
applied
sciences

Article

Estimation of Distribution Algorithms with Fuzzy
Sampling for Stochastic Programming Problems

Abdel-Rahman Hedar 1,2,* , Amira A. Allam 3 and Alaa Fahim 3

1 Department of Computer Science in Jamoum, Umm Al-Qura University, Makkah 25371, Saudi Arabia
2 Department of Computer Science, Faculty of Computers & Information, Assiut University,

Assiut 71526, Egypt
3 Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt;

amirahm@science.aun.edu.eg (A.A.A.); alaa@aun.edu.eg (A.F.)
* Correspondence: ahahmed@uqu.edu.sa or hedar@aun.edu.eg; Tel.: +966-55-0086-411 or +20-10-0070-4940

Received: 25 August 2020; Accepted: 28 September 2020; Published: 3 October 2020
����������
�������

Abstract: Generating practical methods for simulation-based optimization has attracted a great
deal of attention recently. In this paper, the estimation of distribution algorithms are used to solve
nonlinear continuous optimization problems that contain noise. One common approach to dealing
with these problems is to combine sampling methods with optimal search methods. Sampling
techniques have a serious problem when the sample size is small, so estimating the objective function
values with noise is not accurate in this case. In this research, a new sampling technique is proposed
based on fuzzy logic to deal with small sample sizes. Then, simulation-based optimization methods
are designed by combining the estimation of distribution algorithms with the proposed sampling
technique and other sampling techniques to solve the stochastic programming problems. Moreover,
additive versions of the proposed methods are developed to optimize functions without noise in
order to evaluate different efficiency levels of the proposed methods. In order to test the performance
of the proposed methods, different numerical experiments were carried out using several benchmark
test functions. Finally, three real-world applications are considered to assess the performance of the
proposed methods.

Keywords: estimation of distribution algorithms; stochastic programming; simulation-based
optimization; fuzzy sampling; variable sample path

1. Introduction

Several real-world applications can be formulated as continuous optimization problems in a wide
range of scientific domains, such as engineering design, medical treatment, supply chain management,
finance, and manufacturing [1–9]. Many of these optimization formulations have some sort of
uncertainty and their objective functions contain noise [10–13]. Moreover, it is sometimes necessary to
deal with complex problems with high nonlinearity and/or dimensionality, and occasionally there
is no analytical form for the objective function [14]. Even if the objective functions associated with
these types of problems are expressed mathematically, in most cases they are not differentiable.
Therefore, classical optimization methods fail to adapt them, and it is impossible to compute their
gradient. The situation is much worse when these functions contain high noise levels.

Simulation and optimization has attracted much interest recently, since the output response
evaluation of such real-world problems need simulation techniques. Moreover, optimization problems
in stochastic environments are realized by combining simulation-based estimation with an optimization
process. Therefore, the title “simulation-based optimization” is commonly used instead of “stochastic
optimization” [15,16].

Appl. Sci. 2020, 10, 6937; doi:10.3390/app10196937 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9936-5987
https://orcid.org/0000-0001-7159-4414
http://dx.doi.org/10.3390/app10196937
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/19/6937?type=check_update&version=2

Appl. Sci. 2020, 10, 6937 2 of 27

Simulation-based optimization is used with certain types of uncertainties to optimize the
real-world problem. There are four types of uncertainties discussed in [14]: noise in objective
function evaluations; approximation of computationally expensive objective functions with surrogate
models; changes or disturbance of design parameters after determining the optimal solution; problems
with time-varying objective functions. We consider the first type of uncertainty, where the problem is
defined mathematically as follows [17]:

min
x∈X
{ f (x) = E[F(x, ω)]}, (1)

where f is a real-valued function defined on search space X ⊆ Rn with objective variables x ∈ X,
and ω is a random variable whose probability density function is F. Problem (1) is also referred to
as the stochastic programming problem in which random variables appear in the formulation of the
objective functions.

In spite of the importance of the choice of optimal simulation parameters in improving operation,
configuring them well still remains a challenge. Because of the complicated simulation process,
the objective function is subjected to different noise levels followed by expensive computational
evaluation. These problems are restricted by the following characterizations:

• The complexity and time necessary to compute the objective function values;
• The difficulty of computing the exact gradient of the objective function, as well as its numerical

approximation being very expensive;
• The noise values in the objective function.

To deal with these characterizations, global search methods should be invoked to avoid using
classical nonlinear programming that fails to solve such problems with multiple local optima.

Recently, the use of artificial intelligence methods in optimization has been of great interest.
Metaheuristics play a significant role in both real-life simulations and invoking smart methods [18–24].
Metaheuristics show strong validity rates across a wide variety of applications. These methods,
however, suffer from slow convergence, especially in cases of complex applications, which lead to
high computational costs. This slow convergence may be a result of the exploration structures of
such methods, while exploring the search space depends on the random structures. On another hand,
metaheuristics cannot utilize local information to deduce promising search directions. The estimation
of Distribution Algorithms (EDAs) comprise a class of evolutionary computation [25] and has been
widely studied in the global optimization field [26–29]. Compared with traditional Evolutionary
Algorithms (EAs), such as Genetic Algorithms (GAs), this type of algorithm has neither crossover nor
mutation operators. Instead, an EDA explicitly builds a probabilistic model by learning and sampling
the probability distribution of promising solutions in each generation. While building the probabilistic
model presents statistical information from the search space, it is used as the guidance of reproduction
to find better solutions.

