits of fattening animals in Japanese Black (Wagyu) cattle. Anim. Sci. 2004, 78, 195–201. [CrossRef]
5. Inoue, K.; Kobayashi, M.; Shoji, N.; Kato, K. Genetic parameters for fatty acid composition and feed efficiency traits in Japanese

Black cattle. Animal 2011, 5, 987–994. [CrossRef] [PubMed]
6. Ogawa, S.; Kitajima, S.; Saito, H.; Satoh, M. Deriving economic values for female reproductive traits in lifetime carcass production

of Japanese Black cows using deterministic profit function. Agriculture 2021, 11, 1055. [CrossRef]
7. Watanabe, T.; Matsuda, H.; Arakawa, A.; Yamada, T.; Iwaisaki, H.; Nishimura, S.; Sugimoto, Y. Estimation of variance components

for carcass traits in Japanese Black cattle using 50K SNP genotype data. Anim. Sci. J. 2014, 85, 1–7. [CrossRef]
8. Ogawa, S.; Matsuda, H.; Taniguchi, Y.; Watanabe, T.; Nishimura, S.; Sugimoto, Y.; Iwaisaki, H. Effects of single nucleotide

polymorphism marker density on degree of genetic variance explained and genomic evaluation for carcass traits in Japanese
Black beef cattle. BMC Genet. 2014, 15, 15. [CrossRef]

9. Onogi, A.; Ogino, A.; Komatsu, T.; Shoji, N.; Simizu, K.; Kurogi, K.; Yasumori, T.; Togashi, K.; Iwata, H. Genomic prediction in
Japanese Black cattle: Application of a single-step approach to beef cattle. J. Anim. Sci. 2014, 92, 1931–1938. [CrossRef]

10. Onogi, A.; Ogino, A.; Komatsu, T.; Shoji, N.; Shimizu, K.; Kurogi, K.; Yasumori, T.; Togashi, K.; Iwata, H. Whole-genome
prediction of fatty acid composition in meat of Japanese Black cattle. Anim. Genet. 2015, 46, 557–559. [CrossRef]

11. Atagi, Y.; Onogi, A.; Kinukawa, M.; Ogino, A.; Kurogi, K.; Uchiyama, K.; Yasumori, T.; Adachi, K.; Togashi, K.; Iwata, H. Genetic
analysis of semen production traits of Japanese Black and Holstein bulls: Genome-wide marker-based estimation of genetic
parameters and environmental effect trends. J. Anim. Sci. 2017, 95, 1900–1912. [CrossRef]

http://doi.org/10.2527/af.2014-0033
http://doi.org/10.1016/j.meatsci.2016.04.026
http://doi.org/10.1017/S1357729800053984
http://doi.org/10.1017/S1751731111000012
http://www.ncbi.nlm.nih.gov/pubmed/22440094
http://doi.org/10.3390/agriculture11111055
http://doi.org/10.1111/asj.12074
http://doi.org/10.1186/1471-2156-15-15
http://doi.org/10.2527/jas.2014-7168
http://doi.org/10.1111/age.12300
http://doi.org/10.2527/jas.2016.1186


Animals 2023, 13, 638 9 of 10

12. Okada, D.; Endo, S.; Matsuda, H.; Ogawa, S.; Taniguchi, Y.; Katsuta, T.; Watanabe, T.; Iwaisaki, H. An intersection network based
on combining SNP coassociation and RNA coexpression networks for feed utilization traits in Japanese Black cattle. J. Anim. Sci.
2018, 96, 2553–2566. [CrossRef]

13. Zoda, A.; Urakawa, M.; Oono, Y.; Ogawa, S.; Satoh, M. Estimation of genetic parameters for superovulatory response traits in
Japanese Black cows. J. Anim. Sci. 2021, 99, skab265. [CrossRef]

14. Zoda, A.; Kagawa, R.; Obinata, R.; Urakawa, M.; Oono, Y.; Ogawa, S.; Uemoto, Y.; Satoh, M. Genetic relationship between
superovulatory response traits and carcass traits in Japanese Black cattle. Anim. Sci. J. 2022, 93, e13731. [CrossRef]

15. Ogawa, S.; Zoda, A.; Kagawa, R.; Obinata, R.; Urakawa, M.; Oono, Y. Bayesian estimation of genetic parameters for superovulatory
response traits in Japanese Black donor cows using count data models. Theriogenology 2022, 190, 38–45. [CrossRef]

16. Almeida, M.A.; Oliveira, P.S.; Pereira, T.V.; Krieger, J.E.; Pereira, A.C. An empirical evaluation of imputation accuracy for
association statistics reveals increased type-I error rates in genome-wide associations. BMC Genet. 2011, 20, 12. [CrossRef]

