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Simple Summary: The abnormal behavior of pigs can undermine their growth performance and
economic value. Therefore, the precision and timeliness of behavioral recognition are crucial for
maintaining pig health and advancing intelligent farming. This study introduces an innovative
DM-GD-YOLO model, an optimized variant of YOLOv8, which integrates a deformable convolution
module with enhanced multi-path coordinate attention and a gather-and-distribution mechanism.
Through experiments conducted on a farm with about 30 pigs per pen, the results reveal that the
proposed model can effectively recognize four common behaviors (walking, lying, sniffing, and
kneeling) and three abnormal behaviors (fighting, mounting, and fence climbing) in pigs. Compared
to traditional methods, the model exhibits superior performance and provides a practical solution for
enhancing the welfare of pigs.

Abstract: The behavior of pigs is intricately tied to their health status, highlighting the critical
importance of accurately recognizing pig behavior, particularly abnormal behavior, for effective health
monitoring and management. This study addresses the challenge of accommodating frequent non-
rigid deformations in pig behavior using deformable convolutional networks (DCN) to extract more
comprehensive features by incorporating offsets during training. To overcome the inherent limitations
of traditional DCN offset weight calculations, the study introduces the multi-path coordinate attention
(MPCA) mechanism to enhance the optimization of the DCN offset weight calculation within the
designed DCN-MPCA module, further integrated into the cross-scale cross-feature (C2f) module of
the backbone network. This optimized C2f-DM module significantly enhances feature extraction
capabilities. Additionally, a gather-and-distribute (GD) mechanism is employed in the neck to
improve non-adjacent layer feature fusion in the YOLOv8 network. Consequently, the novel DM-GD-
YOLO model proposed in this study is evaluated on a self-built dataset comprising 11,999 images
obtained from an online monitoring platform focusing on pigs aged between 70 and 150 days. The
results show that DM-GD-YOLO can simultaneously recognize four common behaviors and three
abnormal behaviors, achieving a precision of 88.2%, recall of 92.2%, and mean average precision
(mAP) of 95.3% with 6.0MB Parameters and 10.0G FLOPs. Overall, the model outperforms popular
models such as Faster R-CNN, EfficientDet, YOLOv7, and YOLOv8 in monitoring pens with about
30 pigs, providing technical support for the intelligent management and welfare-focused breeding of
pigs while advancing the transformation and modernization of the pig industry.

Keywords: pig; behavior recognition; gather-and-distribute mechanism; multi-path coordinate
attention; DM-GD-YOLO
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1. Introduction

Over the past five years, pork constituted approximately 38% of global meat con-
sumption, signifying its vital role in the human diet. García-Gudiño et al. [1] gathered
data on consumer perceptions of pig production and animal welfare in Iberia, finding that
consumers strongly prefer naturally raised free-roaming animals and value animal welfare
greatly. Despite numerous policies, tools, and regulations aiming to enhance and safeguard
the welfare of farmed animals, persistent welfare issues continue [2]. This underscores the
need for innovative methods within animal production systems.

The understanding of pig behavior, particularly abnormal behaviors such as fence
climbing and mounting, is a significant factor in their health and welfare assessment [3,4].
Conventionally, livestock management involves extensive labor and resources to manually
monitor and record animal health and behavior patterns [5]. In contrast, real-time intel-
ligent recognition of pig behavior considerably boosts efficiency and accuracy compared
to manual methods [6,7]. This technique assists farm workers in quickly determining
the physiological status of pigs, enabling immediate interventions and treatments when
warranted. Such advances are crucial for optimizing pig farming efficiency and promoting
animal welfare [8,9].

The ongoing progress in computer vision, pattern recognition, and deep learning tech-
nologies facilitates real-time surveillance and analysis of pig behavior using data sources
like images and videos. This progress has led to the development of non-contact intelligent
recognition methods for better animal welfare farming. Chen et al. [10] developed an
algorithm integrating Xception and LSTM, achieving a 95.9% accuracy in recognizing pig
feeding behavior. Liu et al. [11] utilized a combination of convolutional and recurrent neu-
ral networks in a computer vision-based approach for recognizing and locating tail-biting
interactions among group-housed pigs. Riekert et al. [12] adopted a Faster R-CNN object
detection pipeline and a neural architecture search-based network for feature extraction
from pigs, achieving an 80.2% mean average precision (mAP) in recognizing pig position
and posture. However, these models are not designed for widespread recognition of both
individual and group abnormal behaviors in pigs. Additionally, they use traditional convo-
lutional operations with fixed kernels for feature extraction, thus limiting their effectiveness
due to non-rigid deformations of the targets [13,14]. Dai et al. [15] introduced deformable
convolution networks (DCN) as a promising resolution to these challenges. However,
DCN’s invariant distribution of sampling weights cannot adjust according to specific data
attributes and task requirements, thus restricting its efficacy in recognizing complex pig
interaction behaviors in real farming environments.