On the other hand, several optimal search techniques have been designed to tackle the stochastic
programming problem. Some of these techniques are known as variable-sample methods [30]. The key
aspect of the variable-sample approach is to reformulate the stochastic optimization problem in
the form of a deterministic one. A differential evolution variant is proposed in [12] equipped with
three new algorithmic components, including a central tendency-based mutation, adopted blending
crossover, and a new distance-based selection mechanism. To deal with the noise, their algorithm
uses non-conventional mutation strategies. In [31], an extension of multi-objective optimization is
proposed, based on an differential evolution algorithm to manage the effect of noise in objective
functions. Their method applies an adaptive range of the sample size for estimating the fitness values.
In [32], instead of using averages, the search policy considers the distribution of noisy samples during
the fitness evaluation process. A number of different approaches to deal with noise are presented
in [33]. Most sampling methods are based on the use of averages, and this motivates us to use different

Appl. Sci. 2020, 10, 6937 3 of 27

sampling techniques. One possible sampling alternative is the use of fuzzy logic, which is an important
pillar of computational intelligence. The idea of the fuzzy set was first introduced in [34]; this enabled
a member to belong to a set in a partitioned way, as opposed to in a definite way, as stated by classical
set theory. In other words, membership can be assigned a value within the [0, 1] interval instead of the
{0, 1} set. Over the past four decades, the theory of fuzzy random variables [35] has been developed
via a large number of studies in the area of fuzzy stochastic optimization [36,37]. The noisy part of
our problem can be considered to be randomness or fuzziness, and it can be understood as a fuzzy
stochastic problem, which can be found in the literature [38–42].

In this paper, EDAs are used to solve nonlinear optimization problems that contain noise.
The proposed EDA-based methods follow the class of EDAs proposed in [43]. The designed
EDA-model is firstly combined with variable-sample methods (SPRS) [30]. Sampling techniques
have a serious problem when the sample size is small, so estimating the objective function values
with noise is accurate in these cases. Therefore, we propose a new sampling technique based on
fuzzy systems to deal with small sample sizes. Another EDA-based method uses the proposed
fuzzy sampling technique. Moreover, additive versions of the proposed methods are developed
to optimize functions without noise in order to evaluate different efficiency levels of the proposed
methods. In order to test the performance of the proposed methods, different numerical experiments
were carried out using several benchmark test functions. Moreover, three real-world applications are
considered to assess the performance of the proposed methods.

The rest of the paper is structured as follows. In Section 2, we highlight the main structure and
techniques for EDAs. The design elements and proposed methods are stated in Section 3. In Section 4,
algorithmic implementations of the proposed methods and numerical experiments are discussed.
The results for three stochastic programming applications are presented in Section 5. Finally, the paper
is concluded in Section 6.

2. Estimation of Distribution Algorithms

EDAs were firstly introduced in [44] as a new population-based method, and have been
extensively studied in the field of global optimization [26,44]. Despite the fact that EDAs were
firstly proposed for combinatorial optimization, many studies have been performed applying them
to continuous optimization. The primary difference between EDAs is the aspect of building the
probabilistic model. Generally, in continuous optimization there are two considerable branches:
one is based on the Gaussian distribution model [25,26,45–51], and the other on the histogram
model [47,52–58]. The first is the most widely used and has been studied extensively. The main steps
of general EDAs are stated in Algorithm 1.

Algorithm 1 Pseudo-code for EDA approach

1: g← 0
2: Pg ← Generate and evaluate M random individuals (the initial population).
3: repeat

4: Ps
g ← Select m(≤ M) individuals from Pg according to a selection method.

5: Dg(x) = pg(x|Ps
g)← Estimate the joint probability distribution of the selected individuals.

6: Pg+1 ← Generate M individuals using Dg(x), and evaluate them.
7: g← g + 1.
8: until a stopping criterion is met.

In the case of adapting a Gaussian distribution model Dg(x) in Algorithm 1, it has the form
of a normal density with a mean µ̂ and a covariance matrix Σ. The earliest proposed EDAs were
based on simple univariate Gaussian distributions, such as the Marginal Distribution Algorithm for
continuous domains (UMDAG

c) and Population-Based Incremental Learning for continuous domains

Appl. Sci. 2020, 10, 6937 4 of 27

(PBILc) [26,45]. In these, all variables are taken to be completely independent of each other, and the
joint density function is

fl(x; Θl) =
n

∏
i=1

fl(xi; Θl
i), (2)

where Θl is a set of local parameters. Such models are simple and easy to implement with a
low computational cost, but they fail with high dependent variable problems. For this problem,
many EDAs based on multivariate Gaussian models have been proposed, which adapt the conventional
maximum likelihood-estimated multivariate Gaussian distribution, such as Normal IDEA [46,47],
EMNAglobal [26], and EGNA [25,26]. These methods have the same performance, since they are based
on the same multivariate Gaussian distribution, and there is no significant difference between them [26].
However, in these methods the dependence between variables is taken, so they have a poor exploitative
ability and the computational cost increases exponentially with the problem size [59]. To address this
problem, various extensions of these methods have been introduced, which depend on scaling Σ after
estimating the maximum likelihood according to certain criteria to improve the exploration quality.
This has been done in methods such as EEDA [48], SDR-AVS-IDEA [50], and CT-AVS-IDEA [49].