17. Chen, L.; Li, C.; Sargolzaei, M.; Schenkel, F. Impact of genotype imputation on the performance of GBLUP and Bayesian methods
for genomic prediction. PLoS ONE 2014, 9, e101544. [CrossRef] [PubMed]

18. Pimentel, E.C.; Edel, C.; Emmerling, R.; Götz, K.U. How imputation errors bias genomic predictions. J. Dairy Sci. 2015, 98,
4131–4138. [CrossRef] [PubMed]

19. Ogawa, S.; Matsuda, H.; Taniguchi, Y.; Watanabe, T.; Sugimoto, Y.; Iwaisaki, H. Estimation of variance and genomic prediction
using genotypes imputed from low-density marker subsets for carcass traits in Japanese Black cattle. Anim Sci. J. 2016, 87,
1106–1113. [CrossRef] [PubMed]

20. Ogawa, S.; Matsuda, H.; Taniguchi, Y.; Watanabe, T.; Kitamura, Y.; Tabuchi, I.; Sugimoto, Y.; Iwaisaki, H. Genomic prediction for
carcass traits in Japanese Black cattle using single nucleotide polymorphism markers of different densities. Anim. Prod. Sci. 2016,
57, 1631–1636. [CrossRef]

21. Takeda, M.; Uemoto, Y.; Inoue, K.; Ogino, A.; Nozaki, T.; Kurogi, K.; Yasumori, T.; Satoh, M. Genome-wide association study and
genomic evaluation of feed efficiency traits in Japanese Black cattle using single-step genomic best linear unbiased prediction
method. Anim. Sci. J. 2020, 91, e13316. [CrossRef] [PubMed]

22. Browning, S.R.; Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association
studies by use of localized haplotype clustering. Am. J. Hum. Genet. 2007, 81, 1084–1097. [CrossRef] [PubMed]

23. Uemoto, Y.; Sasaki, S.; Sugimoto, Y.; Watanabe, T. Accuracy of high-density genotype imputation in Japanese Black cattle. Anim.
Genet. 2015, 46, 388–394. [CrossRef]

24. Ogawa, S.; Matsuda, H.; Taniguchi, Y.; Watanabe, T.; Takasuga, A.; Sugimoto, Y.; Iwaisaki, H. Accuracy of imputation of single
nucleotide polymorphism marker genotypes from low-density panels in Japanese Black cattle. Anim. Sci. J. 2016, 87, 3–12.
[CrossRef] [PubMed]

25. Druet, T.; Macleod, I.M.; Hayes, B.J. Toward genomic prediction from whole-genome sequence data: Impact of sequencing design
on genotype imputation and accuracy of predictions. Heredity 2014, 112, 39–47. [CrossRef] [PubMed]

26. Yu, X.; Woolliams, J.A.; Meuwissen, T.H. Prioritizing animals for dense genotyping in order to impute missing genotypes of
sparsely genotyped animals. Genet. Sel. Evol. 2014, 46, 46. [CrossRef]

27. McEwin, R.A.; Hebart, M.L.; Oakey, H.; Tearle, R.; Grose, J.; Popplewell, G.; Pitchford, W.S. Comparison of methods to select
candidates for high-density genotyping; practical observations in a cattle breeding program. Agriculture 2022, 12, 276. [CrossRef]

28. VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [CrossRef]
29. Ogawa, S.; Taniguchi, Y.; Watanabe, T.; Iwaisaki, H. Fitting genomic prediction models with different marker effects among

prefectures to carcass traits in Japanese Black cattle. Genes 2023, 14, 24. [CrossRef]
30. Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T.; Lee, D.H. BLUPF90 and related programs (BGF90). In Proceedings of the

7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19−23 August 2002.
31. Colleau, J.-J. An indirect approach to the extensive calculation of relationship coefficients. Genet. Sel. Evol. 2002, 34, 409. [CrossRef]
32. Aguilar, I.; Misztal, I.; Legarra, A.; Tsuruta, S. Efficient computation of the genomic relationship matrix and other matrices used in

single-step evaluation. J. Anim. Breed. Genet. 2011, 128, 422–428. [CrossRef]
33. Lourenco, D.; Legarra, A.; Tsuruta, S.; Masuda, Y.; Aguilar, I.; Misztal, I. Single-step genomic evaluations from theory to practice:

Using SNP chips and sequence data in BLUPF90. Genes 2020, 11, 790. [CrossRef] [PubMed]
34. Nomura, T.; Honda, T.; Mukai, F. Inbreeding and effective population size of Japanese Black cattle. J. Anim. Sci. 2001, 79, 366–370.