Currently, the YOLO-series models, one-stage detection models, have proven effective
for pig behavior recognition due to their simple structure and appreciable accuracy [16,17].
Li et al. [18] improved the YOLOX model by incorporating a normalization attention
mechanism, increasing the mAP to 92.23% in recognizing pig attack behaviors—5.3%
higher than the baseline YOLOX model. Odo et al. [19] used the YOLOv4 and YOLOv7 to
recognize pig ear-biting behaviors independently, achieving respective AP scores of 91.8%
and 91.9%. In addition, Luo et al. [20] enhanced the YOLOv5 model by integrating the
ECA-Net attention mechanism to amplify feature channel expressions, thereby achieving
a 92.04% mAP in recognizing five pig behaviors like standing and kneeling. However,
these models, despite being somewhat effective in pig behavior recognition, uniformly
use Feature Pyramid Networks (FPNs) [21] or their equivalents to amalgamate multi-level
features. This usage risks the inefficacy of multi-level feature utilization for pig behavior
recognition tasks and potential information loss.

Therefore, the research problem lies in the limitations of the existing model in simul-
taneous recognition of multiple pig behaviors, particularly abnormal behaviors, and its
deficiency in robust feature extraction and fusion capabilities, creating a predisposition to
information loss. Addressing these challenges, the purpose of this study was to develop a
proposal for a novel method to augment the feature extraction and fusion capabilities of the
model. This will enable accurate recognition of both common and abnormal pig behaviors,
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aiding farmers in uncovering potential hidden risks in pigs and mitigating economic losses.
By enhancing the DCN with the MPCA mechanism and integrating the C2f-DM module
with the GD mechanism [22], the YOLOv8’s feature extraction and fusion capacities are
bolstered. The proposed DM-GD-YOLO can accurately classify three abnormal behaviors
(fighting, fence-climbing and mounting) and four common behaviors (sniffing, walking,
lying, and kneeling), achieving an mAP of 95.3%. This model offers technical support for
real-time monitoring of abnormal pig behaviors in farming environments, with the primary
goal of optimizing pig farming efficiency and advancing animal welfare.

2. Materials and Methods
2.1. Dataset
2.1.1. Data Sources

In the process of intensive pig breeding, farm workers not only need to obtain health
information through the common behaviors of pigs, but also need to recognize and respond
to abnormal behaviors of pigs in a timely manner. Therefore, we studied seven typical
behaviors of pigs, including sniffing, lying, walking, kneeling, fighting, fence climbing, and
mounting, among which fighting, fence climbing, and mounting are abnormal behaviors.
The recognition rules of each behavior [23] are shown in Table 1.

Table 1. Recognition rules of typical behaviors of pigs.

Typical Behaviors Description Example

Sniffing Pigs use their snouts to
approach or touch objects.

Lying
Pigs lie on the ground with

the sternum and udder
touching the ground.

Walking

Pigs move by alternately
lifting and landing the front
and back legs while using all

four legs for support.

Kneeling

Pigs are supported by their
hips and extended front legs,
with the hips making contact

with the ground.

Fighting
Pigs interact by swiftly

pushing each other’s neck,
head, or ears with their heads.
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Table 1. Cont.

Typical Behaviors Description Example

Fence climbing

Pigs place their front legs on
the fence, tilting their bodies

or positioning them
perpendicularly to the

ground.

Mounting

Pigs place their two front legs
on their partner’s front or

back, with or without pelvic
insertion.

Given the absence of comprehensive public datasets containing all seven types of
pig behavior, we have developed a more encompassing dataset that includes multiple
behaviors. This dataset is intended to fulfill the needs for research on the automatic recog-
nition of complex pig behaviors. We used the HIKVISION DS-2CD3T25-I5 surveillance
cameras (Hikvision, Hangzhou, China) installed on the online supervision platform of
Linyou Zhengneng Agriculture and Animal Husbandry Technology Co., Ltd. in Shaanxi
Province to collect videos of pigs’ behavior. Mounted 3.6 m above the ground, the cameras
capture footage at a top angle of 30° within the pig houses numbered 2-3-1, 2-4-1, and
2-7-1 across the fattening facility, each housing about 30 pigs and having feed troughs.
The cameras can export the video data directly, and the recorded videos can be obtained
without interruption. The recorded pigs comprised three breeds, Landrace, Yorkshire, and
crossbred pigs, totaling 153 pigs. The fattening pigs weighted between 30 kg and 110 kg,
with an age range of 70 to 150 days.

The dimensions of the pen on the farm were 7.3 m × 5.0 m, providing an average
usable area of 1.22 m2 per pig, exceeding the minimum movement area requirement of
1.0 m2 for a 110 kg pig. Installation of ventilation devices, such as exhaust fans, effectively
mitigates the adverse effects of high humidity, condensation, and unexpected wind on
the pigs. Pen temperature is maintained between 18 and 22 degrees Celsius to meet the
environmental requirements for fattening pigs. Each pen is equipped with two nipple
drinking fountains for free water access, meeting the standards of GB5749-2022 [24].
Automatic supply of dry feed is facilitated through two feed troughs, each featuring
four feeding spaces. A head-and-shoulder barrier between each feeding space enables
simultaneous accommodation of multiple pigs. The structure of the pen is shown in
Figure 1.

To improve the robustness of the dataset, we captured videos of pigs’ behavior under
different lighting conditions (noon with the most intense light, cloudy days with uniform
light but low overall brightness, and indoor artificial lighting with relatively constant
light intensity). Thanks to the advantages of non-contact data collection, none of the pigs
used to collect the data were harmed or affected.
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Figure 1. The structure of the pen.

2.1.2. Data Preprocessing

Data preprocessing has four processes including image acquisition, screening and
filtering, labeling, and data enhancement.