The EDA with Model Complexity Control (EDA-MCC) method was introduced to control the high
complexity of the multivariate Gaussian model without losing the dependence between variables [43].
Since the univariate Gaussian model has a simple structure and limited computational cost, it has
difficulty solving nonseparable problems. On other hand, the multivariate Gaussian model can solve
nonseparable problems, but it usually has difficulty as a result of its complexity and cost. In the
EDA-MCC method, the advantages of the univariate and multivariate Gaussian models are combined
according to certain criterion and by applying two main strategies:

• Weakly Dependent Variable Identification (WI). In this strategy, the correlation coefficients
between variables are calculated to measure how much they are dependent. This means that
the observed linear dependencies are measured by their correlation coefficient with each other,
as follows:

corr(xi, xj) =
cov(xi, xj)

σiσj
, (3)

where corr(xi, xj) is the linear correlation coefficient between xi and xj, cov(xi, xj) is their
covariance, σi and σj are their standard deviations, respectively, and i, j = 1, . . . , n.
Briefly, all variables are divided into two sets: W and S, where W is the set of weakly dependence
variables, and S is the set of strong dependent variables. These variable sets are defined as follows:

W = {xi : |corr(xi, xj)| ≤ θ, ∀j = 1, . . . , n, j 6= i, i = 1, . . . , n}, (4)

S = {xi : xi /∈W, i = 1, . . . , n}, (5)

where θ is a threshold (0 ≤ θ ≤ 1), and this reflects how much the user trusts the univariate
model in the problem. Algorithm 2 shows the main flow of the WI strategy.

Algorithm 2 Pseudo-code for WI

1: Use m individuals to calculate the correlation matrix C = (cij), where cij = corr(xi, xj), i, j = 1, . . . , n.
2: Use C to construct W and S as defined in Equations (4) and (5), respectively.
3: Estimate a univariate model for W based on the m selected individuals.

Appl. Sci. 2020, 10, 6937 5 of 27

• Subspace Modeling (SM). This strategy is applied on the S set. The performance of the
multivariate model needs a large population size and the complexity of computations increases
frequently. The SM strategy is applied on the variables set in S, which preferably has a limited
number of variables. If the size |S| of set S is not limited, then the population points are projected
to several subspaces of the n dimensional search space. Then, a multivariate model can be built
for each subspace, which means that the dependence is considered only between variables in the
same subspace. The main steps of the SM strategy are explained in Algorithm 3.

Algorithm 3 Pseudo-code for SM
1: Construct S as in Equation (5).
2: Randomly partition S into d|S|/ce nonintersected subsets: S1, S2, . . . Sd|S|/ce.
3: Estimate a multivariate model for each subset based on m selected individuals.

Parameter c is a predefined one that controls the number of the subspaces, where (1 ≤ c ≤ n).
After carrying out the WI and SM strategies, the final joint probability distribution function (pdf)

has the following form:

f (xi) = ∏
xi∈W

φi(xi) ·
d|S|/ce

∏
k=1

ψk(sk), (6)

where φi(·) is the univariate pdf of variable xi ∈W, and ψk(·) is the multivariate pdf of the variables
in Sk. The main steps of the EDA-MCC method are illustrated in Algorithm 4.

Algorithm 4 Pseudo-code for EDA-MCC

1: Generate an initial population P of M individuals.
2: repeat

3: Select m ≤ M individuals from P.
4: Call Algorithms 2 and 3 sequentially to build a model, as in Equation (6).
5: Generate new individuals P′: Variable values of an individual are generated independently from

φi(·) and ψk(·). Then, combine all generated variable values together to produce an individual.
6: P← P + P′.
7: until a stopping criterion is met.

3. Estimation of Distribution Algorithms for Simulation-Based Optimization

In this section, new EDA-based methods are proposed in order to deal with nonlinear and
stochastic programming problems. Moreover, a new sampling technique is introduced based on fuzzy
logic. Before presenting the proposed EDA-based methods, we illustrate the sampling techniques used
to deal with noise.

3.1. Sampling Techniques

Two different sampling techniques were used to build two EDA-based methods for stochastic
programming problems. The first sampling technique is the variable sampling path [30], while the other
is the proposed fuzzy sampling technique. The details of these sampling techniques are illustrated in
the following sections.

3.1.1. Variable Sampling Path

The variable-sample (VS) method [30] is defined as a class of methods that uses the Monte
Carlo simulation to solve the stochastic programming problem. This sampling technique invokes
several simulations to estimate the objective function value at a single solution. Search methods can
gain benefits from such sampling to convert the stochastic programming problem into a nonlinear

Appl. Sci. 2020, 10, 6937 6 of 27

programming one. Sampling Pure Random Search (SPRS) [30] is a random search algorithm that uses
the VS process. The average of variable-size samples replaces the objective function value of the SPRS
algorithm in each objective function evaluation call. The SPRS algorithm can converge, under certain
conditions, to an optimal local solution. The formal SPRS algorithm is shown in Algorithm 5.

Algorithm 5 Sampling Pure Random Search (SPRS) Algorithm

1: Generate a point x0 ∈ X at random, set an initial sample size N0, and k := 0.
2: Generate a point y ∈ X at random.
3: Generate a sample ωk

1, . . . , ωk
Nk

.

4: Compute f̂ (xk), f̂ (y) using the following formula: f̂ (x) =
F(x,ωk

1)+...+F(x,ωk
Nk

)

Nk
.

5: If f̂ (y) < f̂ (xk), then set xk+1 := y. Otherwise, set xk+1 := xk.
6: If the stopping criteria is satisfied, stop. Otherwise, update Nk, set k := k + 1 and go to Step 2.