[CrossRef] [PubMed]
35. Honda, T.; Nomura, T.; Fukushima, M.; Mukai, F. Genetic diversity of a closed population of Japanese Black cattle in Hyogo

prefecture. Anim. Sci. J. 2001, 72, 378–385. [CrossRef]
36. Zoda, A.; Ogawa, S.; Matsuda, H.; Taniguchi, Y.; Watanabe, T.; Sugimoto, Y.; Iwaisaki, H. Inferring genetic characteristics of

Japanese Black cattle populations using genome-wide single nucleotide polymorphism markers. J. Anim. Genet. 2022, 50, 3–9.
[CrossRef]

37. Komiya, R.; Ogawa, S.; Aonuma, T.; Satoh, M. Performance of using opposing homozygotes for paternity testing in Japanese
Black cattle. J. Anim. Breed. Genet. 2022, 139, 113–124. [CrossRef]

38. Kawaguchi, F.; Nakamura, M.; Kobayashi, E.; Yonezawa, T.; Sasazaki, S.; Mannen, H. Comprehensive assessment of genetic
diversity, structure, and relationship in four Japanese cattle breeds by Illumina 50 K SNP array analysis. Anim. Sci. J. 2022,
93, e13770. [CrossRef]

http://doi.org/10.1093/jas/sky170
http://doi.org/10.1093/jas/skab265
http://doi.org/10.1111/asj.13731
http://doi.org/10.1016/j.theriogenology.2022.07.005
http://doi.org/10.1186/1471-2156-12-10
http://doi.org/10.1371/journal.pone.0101544
http://www.ncbi.nlm.nih.gov/pubmed/25025158
http://doi.org/10.3168/jds.2014-9170
http://www.ncbi.nlm.nih.gov/pubmed/25841966
http://doi.org/10.1111/asj.12570
http://www.ncbi.nlm.nih.gov/pubmed/26685777
http://doi.org/10.1071/AN15696
http://doi.org/10.1111/asj.13316
http://www.ncbi.nlm.nih.gov/pubmed/31769129
http://doi.org/10.1086/521987
http://www.ncbi.nlm.nih.gov/pubmed/17924348
http://doi.org/10.1111/age.12314
http://doi.org/10.1111/asj.12393
http://www.ncbi.nlm.nih.gov/pubmed/26032028
http://doi.org/10.1038/hdy.2013.13
http://www.ncbi.nlm.nih.gov/pubmed/23549338
http://doi.org/10.1186/1297-9686-46-46
http://doi.org/10.3390/agriculture12020276
http://doi.org/10.3168/jds.2007-0980
http://doi.org/10.3390/genes14010024
http://doi.org/10.1186/1297-9686-34-4-409
http://doi.org/10.1111/j.1439-0388.2010.00912.x
http://doi.org/10.3390/genes11070790
http://www.ncbi.nlm.nih.gov/pubmed/32674271
http://doi.org/10.2527/2001.792366x
http://www.ncbi.nlm.nih.gov/pubmed/11219445
http://doi.org/10.2508/chikusan.72.378
http://doi.org/10.5924/abgri.50.3
http://doi.org/10.1111/jbg.12649
http://doi.org/10.1111/asj.13770


Animals 2023, 13, 638 10 of 10

39. Fernando, R.L.; Cheng, H.; Sun, X.; Garrick, D.J. A comparison of identity-by-descent and identity-by-state matrices that are used
for genetic evaluation and estimation of variance components. J. Anim. Breed. Genet. 2017, 134, 213–223. [CrossRef]

40. Alemu, S.W.; Kadri, N.K.; Harland, C.; Faux, P.; Charlier, C.; Caballero, A.; Druet, T. An evaluation of inbreeding measures using
a whole-genome sequenced cattle pedigree. Heredity 2021, 126, 410–423. [CrossRef]

41. Meuwissen, T.H.E.; Odegard, J.; Andersen-Ranberg, I.; Grindflek, E. On the distance of genetic relationships and the accuracy of
genomic prediction in pig breeding. Genet. Sel. Evol. 2014, 46, 49. [CrossRef]

42. Pocrnic, I.; Lindgren, F.; Tolhurst, D.; Herring, W.O.; Gorjanc, G. Optimisation of the core subset for the APY approximation of
genomic relationships. Genet. Sel. Evol. 2022, 54, 76. [CrossRef]

43. Misztal, I.; Legarra, A.; Aguilar, I. Using recursion to compute the inverse of the genomic relationship matrix. J. Dairy Sci. 2014,
97, 3943–3952. [CrossRef]