1. Image acquisition. Python scripts were used to intercept images in jpg format every
12 frames of the collected videos.

2. Screening and filtering. After excluding images with significant pig occlusion,
11,999 images were finally extracted. We then used filters to blur the noise spots
in the image and reduce interference with model training.

3. Labeling. We utilized the labelImg software (https://github.com/HumanSignal/
labelImg (accessed on 17 March 2024)) to manually label the pig behaviors in the
images. Throughout the process, pigs with occluded areas exceeding 30% or with
occluded heads were not labeled. Adhering to this criterion, we produced standard
txt format annotation files following the COCO dataset format.
After labeling is completed, we divided the 11,999 images and annotation files into
a training set, a validation set, and a test set at a ratio of 7:2:1. Since an image may
contain multiple instances of behaviors, the number of instances for each behavior in
the dataset is shown in Table 2.

4. Data enhancement. Data enhancement techniques can increase the diversity of sam-
ples and improve the robustness of the model. In this study, the Mosaic Data Aug-
mentation (MDA) [25] method in the YOLO model was deployed to augment the
data through five methods, including image stitching, mirroring, clipping, random
rotation, and HSV tone enhancement, such that the scale of the dataset used for model
training was expanded fivefold.

Table 2. Dataset of pig behavior.

Behavior Instances of the Training Set Instances of the Validation Set Instances of the Test Set Total

Sniffing 3692 1033 536 5261
Lying 4803 1348 709 6860

Walking 1884 557 264 2705
Kneeling 2126 612 320 3058
Fighting 482 129 55 666

Fence-climbing 1138 351 173 1662
Mounting 1269 351 168 1788

https://github.com/HumanSignal/labelImg
https://github.com/HumanSignal/labelImg
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2.2. Our Model
2.2.1. DCN-MPCA

Pig behavior is characterized by its transience and a broad spectrum of postural shifts,
often resulting in non-rigid deformation. This imposes significant challenges on behavior
recognition tasks. Most existing models employ a conventional fixed convolution operation
in their convolution modules, maintaining relatively static positions on the feature map.
This approach inevitably leads to substantial information loss, compromised adaptability
to diverse behaviors, and limited generalization ability. To address these shortcomings,
we adopted Deformable Convolution Networks (DCN) as proposed by Dai et al. [15].
Incorporating a trainable offset and enlarging the receptive field allows DCN to adeptly
accommodate the non-rigid deformation inherent in behaviors.

For an input feature map denoted as X, DCN implements a sampling procedure using
a 3 × 3 convolutional kernel R, R ∈ (−1,−1), (−1, 0), . . . , (1, 1). Equation (1) illustrates the
calculation process for the output feature map Y at position p0.

Y(p0) = ∑
pn∈R

ω(pn) • X(p0 + pn + ∆pn) (1)

where ω(pn) represents the weight of the sampling point, p0 indicates each position in
the input feature map, pn represents all the sample points within R, and ∆pn signifies
the offset of these points. The implementation of ∆pn allows for the adjustment of key
element sampling positions, thus enhancing the model’s capability to adapt the behavior
recognition of pigs.

DCN generates sampling weights ω(pn) at different positions via the offset ∆pn within
each convolution window. However, a limitation lies in obtaining the sampling weights
solely through a convolution operation. This single mode of computation restricts DCN’s
capability to allocate sampling weights per sampling point dynamically which in turn
diminishes the model’s adaptability to the behavior recognition of pigs. To address this,
we devised Multi-Path Coordinate Attention (MPCA), inspired by coordinate attention
(CA) [26], and the structural details are depicted in Figure 2a. We process input feature
F ∈ RC×H×W differently from CA by introducing an additional branch for Global Average
Pooling (GAP) [27], hence retaining the global feature information Fgap while performing
average pooling in the X and Y directions. We stimulate feature information fusion and
exchange in the X and Y directions through concatenation and convolution operations to
yield Fhw. Then, the features Fh and Fw are derived by splitting Fhw. Further application
of convolution and sigmoid operations on Fhw results in Fhw_weight, which is split to obtain
feature weights Fh_weight in the X direction and Fw_weight in the Y direction. Multiplying
these weights by Fh and Fw gives Fx and Fy, revealing more detailed features in the said
directions. Simultaneously, the mean operation results in Fhw_weight, which when multiplied
by Fgap yields F̂ to mitigate the potential isolation of Fgap, enabling global information to
exchange feature information fully with other branches. The final output feature Foutput is
obtained by multiplying F̂ with the input feature F and the other two branch features Fx and
Fy. We incorporate MPCA following the initial convolution operation in sampling weight
computation for ω(pn); consequently, MPCA and DCN fuse to form the DCN-MPCA
module, as shown in Figure 2b.

DCN-MPCA is proficient at extracting multi-scale features via deformable convolution,
and it further augments the feature extraction capacity and adaptability of deformable
convolution to a wide range of pig behaviors through the integration of MPCA. This
strategy successfully mitigates issues arising from non-rigid deformation during behavior
recognition, thereby markedly enhancing the model’s accuracy.
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Figure 2. (a) The MPCA module; (b) The architecture of the DCN-MPCA.