3.1.2. Fuzzy Sampling

The basic study of possible definitions of a fuzzy number is proposed in [60]. In the case of a
valuation (Boolean) set, the membership of any element x ∈ X to the subset A(⊆ X) is given by

µA(x) =
{

1 iff x ∈ A,
0 iff x 6∈ A.

In the fuzzy set, the membership values fall in the real interval [0,1], as in [34], and µA measures
the degree of membership of an element x in X—i.e., µA(x) : X → [0, 1]. Many definitions have been
introduced for the membership function µ depending on the problem’s properties [39,61].

The average sampling in Algorithm 5 works well whenever the sample size N is sufficiently large.
However, it fails to estimate the objective function values with small sample sizes, especially in the
early stages of the search process, and promising solutions may be lost. Because of this, we proposed a
new sampling technique based on fuzzy sets for the better estimation of function values even with
relatively small sample sizes. Specifically, if our target is to estimate f̂ (x) using a sample of size N;
F(x, ω1), . . . ,F(x, ωN). The proposed fuzzy sampling technique defines that estimation as

f̂ (x) =
µ1F(x, ω1) + . . . + µNF(x, ωN)

∑N
i=1 µi

, (7)

where µi is the associated membership function for every simulated value F(x, ωi), and i = 1, . . . , N.
In order to compute the membership values, three featured sample values are stored. The first

two are the maximum value Fmax and the minimum value Fmin among the current sample values;
F(x, ω1), . . . ,F(x, ωN). The last feature value is called the guide value FG and is selected within
the interval [Fmin,Fmax]. Then, the membership values µi, i = 1. . . . , N, can be defined as in the
following formula:

µi =

1− FG−Fi

ρ , FG − ρ ≤ Fi ≤ FG,

1− Fi−FG
ρ , FG < Fi ≤ FG + ρ,

0, Fi ≤ FG − ρ, or Fi ≥ FG + ρ,

(8)

where ρ is a radius value set based on the sample size N. The calculation of the membership values
takes into consideration two main points:

• µi is set to take values between 0 and 1: its value is near to 1 when the sample values are close
to FG, and it is reduced and reaches 0 when it is far from this value at the end of the radius ρ,
which is initialized to be� (Fmax − Fmin) if the sample size is small;

• While the sample size N is increased during the search process, the values of µi become close to 1
since the radius ρ is expanded to cover the whole interval [Fmin,Fmax].

Appl. Sci. 2020, 10, 6937 7 of 27

Algorithm 6 contains the main steps of the proposed Fuzzy Sampling Random Search (FSRS)
method to deal with the objective function noise.

Algorithm 6 Fuzzy Sampling Random Search (FSRS)

1: Generate a point x0 ∈ X at random; set an initial sample size N0, and k := 0.
2: Generate a point y ∈ X at random.
3: Generate a sample ωk

1, . . . , ωk
Nk

.
4: for i = 1, . . . , Nk, do

5: Compute F(xk, ωk
i), and F(y, ωk

i).
6: end for
7: Sort the sample values to set Fmax and Fmin.
8: Set ρ = α(Fmax − Fmin), where α is a control parameter depends on Nk.
9: Choose a guide value FG ∈ [Fmin,Fmax].

10: for i = 1, . . . , Nk, do

11: Compute µi according to Equation (8).
12: end for
13: Evaluate f̂ (xk) and f̂ (y) using Equation (7).
14: If f̂ (y) < f̂ (xk), then set xk+1 := y. Otherwise, set xk+1 := xk.
15: If the stopping criteria is satisfied, stop. Otherwise, update Nk, set k := k + 1 and go to Step 2.

It is worth mentioning that several alternatives have been tested in our experiments to find
the best choice for the FG. The conclusion of those experiments is that the median value of
F(x, ω1), . . . ,F(x, ωN) gives the best algorithmic results.

3.2. EDA-Based Methods for Simulation-Based Optimization

The proposed EDA-based methods are a combination of the EDA–MCC method, which is stated
in Algorithm 4, and different sampling techniques for nonlinear and stochastic programming problems.
In our proposal to build the EDA model (6), we used the UMDAG

c model as a univariate Gaussian
model [26], in which the joint density function is defined as

φ(x) =
n

∏
i=1

φN(xi; µi, σ2
i) =

n

∏
i=1

1
σi
√

2π
e−(xi−µi)

2
/

2σ2
i , (9)

where µ = (µ1, . . . , µn) is the mean and σ2 = (σ2
1 , . . . , σ2

n) is the variance. Furthermore, the EEDA
model [48] was used as a multivariate Gaussian model which is an extension of the EMNAglobal
model [26]. The multivariate joint density function is defined as

ψ(x) = ψN(x̄i; µ̄, Σ) =
1

(2π)N/2|Σ|1/2 e−(x̄−µ̄)TΣ−1(x̄−µ̄)/2, (10)

where Σ is the covariance matrix. In the EEDA method, the covariance matrix is redefined in each
iteration by expanding the original matrix in the direction of the eigenvector corresponding to the
smallest eigenvalue. In other words, the minimum eigenvalue is reset to the value of the maximum
eigenvalue. Algorithm 7 illustrates the main steps of the proposed EDA-based method.

Appl. Sci. 2020, 10, 6937 8 of 27

Algorithm 7 EDA for Simulation-Based Optimization

1: Create an initial population P0 of M individuals.
2: Estimate the objective function values at P0 individuals.
3: Set the generation counter g := 0.
4: repeat

5: Select the best m ≤ M individuals Ps
g.