44. Ogawa, S.; Satoh, M. Random regression analysis of calving interval of Japanese Black cows. Animals 2021, 11, 202. [CrossRef]
[PubMed]

45. Meuwissen, T.H.; Luan, T.; Woolliams, J.A. The unified approach to the use of genomic and pedigree information in genomic
evaluations revisited. J. Anim. Breed. Genet. 2011, 128, 429–439. [CrossRef]

46. Misztal, I.; Legarra, A.; Aguilar, I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic
information. J. Dairy Sci. 2009, 92, 4648–4655. [CrossRef]

47. Speed, D.; Hemani, G.; Johnson, M.R.; Balding, D.J. Improved heritability estimation from genome-wide SNPs. Am. J. Hum. Genet.
2012, 91, 1011–1021. [CrossRef]

48. Meuwissen, T.; Goddard, M. The use of family relationships and linkage disequilibrium to impute phase and missing genotypes
in up to whole-genome sequence density genotypic data. Genetics 2010, 185, 1441–1449. [CrossRef] [PubMed]

49. Sargolzaei, M.; Chesnais, J.P.; Schenkel, F.S. A new approach for efficient genotype imputation using information from relatives.
BMC Genom. 2014, 15, 478. [CrossRef] [PubMed]

50. Liu, C.T.; Deng, X.; Fisher, V.; Heard-Costa, N.; Xu, H.; Zhou, Y.; Vasan, R.S.; Cupples, L.A. Revisit population-based and
family-based genotype imputation. Sci. Rep. 2019, 9, 1800. [CrossRef]

51. Ma, P.; Brøndum, R.F.; Zhang, Q.; Lund, M.S.; Su, G. Comparison of different methods for imputing genome-wide marker
genotypes in Swedish and Finnish Red Cattle. J. Dairy Sci. 2013, 96, 4666–4677. [CrossRef] [PubMed]

52. Carvalheiro, R.; Boison, S.A.; Neves, H.H.R.; Sargolzaei, M.; Schenkel, F.S.; Utsunomiya, Y.T.; O’Brien, A.M.P.; Sölkner, J.;
McEwan, J.; Van Tassell, C.P.; et al. Accuracy of genotype imputation in Nelore cattle. Genet. Sel. Evol. 2014, 46, 69. [CrossRef]

53. Geibel, J.; Reimer, C.; Pook, T.; Weigend, S.; Weigend, A.; Simianer, H. How imputation can mitigate SNP ascertainment Bias.
BMC Genom. 2021, 22, 340. [CrossRef] [PubMed]

54. Meuwissen, T.H.E.; Sonesson, A.K.; Gebregiwergis, G.; Wooliams, J.A. Management of genetic diversity in the era of genomics.
Front. Genet. 2020, 11, 880. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1111/jbg.12275
http://doi.org/10.1038/s41437-020-00383-9
http://doi.org/10.1186/1297-9686-46-49
http://doi.org/10.1186/s12711-022-00767-x
http://doi.org/10.3168/jds.2013-7752
http://doi.org/10.3390/ani11010202
http://www.ncbi.nlm.nih.gov/pubmed/33467757
http://doi.org/10.1111/j.1439-0388.2011.00966.x
http://doi.org/10.3168/jds.2009-2064
http://doi.org/10.1016/j.ajhg.2012.10.010
http://doi.org/10.1534/genetics.110.113936
http://www.ncbi.nlm.nih.gov/pubmed/20479147
http://doi.org/10.1186/1471-2164-15-478
http://www.ncbi.nlm.nih.gov/pubmed/24935670
http://doi.org/10.1038/s41598-018-38469-4
http://doi.org/10.3168/jds.2012-6316
http://www.ncbi.nlm.nih.gov/pubmed/23684022
http://doi.org/10.1186/s12711-014-0069-1
http://doi.org/10.1186/s12864-021-07663-6
http://www.ncbi.nlm.nih.gov/pubmed/33980139
http://doi.org/10.3389/fgene.2020.00880
http://www.ncbi.nlm.nih.gov/pubmed/32903415

	Introduction 
	Materials and Methods 
	Ethics Statement 
	Pedigree and SNP Genotype Data 
	Selection Based on MCA and MCG Methods 
	Preparing Relationship Matrices for the 575 Cows from Pedigree and Genotype Information 

	Results and Discussion 
	Comparing Matrices for MCA and MCG Methods 
	Differences in the Number of Cows Selected in Each Iteration 
	Differences in Selected Cows 
	General Discussion 

	Conclusions 
	References