2.2.2. Gather-and-Distribute (GD) Mechanism

Distinct patterns emerge at different scales while recognizing pig behavior. Conven-
tional models, such as the Feature Pyramid Network (FPN), are often reliant on predefined
structures to manage features on multiple scales. Some models in the YOLO series incor-
porate the FPN for enhanced feature extraction. However, these methods may encounter
information loss during the fusion of features, particularly when assimilating data gen-
erated at various scales by pigs of different sizes and postures. Our proposed solution
involves an innovative GD mechanism. This strategy, an extension of the TopFormer’s
concept [28], globally integrates features from multiple levels and incorporates this com-
prehensive information into more complex levels. This GD mechanism makes information
exchange at different levels and scales more efficient. The fusion modules for global and
local features enable superior capture and communication of contextual information from
pig behavior. The GD mechanism mitigates information loss during transmission, thereby
enhancing the traditional FPN structure. Figure 3 illustrates the general structure of the
GD mechanism. In this depiction, B2, B3, B4, and B5 signify the feature maps extracted by
the backbone, serving as inputs to the neck. More specifically, Bi ∈ RN×CBi×RBi , where N
represents the batch size, C denotes the number of channels, and the spatial dimensions
are expressed by R = H × W. Moreover, the dimensions of RB2, RB3, RB4 and RB5 are
correspondingly R, 1

2 R, 1
4 R, and 1

8 R.
The GD process is conducted by three modules: the Feature Alignment Module (FAM),

the Information Fusion Module (IFM), and the Information Injection Module (IIM). Task
responsibility for the data gathering process is shared between the FAM and the IFM, while
data distribution is handled by the IIM.

• FAM. FAM’s primary role is aligning input features of different scales to form homoge-
nous scale features. It involves selecting a standard size for feature alignment, then
upscaling smaller features via bilinear interpolation and downsizing larger features by
average pooling. This uniform scaling ensures consistent spatial dimension across all
features. The final step involves concatenation to generate the aligned feature, Falign.

• IFM. IFM takes on the responsibility of fusing the features aligned by FAM, creating
global information. It does this by inputting the alignment feature, Falign, from FAM’s
output into multi-layer reparameterized convolutional blocks (RepBlocks) or Trans-
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former blocks. From these operations, the global fusion feature Ff use is derived. Ff use
is split into different scales features along the channel dimension to produce Finj_i,
which is then fused with corresponding scales features.

• IIM. IIM fuses the split global information from the IFM output with the input informa-
tion from the corresponding scale in FAM. This compound is injected into the network
model to ensure the efficient distribution of global context information through a
self-attention approach. As shown in Figure 4, the inputs are the features of the cur-
rent scale (Fi) and the global features derived from the IFM output (Finj_Fi). Here, i is
an integer ranging from 3 to 5, representing various levels. Two types of Convs are
used with Finj_Fi, yielding Fglobal_embed_Fi and Fglobal_act_Fi, respectively, and Fi_embed is
calculated using a Conv of Fi. Should there be any inconsistency in size during the
fusion process, it is rectified using average pooling or bilinear interpolation. We then
compute Fglobal_embed_Fi and Fi, considering attention to generate the fused feature
Fatt_ f use_Fi. The resultant information undergoes further screening and merging via
RepBlock processing, producing the output feature Xi. The corresponding equations
used in this process are as follows:

Fglobal_act_Fi = resize
(
Sigmoid

(
Convact

(
Finj_Fi

)))
, (2)

Fglobal_embed_Fi = resize
(

Convglobal_embed_Fi
(

Finj_Fi
))

, (3)

Fatt_ f use_Fi = Convi_embed(Fi) ∗ Finj_act_Fi + Fglobal_embed_Fi, (4)

Xi = RepBlock
(

Fatt_ f use_Fi

)
. (5)

Low-FAM Low-IFM

Low-GD
B5

B4

B3

B2

IIM

IIM

P5

P4

P3

High-FAMHigh-IFM

High-GD

IIM

IIM

N5

N4

N3

Inject_B3

Inject_B4

Inject_P4

Inject_P5

Figure 3. Gather-and-Distribute mechanism.
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RepConv-
blocks

Conv 1×1

Conv 1×1

Conv 1×1

Sigmoid
Avgpool /
Bilinear

Avgpool /
Bilinear

IIMFi

inj _ FiF

Figure 4. The IIM module.

The model’s capacity for recognizing variances is improved by the deployment of
two key branches: low-stage Gather-and-Distribute (Low-GD) and high-stage Gather-and-
Distribute (High-GD). These distinct branches are optimized for the extraction and fusion
of feature maps of differing sizes.

• Low-GD. The Low-GD component is structured to encompass Low-FAM, Low-IFM,
and IIM. Figure 5 provides a detailed representation of this layout. B2, B3, B4, and
B5 feature maps from the backbone output are chosen as input for Low-IFM, with
B4 determining the target feature size. After feature alignment, the combined feature
Falign is derived, which is then inputted into Low-IFM and run through a Repblock.
This generates the global features Finj_B3 and Finj_B4. B3 and B4 are combined with
these in IIM, yielding P3 and P4. Simultaneously, B5 is retained as P5. Ultimately, the
output features of Low-GD P3, P4, P5 are produced in this manner.