6: Compute the variable sets W and S using the WI strategy in Algorithm 2.
7: Estimate joint density function of W variables using Equation (9).
8: Apply the SM strategy using set S as in Algorithm 3.
9: Estimate the multivariate joint density function for each variable subset using Equation (10).

10: Generate new (M− L) individuals PC
g by using Equations (9) and (10) independently.

11: Estimate the objective function values at PC
g individuals.

12: Set Pg+1 = PC
g ∪ Ps

g.
13: Apply a local search to each individual in Pg+1.
14: Set g := g + 1.
15: until the stopping criterion is met.

Different EDA-based methods can be generated from Algorithm 7 according to the technique
used to estimate the objective function values in Steps 2 and 11. Therefore, we have three versions:

• ASEDA: The Average Sampling EDA if the average sampling is used to estimate the objective
function values, as in Algorithm 5;

• FSEDA: The Fuzzy Sampling EDA if the fuzzy sampling is used to estimate the objective function
values, as in Algorithm 6;

• DEDA: The deterministic EDA if the objective function has no noise and its value can be directly
calculated without simulation.

4. Numerical Experiments

The proposed methods were programmed in MATLAB (see the Supplementary Materials), and
tested using different benchmark test functions to prove their efficiency. Four test sets are used to
discuss the proposed method results:

• Set A: Contains 14 classical test functions with different dimensions from 2 to 30 [10,62], shown
in Appendix A;

• Set B: Contains 40 classical test functions with different dimensions from 2 to 30 [10,62], shown
in Appendix B;

• Set C: Contains seven test functions (f1– f7) with Gaussian noise (µ = 0, σ = 10), except f6 which
contains uniform random noise U(−17.32, 17.32). The function dimensions vary from 2 to 50,
shown in Appendix C;

• Set D: Contains 13 test functions (g1–g13) with Gaussian noise (µ = 0, σ = 0.2). Each function is
used with two dimensions—30 and 100—shown in Appendix D.

The versions of the main proposed method were tested using these test sets. Specifically, the DEDA
method was tested with Test Sets A and B, while the ASEDA and FSEDA methods were tested
with Test Sets C and D. Beside these test sets, we discuss three real-world applications in the next
section. To assess the statistical differences between the compared results, the nonparametric Wilcoxon
rank-sum test [63–67] was used. This test obtained the following statistical measures:

Appl. Sci. 2020, 10, 6937 9 of 27

• The associated p-value;
• The ranks R+ and R− which are computed as follows:

R+ = ∑
di>0

rank(di) +
1
2 ∑

di=0
rank(di),

R− = ∑
di<0

rank(di) +
1
2 ∑

di=0
rank(di),

where di is the difference between the i-th out of r results of the compared methods. Before discussing
the main results, we illustrate the parameter tuning and setting.

4.1. Parameter Tuning and Setting

In order to complete the description of our algorithms, the parameters are discussed in this
section. Table 1 contains the definitions of all parameters and their best values. Some numerical
experiments were tested to find the suitable values of these parameters. Parameter values were set to
be as independent from the problem as possible. Despite the the theoretical part of EDAs parameters
being studied before—for example, in [27]—the number of population size R values is still a main
factor that varies from problem to problem. In fact, trading off between the population size and the
number of generation is a main issue.

Before choosing a suitable value for parameter R, a comparison between different values of
R = 100, R = 200, and R = 500 was applied for both types of problems (global optimization,
simulation-based optimization). The number of function evaluations was set to be fixed at 500,000
in all of these experiments. Table 2 shows that for the global optimization problem, increasing the
population size does not have a positive effect on most problems. This means that the search process is
more qualified with an extra number of generations. For the simulation-based optimization problem,
Figure 1 shows an almost identical performance when applying different values of R = 100, R = 200,
R = 500, and R = 1000. Some functions need more exploration of the search space (increase R), such
as f3 and f5, but R = 100 is still the best choice for rest of the functions.

For parameters m and L, which follow parameter R, setting higher values yields higher
computational times without any significant improvement. For sample size parameters, the settings
follow the recommended values in [10,13].

Table 1. Parameters definition and values.

Parameter Definition Best Value

R The population size 100
m No. of selected individuals 0.15× R
L The solution generating parameter in Algorithm 7 10
Nmin The initial value for the sample size 10
Nmax The maximum value for the sample size 10,000
α The radius parameter Nk/Nmax

Appl. Sci. 2020, 10, 6937 10 of 27

Table 2. Average errors using different settings of parameter R for global optimization problems using
Test Set A.

f R = 100 R = 200 R = 500

RC 3.58× 10−7 3.58× 10−7 1.42× 10−4

GP 7.82× 10−14 7.80× 10−14 7.80× 10−14

R2 2.90× 10−3 3.14× 10−5 1.92× 10−2

H3,4 2.15× 10−6 2.15× 10−6 2.15× 10−6

S4,7 5.66× 10−7 5.66× 10−7 5.66× 10−7

P4,0.5 1.07× 10−1 4.54× 10−1 7.06× 10−1

T6 2.50× 10−3 4.04× 10−1 8.50× 10−5

RT10 3.27× 10−13 0.00 1.80× 10−3

R10 5.40× 10−1 7.99× 10−1 1.85
RT20 8.57× 10 7.70× 10 9.77× 10
R20 7.38 8.36 8.94
PW24 2.05× 10−10 3.22× 10−9 2.22× 10−3

DP25 6.80× 10−1 7.99× 10−1 9.06× 10−1

AK30 4.44× 10−15 3.03× 10−12 3.44× 10−4

f
1

f
2

f
3

f
4

f
5

f
6

f
7

Test Functions

0

5

10

15

20

25

A
v

e
ra

g
e

 E
rr

o
rs

R = 100

R = 200

R = 500

R = 1000

Figure 1. Average errors using different settings of parameter R for simulation-based optimization
problems using Test Set C.

4.2. Global Optimization Results

The proposed DEDA algorithm was tested to solve nonlinear programming problems using the
test functions in Set A and Set B. These test functions have diverse characteristics to assess various
difficulties that occur in global optimization problems. For all test results for global optimizations,
the records were obtained over 100 independent runs with a maximum function evaluation of 20,000.
First, Table 3 shows average errors (Av.) and standard deviation (Std.) obtained by the DEDA
method using Test Set B. It reached the global optima within error gaps less than 10−3 for 25 out of 40
test functions.

Appl. Sci. 2020, 10, 6937 11 of 27

Table 3. The deterministic Estimation of Distribution Algorithm (DEDA) results using Test Set B.

No. f Av. Std. No. f Av. Std.

1 RC 3.58× 10−7 0.00 2 B2 0.00 0.00
3 ES 3.86× 10−12 0.00 4 GP 7.82× 10−14 0.00
5 SH 1.48× 10−1 1.51 6 BL 3.73× 10−15 7.30× 10−15

7 BO 0.00 0.00 8 MT 2.34× 10−27 5.21× 10−25

9 HM 8.65× 10−8 0.00 10 SC2 2.16× 107 4.48× 107

11 R2 7.69× 10−5 5.91× 10−3 12 Z2 1.88× 10−130 2.40× 10−44

13 DJ 9.77× 10−114 9.33× 10−114 14 H3,4 2.15× 10−60 0.00
15 CV 2.35× 10−4 1.09× 10−1 16 S4,5 2.21× 10−7 0.00
17 S4,7 5.69× 10−7 7.49× 10−16 18 S4,10 9.82× 10−6 0.00
19 P4,0.5 7.69× 10−1 6.14× 10−1 20 P0

4,0.5 3.64× 10−2 2.19× 10−2

21 PS8,18,44,114 3.81× 10−1 3.53× 10−2 22 H6,4 1.96× 10−6 2.35× 10−13

23 SC8 1.39× 109 2.51× 109 24 T6 2.13× 10−1 9.44× 10−1

25 T10 5.76× 10 1.58 26 RT10 2.50× 10 8.18
27 G10 0.00 0.00 28 SS10 6.16× 10−50 9.56× 10−50

29 R10 1.88 9.97× 10−1 30 Z10 5.25× 10−3 4.20× 10−3

31 RT20 8.44× 10−12 7.04× 10−50 32 G20 0.00 0.00
33 SS20 4.32× 10−24 1.89× 10−29 34 R20 7.55 6.27× 10−1

35 Z20 1.98× 10−1 1.62× 10−1 36 PW24 5.33× 10−8 1.27× 10−7

37 DP25 8.15× 10−1 5.01× 10−2 38 L30 1.06× 10−22 5.12× 10−23

39 SR30 3.16× 10−25 1.78× 10−25 40 AK30 3.78× 10−12 5.89× 10−13

The DEDA results were compared with those of the scatter search methods introduced in [10]:

• Scatter Search (SS): The standard scatter search method.
• Directed Scatter Search (DSS): An SS-based method directed by a memory-based element called

gene matrix in order to increase the search diversity.

Table 4 shows the average errors (Av.), standard deviation (Std.) and success rates (Suc.)
obtained by each method using Test Set A. In general, the DEDA obtained lower average errors
and higher success rates than the other two methods, as can be seen in the ranks R+ and R− in
Table 5. However, there was no significant difference between these methods according to the p-values
obtained by the Wilcoxon rank-sum test, as shown in Table 5.

Table 4. Compared results of the DEDA, SS, and DSS methods using Test Set A.

SS DSS DEDA

f Av. Std. Suc. Av. Std. Suc. Av. Std. Suc.

RC 3.58× 10−7 8.48× 10−10 100 3.58× 10−7 5.83× 10−10 100 3.58× 10−7 0.00 100
GP 4.69× 10−11 1.85× 10−6 100 5.35× 10−11 7.65× 10−9 100 7.82× 10−14 0.00 100
R2 1.10× 10−11 3.68× 10−10 100 2.56× 10−11 1.22× 10−9 100 7.69× 10−5 5.91× 10−3 100
H3,4 2.11× 10−6 2.71× 10−9 100 2.15× 10−6 2.79× 10−9 100 2.15× 10−6 0.00 100
S4,7 2.94× 10−7 9.16× 10−8 100 3.22× 10−7 2.65× 10−7 100 5.67× 10−7 7.49× 10−16 100
P4,0.5 6.10× 10−1 4.80× 10−2 13 5.52× 10−1 5.90× 10−3 27 1.07× 10−1 2.19× 10−2 0
T6 2.39× 10−3 8.87× 10−4 80 2.70× 10−3 3.01× 10−3 77 2.52× 10−3 9.44× 10−1 0
RT10 4.66× 10−6 1.29× 10−6 100 1.92× 10−6 4.34× 10−7 100 3.27× 10−13 8.18 100
R10 1.85× 10 3.59 0 1.50× 10 1.69 0 5.42× 10−1 9.97× 10−1 0
RT20 3.56 1.10 0 5.01 7.88× 10−1 0 8.43 7.04× 10−50 0
R20 4.58× 10 2.79× 10 0 2.98× 10 2.13× 10 0 7.55 6.27× 10−1 0
PW24 4.71× 10 2.11× 10 0 1.62× 10 7.67 0 2.05× 10−10 1.27× 10−7 100
DP25 3.51 2.68 0 1.43 2.31× 10−1 0 6.80× 10−1 5.01× 10−2 0
AK30 1.04× 10 1.95 0 8.28 3.02 0 4.44× 10−15 5.89× 10−13 100

Appl. Sci. 2020, 10, 6937 12 of 27

Table 5. Wilcoxon rank-sum test for the results of Table 4.