• High-GD. Similarly, High-GD is comprised of High-FAM, High-IFM, and IIM as
illustrated in Figure 6. The respective inputs of High-FAM are P3, P4, P5 derived
from the output of Low-GD. We target P5 for the final size, downsample P3 and P4,
and generate Falign following feature alignment. Unlike Low-IFM, in High-IFM, Falign
is fed into the Transformer block and subsequently partitioned to yield Finj_P4 and
Finj_P5. These features are injected into P3 and P4, respectively, producing N4 and N5
while retaining P3 as N3, giving us the output features N3, N4, N5.

The implementation of the GD mechanism enables the model to effectively capture
multi-scale features and enhances its potential to converge these features. This results in
precise recognition of diverse pig behaviors at various stages. Further, the GD mechanism
drastically boosts information transmission efficiency, helping avoid information loss.
As a result, the model simultaneously upholds low latency and improves precision in
behavior recognition.

B5

B4

B3

B2

Bilinear

Avgpool

Avgpool

C

Conv RepConv-blocks Conv Split

Inject_B4

Inject_B3

Low-IFM

Low-FAM

Low-GD

IIM

IIM

P5

P4

P3

Figure 5. Low-GD branch.
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P5

P4

P3

Avgpool

Avgpool

C Multi-Head 
Attention

Split

Inject_P5

Inject_P4

High-IFM

High-FAM

High-GD

+ C
Feed-

Forward
Network

IIM

IIM

N3

N4

N5

Figure 6. High-GD branch.

2.2.3. DM-GD-YOLO

Due to its optimal balance of speed and accuracy, the YOLO series model is extensively
utilized for various recognition tasks. This paper employs YOLOv8, the most recent version
of the YOLO model, as the fundamental framework for our model. YOLOv8 is composed
of a backbone network, a neck network, and detection heads. The backbone network
integrates the C2f module, designed to extract features mirroring the Cross Stage Partial
Network. The neck network features the Path Aggregation Network (PAN) [29] and the
Feature Pyramid Network (FPN) for efficient fusion of features. Post convolution, the
output is forwarded to the detection head for the final resolution of the classification and
regression problems.

For the task of pig behavior recognition, the traditional convolution operation in C2f
employed to extract image features cannot resolve the challenge of non-rigid deformation
due to the fixed nature of the convolution kernel. To address this, DCN-MPCA is fused into
C2f, while maintaining the basic structure of the C2f module, all traditional convolutions
in the Bottleneck are replaced with DCN-MPCA, leading to the creation of the C2f-DM
module as depicted in Figure 7. In the backbone, the final three layers of C2f are altered
to C2f-DM. C2f-DM retains the principles of C2f, while also adapting well to non-rigid
deformation and enhancing the model’s feature extraction capabilities.

SPPFC2f C2f-DM C2f-DM C2f-DM

Low-FAM Low-IFM

Low-GD

High-FAMHigh-IFM

High-GD

Neck

Detect

Detect

Detect

Head

Backbone

Conv Conv Conv Conv Conv

B2 B3 B5

N3

N4

N5

B4

n

Bottleneck_DM Bottleneck_DM...

= DCN-MPCA DCN-MPCA

If shortcut

Split Concat

Add

Conv Conv

Bottleneck_DM

The C2f-DM module.

IIM

IIM

Figure 7. The architecture of the proposed DM-GD-YOLO.
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On a different note, in YOLOv8, PAN and FPN can only indirectly fuse non-adjacent
feature layer information, leading to slow fusion speed and incomplete fusion of behavioral
feature information. To address this, the GD mechanism is activated in the neck, allowing
for complete fusion and exchange of behavioral feature information. Therefore, we propose
a model DM-GD-YOLO for pig behavior recognition, based on the YOLOv8 framework
that integrates attention-enhanced deformable convolution and the GD mechanism. The
structure of DM-GD-YOLO is illustrated in Figure 7.

3. Results and Analysis
3.1. Experiment Environment

An NVIDIA GeForce RTX 4090 graphics card (Nvidia, Santa Clara, CA, USA) with a
substantial 24 GB video memory was employed for the experiments reported in this study.
For Python package management, Anaconda was deployed. Moreover, the Pytorch deep
learning framework was adopted. All experiments were conducted on a 64-bit Ubuntu
20.04 system, outfitted with CUDA 12.1, Python 3.8, and Pytorch 2.1.1. The apt selection of
hyperparameters is pivotal to the model training procedure. Details of the hyperparameter
settings used in the experiments of this study are shown in Table 3.

Table 3. The training parameters for the experiments.

Hyperparameters Value

Optimization SGD
Learning rate 0.01
Momentum 0.937

Weight decay 0.0005
Batchsize 64

Warm-up round 3
Warm-up momentum 0.8
Warm-up deviation 0.1

Intersection over Union 0.7
Training epoch 200

3.2. Evaluation Metrics

This Study employs precision, recall, mean average precision (mAP), parameters, and
floating point operations per second (FLOPs) as evaluation metrics to evaluate the model
performance. The equations for these metrics are as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

AP =
∫ 1

0
P(R)dR (8)

mAP =
1
C

C

∑
i=1

APi (9)

where true positives (TP) denote the number of instances accurately predicted as positive
by the model. Similarly, false positives (FP) represent the count of negative instances
inaccurately construed as positive, while false negatives (FN) signify instances where
positive samples are inaccurately deemed as negative by the model. Precision, calculated
as the ratio of TP to the sum of TP and FP, quantifies the model’s accuracy in positive
predictions. Meanwhile, recall, computed as the ratio of TP to the sum of TP and FN,
evaluates the model’s ability to capture positive samples. The average precision (AP)
constitutes the area beneath the precision–recall (P–R) curve, calculated by integrating
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this curve. The constant ‘C’ signifies the number of classes, marked as seven in this study.
For multi-class issues, it is imperative to compute AP individually for each class and
subsequently derive their average to determine mAP, given each class owns a distinct
P–R curve.