Criterion Methods R+ R− p-Value Best Method

Average Errors DEDA, SS 30.5 74.5 0.1982 –
DEDA, DSS 21.5 83.5 0.2063 –

Success Rates DEDA, SS 54.5 50.5 0.6995 –
DEDA, DSS 54.5 50.5 0.6995 –

4.3. Fuzzy Sampling Performance

The FSRS (Algorithm 6) results were compared with those of the standard SPRS (Algorithm 5) in
high noise—i.e., N(0, 102). These results are illustrated in Figure 2 which shows the average f̂ (x) of
the best obtained solutions by each method for every test function. Tested functions with different
dimensions were selected from Test Set C. The sample size varies from 10 to 1000. The results shown in
Figure 2 reveal that the performance of the FSRS algorithm is consistently better than that of the SPRS
algorithm for small number values N. There is no significant difference between them with higher
sample sizes. Therefore, the proposed fuzzy sampling could efficiently deal with a wide range of noise,
especially with small sample sizes.

0 100 200 300 400 500 600 700 800 900 1000

Sample Sizes

0

0.5

1

1.5

2

2.5

3

3.5

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e
s

f
1
 with noisy of N(0,100)

FSRS

SPRS

0 100 200 300 400 500 600 700 800 900 1000

Sample Sizes

2

4

6

8

10

12

14

16

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e
s

f
2
 with noisy of N(0,100)

FSRS

SPRS

0 100 200 300 400 500 600 700 800 900 1000

Sample Sizes

10

20

30

40

50

60

70

80

90

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e
s

f
7
 with noisy of N(0,100)

FSRS

SPRS

Figure 2. The performance of Fuzzy Sampling Random Search (FSRS) and SPRA with different
sample sizes.

4.4. Simulation-Based Optimization Results

In this section, we give more details about the experimental results of the comparison between
the proposed FSEDA and ASEDA algorithms. Then, the results of the best method are compared with
other benchmark methods. Table 6 shows the best and average errors obtained by the two methods
using the seven test functions in Set C. The FSEDA method could obtain better solutions than the other

Appl. Sci. 2020, 10, 6937 13 of 27

method for six out of seven test functions, and its average solutions are better in five out of seven test
functions. Therefore, we used the FSEDA results to compare with the other benchmark methods.

Table 6. The best and average errors of the the Average Sampling Estimation of Distribution Algorithm
(ASEDA) and FSDEA methods using Test Set C.

ASEDA FSEDA

f Best Av. Std. Best Av. Std.

f1 1.05× 10−2 1.76× 10−1 3.88× 10−2 1.30× 10−2 7.15× 10−2 2.00× 10−1

f2 3.67 5.93 2.50 3.05 5.90 8.12× 10−1

f3 9.50× 10−1 1.86 1.50 3.68× 10−1 2.66 5.43× 10−1

f4 3.79 6.98 3.57 2.81 6.21 2.12
f5 4.60× 10−1 1.26 6.86× 10−1 2.45× 10−1 9.99× 10−1 5.12× 10−1

f6 7.71× 10−1 1.08 5.02× 10−1 3.43× 10−1 1.07 2.77× 10−1

f7 1.67 2.21 3.76× 10−1 1.39 1.80 2.80× 10−1

Two main comparison experiments are presented to test the FSEDA performance against some
benchmark methods. The first experiment used Test Set C to make the comparisons with methods
in [10,68], while the other experiment used Test Set D with methods in [12,13].

Table 7 shows the best and the average errors obtained by the proposed FSEDA method and the
following evolutionary-based methods:

• DESSP: Directed evolution strategies for stochastic programming [10].
• DSSSP: Directed scatter search for stochastic programming [10,68].

The results were obtained over 25 independent runs with maximum function evaluations equal
to 500,000. Moreover, Table 8 shows the statistical measures of the results compared in Table 7.
These statistical measures reveal that there is no significant difference between the proposed method
and the other two methods in terms of the best solution found or the average errors. However, for high
dimensional function f7, the proposed method demonstrated the best performance.

Table 7. The best and average errors of the FSDEA method compared with the DESSP and
DSSSP methods.

DESSP DSSSP FSDEA

f Best Average Std. Best Average Std. Best Average Std.

f1 5.02× 10−4 2.33× 10−1 1.06 1.46× 10−2 2.94× 10−1 2.97× 10−1 1.30× 10−2 7.15× 10−2 2.00× 10−1

f2 8.05× 10−1 3.55 1.37 4.08× 10−1 6.56 3.74 3.05 5.90 8.12× 10−1

f3 1.05× 10−3 3.31× 10−1 4.98× 10−1 5.90× 10−1 1.04 2.92× 10−1 3.68× 10−1 2.66 5.43× 10−1

f4 1.44× 10−1 3.75 5.96 2.75 6.71 3.97 2.81 6.21 2.12
f5 4.13× 10−4 3.87× 10−1 5.99× 10−1 2.82× 10−1 1.91 6.50× 10−1 2.45× 10−1 9.99× 10−1 5.12× 10−1

f6 1.24× 10−5 2.13× 10−2 7.68× 10−2 3.85× 10−4 9.21× 10−2 9.31× 10−2 3.43× 10−1 1.07 2.77× 10−1

f7 2.79× 10 3.96× 10 5.67 8.41 1.24× 10 2.64 1.39 1.80 2.80× 10−1

Table 8. Wilcoxon rank-sum test for the results of Table 7.