Parameters refer to the quantity of parameters within the model, indicating its size.
Smaller models are more easily deployable in various application scenarios. On the other
hand, FLOPs quantify the computational complexity of the algorithm, specifically reflecting
the number of floating-point operations required for model forward propagation. Models
with lower FLOPs are considered less demanding on hardware conditions.

3.3. Ablation Experiment

This study employs ablation experiments to substantiate the impact of unifying the
C2f-DM module and GD mechanism on YOLOv8’s recognition performance. A higher
precision indicates a reduction in model inaccuracies, thereby decreasing the economic
strain on farms owing to predictive errors. The elevated recall certifies the comprehen-
siveness of pig behavior recognition and limits losses arising from recognition failures.
Ablation experiment outcomes are presented in Table 4. An analysis of the data illustrates
an improvement of 4.3%, 1.3%, and 2.1% in precision, recall, and mAP, respectively, upon
integrating only the C2f-DM into the backbone. This signifies that C2f-DM successfully
boosts the model’s recognition precision and mAP by enhancing its feature extraction
ability, albeit the recall enhancement lacks prominence. Additionally, GD mechanism
optimization in the neck improved the model’s precision, recall, and mAP by 0.3%, 5.6%,
and 2.1% respectively. The GD mechanism, despite its slight improvement in precision,
upgrades recall drastically by augmenting model feature fusion, hence rendering the model
capable of recognizing more complete target behaviors. Incorporating both C2f-DM and
GD mechanisms substantially enhances the model’s mAP. Upon synergizing these modules,
DM-GD-YOLO shows diverse degrees of improvement in all evaluation metrics compared
to the YOLOv8 model, with an increment of 1.2% in precision, 5.2% in recall, and 2.6% in
mAP. The design of C2f-DM and GD mechanism also leads to a harmonious enhancement
of precision and recall. The results prove the optimization and promotion effect of these
two modules on the backbone network and the neck of YOLOv8, thereby fortifying the
model’s recognition capabilities.

Table 4. Result of ablation experiments based on DM-GD-YOLO.

Model C2f-DM GD
Mechanism

Precision
(%) Recall (%) mAP50 (%)

YOLOv8 87.0 87.0 92.7
YOLOv8+C2f-DM ✓ 91.3 88.3 94.8

YOLOv8+GD ✓ 87.3 92.6 94.8
DM-GD-YOLO ✓ ✓ 88.2 92.2 95.3

Note: ‘✓’ indicates that a corresponding improvement has been made.

3.4. Comparative Analysis of Model Performance

The precision–recall (P–R) curves for YOLOv8 and the proposed DM-GD-YOLO
were plotted with precision and recall on the x-axis and y-axis, respectively, as shown in
Figure 8. The area under the P–R curve indicates the AP, where a larger area signifies higher
AP values. The Figure illustrates varied improvements in AP across different behaviors.
Notable behavior classifications with minor AP changes include sniffing and lying. The
abnormal behavior of fence-climbing, already achieving a peak AP of 99% in the baseline
model, shows marginal enhancement. In contrast, significant AP disparities are observed
in climbing and walking behaviors, with a notable increase of 6.2% and 4.9%,, respectively.
Particularly noteworthy is the behavior of climbing, which originally yielded an mAP of
88% but rose to 94.2% with DM-GD-YOLO. Furthermore, fighting behavior experienced a
2.5% enhancement. These improvements can be attributed to C2f-DM’s role in enhancing
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data extraction for behavior recognition, alongside the GD mechanism’s contribution to
integrating behavioral information efficiently, thus reducing valuable information loss.
This results in superior performance in recognizing complex abnormal behaviors. The
proposed DM-GD-YOLO outperforms YOLOv8 by 2.6% in mAP, affirming its effectiveness
in improving pig behavior recognition accuracy and notably excelling in recognizing
abnormal behaviors.

(a) (b)

Figure 8. (a) P–R curve of YOLOv8; (b) P–R curve of DM-GD-YOLO.

The two-dimensional confusion matrix visually compares predicted outcomes against
actual results to evaluate the effectiveness of behavior recognition models. The confusion
matrices depicting the recognition outcomes of the YOLOv8 and DM-GD-YOLO on the test
dataset are presented in Figure 9, respectively. In the comparison between YOLOv8 and
DM-GD-YOLO, the latter exhibited superior accuracy in recognizing all seven behaviors.
Specifically, DM-GD-YOLO correctly recognized sniffing, walking, lying, kneeling, fighting,
fence-climbing, and mounting with an additional 7, 24, 47, 12, 1, 1, and 13 instances,
respectively. Notably, the enhancements in the recognition of walking and mounting
behaviors by DM-GD-YOLO align with the findings from the P–R curve analysis, while the
accurate recognition of fence climbing is already high in the baseline model, DM-GD-YOLO
maintains a similar performance level with a slight increase.



Animals 2024, 14, 1316 14 of 19

(a) (b)

Figure 9. (a) Confusion matrix of the YOLOv8; (b) Confusion matrix of the DM-GD-YOLO.

3.5. Model Visualization Analysis

To further substantiate the effectiveness of our model in recognizing various pig be-
haviors, we selected images depicting pigs in diverse scenarios and conduct. We conducted
a comparative analysis between DM-GD-YOLO and the original YOLOv8 as the baseline,
leveraging visualizations to facilitate a more intuitive model comparison and visual expla-
nation. The recognition outcomes are depicted in Figure 10, where Figure 10a represents
the raw image, Figure 10b illustrates the recognition results of YOLOv8, and Figure 10c
showcases the recognition results of DM-GD-YOLO.

In the first row of Figure 10, YOLOv8 failed to detect the lying pig in a relatively dark
corner, distant from the monitoring device; however, DM-GD-YOLO accurately detected
the pig. The low-contrast colors in the monitored videos created difficulties for YOLOv8 in
adapting to this environment, reducing its ability to recognize pig behavior. Consequently,
the model’s mAP improved by 8 percentage points in recognizing sniffing and lying be-
haviors in this setting. Moving to the second row, the similarity between pigs’ sniffing and
walking behavior posed a challenge for the model in differentiation. YOLOv8 incorrectly
recognized walking as sniffing, whereas DM-GD-YOLO successfully learned to distinguish
between the two behaviors, leading to a 19% increase in mAP compared to YOLOv8. In the
third and fourth rows, pig interactions involving physical contact caused non-rigid defor-
mations, making it difficult for models to capture these features and recognize abnormal pig
behaviors. YOLOv8 incorrectly recognized mounting behavior as kneeling and showed low
mAP in recognizing pig fighting behavior, while DM-GD-YOLO’s use of the DCN-MPCA
module significantly improved feature extraction capability and precision, accurately rec-
ognizing mounting and fighting behaviors. Similarly, in the fifth row, YOLOv8 failed to
recognize the pig lying in the corner and the pig with obvious sniffing behavior in the
center of the image, exhibiting lower precision in recognizing kneeling behavior, whereas
DM-GD-YOLO excelled in these complex environments. Additionally, DM-GD-YOLO
demonstrated superior accuracy in recognizing walking and sniffing behavior in the sixth
row. In summary, compared with YOLOv8, DM-GD-YOLO exhibits stronger adaptability
in complex environments, significantly improving recognition precision and bounding box
accuracy, indicating the robustness of the proposed model.
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(a) 

(a)

(b) 

(b)

(c) 

(c)

Figure 10. Visualization map: (a) Raw Image; (b) YOLOv8; (c) DM-GD-YOLO.
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3.6. Comparative Analysis with Other Models

To verify the effectiveness and superiority of DM-GD-YOLO in pig behavior recogni-
tion, we enlisted a selection of prominent recognition models utilized in livestock behavior
recognition for comparative analysis. The evaluation encompassed well-known models
such as EfficientDet, Faster R-CNN, YOLOv7, and YOLOv8, all subjected to the same
datasets and assessment criteria, with the outcomes meticulously documented in Table 5.

Table 5. The results of behavior recognition in pigs for different models.

Model Precision(%) Recall (%) mAP (%) Parameters
(MB) FLOPs (G)

EfficientDet 90.5 88.1 93.5 6.6 11.6
Faster R-CNN 68.5 92.6 90.4 136.8 401.8

YOLOv7 85.9 91.0 93.3 36.6 103.3
YOLOv8 87.0 87.0 92.7 3.0 8.1

DM-GD-YOLO 88.2 92.2 95.3 6.0 10.0

The analysis presented in Table 5 illustrates that DM-GD-YOLO surpasses EfficientDet
and YOLOv7 in performance, while its precision slightly lags behind that of EfficientDet,
DM-GD-YOLO excels in recall and mAP, achieving rates of 92.2% and 95.3%, respectively.
Furthermore, it outperforms in parameters and FLOPs, occupying only 6 MB and 10
G, respectively. Despite a slight increase of 3 MB and 1.9 G in parameters and FLOPs
compared to YOLOv8, DM-GD-YOLO demonstrates superior precision, recall, and mAP.
This significant enhancement in accuracy is achieved with minimal impact on model size
and computational expenses. Unlike the two-stage recognition model Faster R-CNN, DM-
GD-YOLO showcases remarkable improvements in precision and mAP, with enhancements
of 19.7% and 4.9%, respectively, while maintaining similar recall levels. It also outperforms
Faster R-CNN by a significant margin in terms of parameters and FLOPs. Notably, DM-
GD-YOLO attains the highest mAP among the considered models at 95.3%.

4. Discussion

The welfare breeding of pigs has garnered significant attention in current research.
It has been observed that pigs display a range of behaviors, particularly when housed
together in high density, leading to an increased likelihood of fighting due to environmental
and spatial constraints. Such conflict can result in physical harm, weight loss, and even
fatal injuries [30]. Failure to promptly recognize and address abnormal behavior can have
serious repercussions, including injuries, stress, and the potential for escape attempts. Thus,
abnormal behavior may signal underlying health issues, underscoring the importance
of timely and accurate recognition to enable early intervention by farmers, ensuring the
well-being of the pigs and minimizing financial losses.

Several studies have utilized wearable devices, such as sensors, to acquire various
physiological data of pigs, including acceleration and body temperature. The gathered data
was then analyzed extensively to discern and categorize pig behaviors [31]. Chen et al. [32]
employed a depth sensor to detect aggressive behavior in pigs, achieving an accuracy
of 96.8%. Nonetheless, sensor-based contact behavior recognition methods unavoidably
impact the physiological state of pigs, entailing high costs and loss rates. In our research,
a non-contact approach leveraging computer vision and deep learning was utilized to
recognize pig behaviors. This non-contact recognition technology accurately recognized
numerous pig behaviors. Wei et al. [33] proposed a deep learning-based recognition
method to capture pig movement and aggressive behaviors such as head-to-head contact,
head-to-body contact, neck biting, body biting, and ear biting during fighting. Yang et
al. [34] employed Faster R-CNN to recognize feeding behavior in pigs with a precision
of 99.6% and a recall of 86.93%. However, the models developed in these studies do not
comprehensively cover pig behavior, resulting in farmers not having timely access to all
pertinent information. By integrating the DCN-MPCA module and GD mechanism, the
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DM-GD-YOLO model enhances feature extraction and fusion, enabling the simultaneous
recognition of seven pig behaviors, including four common and three abnormal behav-
iors, thus achieving a comprehensive recognition of pig behaviors and better addressing
breeding management needs.

While we have successfully developed the DM-GD-YOLO for pig behavior recogni-
tion, it is essential to acknowledge the limitations of this study. Firstly, in real breeding
environments with high pig density, the behavior of distant pigs is prone to occlusion by
obstacles, introducing uncertainty in feature extraction and behavior recognition. Secondly,
although the DCN-MPCA module and GD mechanism in DM-GD-YOLO enhance feature
extraction and fusion, they also increase network parameters and complexity, potentially
hindering deployment on mobile terminals. Future research will focus on addressing these
challenges by enhancing model robustness to the environment and exploring methods to
prune the model for greater compactness and efficiency.

Furthermore, it is worth noting that numerous studies on pig abnormal behavior
recognition utilize a collection of frames extracted from short videos, combined with time-
dimensional features of the behavior, to comprehensively recognize specific individual
abnormal behaviors. Currently, our designed video frame recognition model for instan-
taneous behavior cannot fully leverage contextual information. Our labeling process is
based on expert judgment of complete dynamic behaviors captured in the videos, encom-
passing both intermediate and incomplete behavior forms. Consequently, the model can
identify each frame within the behavior process. The model is also aimed at swiftly and
effectively capturing transient behavioral features, extracting and fusing them to inform
decision-making. It ensures that upon detection of the first frame of abnormal behavior, an
immediate reminder message is dispatched to the breeding personnel, facilitating timely
intervention to prevent potential hazards from escalating. However, we acknowledge
that single-frame recognition may have lower stability compared to video-based multi-
frame recognition. This signifies a crucial area for future optimization of the method we
have developed.

5. Conclusions

This study aims to discern the varied behaviors of pigs in natural breeding environ-
ments, with a particular emphasis on health-related abnormal behaviors. To this purpose,
we proposed a DM-GD-YOLO recognition model based on the YOLOv8 framework. First,
to address the problem of non-rigid deformation commonly associated with pig move-
ments, we integrate the DCN-MPCA module. This technique not only enhances the model’s
feature extraction capability by applying an offset during training but also outperforms
conventional DCNs in offset weight calculation via the specifically designed MPCA mod-
ule. We subsequently embed the DCN-MPCA module into C2f, thereby substantially
improving the base network’s feature extraction capacity through an optimized C2f-DM.
We then ensconced a GD mechanism into the neck, effectively addressing the issue of
non-adjacent layer feature fusion of the YOLO network and substantially increasing the
network’s information exchange and feature infusion capabilities. We conducted our ex-
periments on the comprehensive self-built dataset of pig behavior, focusing on fattening
pigs aged 70–150 days. The experimental findings indicate that DM-GD-YOLO outper-
forms YOLOv8 regarding precision, recall, and mAP, showing increases of 1.2%, 5.2%,
and 2.6%, respectively, while the parameters and FLOPs only increase by 3.0 MB and
1.9 G. Our model was evaluated in pig pens accommodating about 30 pigs. Breeding
scenarios surpassing 30 pigs in each pen or employing different trough designs were not
investigated, thus necessitating further research. Compared to other prominent recognition
models such as YOLOv7, EfficientDet, and Faster R-CNN, the mAP of DM-GD-YOLO
improved by 2%, 1.8%, and 4.9%, reaching 95.3%, with the smallest parameters and FLOPs
at 6.0 MB and 10.0 G. The adoption of DM-GD-YOLO overcomes the limitations of most
existing models by enabling simultaneous recognition of multiple behaviors, improving
model feature extraction and fusion capabilities, and facilitating timely detection and man-
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agement of abnormal pig behaviors, thus reducing potential economic risks. Furthermore,
deploying DM-GD-YOLO allows farm staff to intuitively count the frequency of abnormal
behavior in the pig herd, providing crucial data support for assessing pig herd health status
and enhancing understanding of factors affecting pig welfare. Overall, DM-GD-YOLO not
only enhances pig behavior recognition technology but also contributes to the advancement
of modern smart farming.
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