Criterion Methods R+ R− p-Value Best Method

Best Solutions FSDEA, DESSP 21 7 0.1282 –
FSDEA, DSSSP 14 14 0.9015 –

Average Errors FSDEA, DESSP 20 8 0.6200 –
FSDEA, DSSSP 11 17 0.6200 –

Appl. Sci. 2020, 10, 6937 14 of 27

The other comparison experiment compared the FSEDA results with those of the following
benchmark methods [12,13] using Test Set D with dimensions 30 and 100.

• EDA–MMSS: An EDA-based method with a modified sampling search mechanism called
min–max sampling [13].

• DE/rand/1: A modified version of the standard differential evolution of DE/rand/1/bin
algorithm [12].

• jDE: An adaptive differential evolution method [69].
• GADS: Genetic algorithm with duration sizing [70].
• DERSFTS: Differential evolution with randomized scale factor and threshold-based selection [71].
• OBDE: Opposition-based differential evolution [72].
• NADE: Noise analysis differential evolution [73].
• MUDE: Memetic differential evolution for noisy optimization [74].
• MDE–DS: Modified differential evolution with a distance-based selection [12].
• NRDE: Noise resilient differential evolution [75].

The average errors over 30 independent runs are reported in the following tables,
with computational budgets of 100,000 and 300,000 function evaluations for dimensions 30 and
100, respectively. Table 9 displays the average errors for test functions with n = 30, and the statistical
measures of these results are presented in Table 10. The FSEDA outperforms seven out of nine methods
in terms of obtaining better average solutions.

Table 9. Average errors obtained by the compared methods for Test Set D with n = 30, and 100,000
maximum function evaluations.

FSEDA EDA-MMSS DE/rand/1 jDE GADS

g Av. Std. Av. Std. Av. Std. Av. Std. Av. Std.

g1 6.82× 10−2 2.00× 10−2 5.60× 10−1 1.75× 10−1 3.67 3.26× 10−2 4.59× 10−1 7.41× 10−2 1.95 2.26× 10−1

g2 6.48× 10−2 3.71× 10−2 8.54 2.26 5.89× 10 1.10× 10 4.25× 10 7.54 3.24× 10 1.88× 10
g3 3.88× 10−2 1.20× 10−2 9.25 3.39 6.56× 103 1.65× 103 4.27× 103 1.08× 103 7.44× 103 3.89× 103

g4 3.20× 10−2 1.34× 10−2 4.14 9.84× 10−1 1.02× 102 2.71× 10 5.82× 10 1.82× 10 6.49× 10 3.54× 10
g5 4.05× 10−3 6.49× 10−4 2.82× 10−1 1.08× 10−1 9.98× 10−3 7.58× 10−3 7.67× 10−1 6.55× 10−2 2.76× 10−2 1.06× 10−2

g6 8.21× 10−1 1.16× 10−1 2.42 3.53× 10−1 4.18× 102 7.79× 10 1.99× 102 4.28× 10 4.75× 102 2.48× 102

g7 9.73 3.00 2.28× 10 2.08 6.34 2.07 2.08× 10 2.04 1.29× 10 1.06
g8 2.40× 10−2 1.02× 10−2 3.73× 10 3.24× 10 1.65× 104 4.30× 103 9.19× 103 2.06× 103 1.05× 104 6.43× 103

g9 1.29× 10 1.04 1.12× 10 8.01× 10−1 5.74 5.60× 10−1 4.65 1.31 3.81 2.12
g10 1.85× 102 5.53× 10 4.26× 10 1.51× 10 3.91× 102 6.50× 10 2.90× 102 3.82× 10 2.31× 102 6.27× 10
g11 2.36× 10 1.73 4.37× 10 8.79 6.36× 103 2.09× 103 4.12× 103 1.68× 103 7.50× 103 2.12× 103

g12 2.46× 104 4.04× 103 4.51× 103 2.95× 103 7.89× 103 5.77× 102 8.22× 103 9.54× 102 6.09× 103 1.03× 103

g13 1.12 2.46× 10−1 6.19× 10−1 2.31× 10−1 1.18 3.02× 10−1 9.91× 10−1 3.19× 10−1 1.46 5.39× 10−1

DERSFTS OBDE NADE MUDE MDE-DS

g Av. Std. Av. Std. Av. Std. Av. Std. Av. Std.

g1 1.10 4.77× 10−1 3.35 3.40× 10−1 2.99× 10−1 8.88× 10−2 2.59× 10−1 6.99× 10−2 0.00 0.00
g2 5.67× 10 9.79 5.69× 10 1.13× 10 3.29× 10 6.70 2.69× 10 6.98 8.53× 10−3 2.84× 10−2

g3 6.84× 103 2.21× 103 8.23× 103 1.85× 103 3.32× 103 1.17× 103 2.36× 103 1.06× 103 7.08× 10−4 8.56× 10−5

g4 1.06× 102 3.61× 10 1.45× 102 2.68× 10 4.53× 10 2.14× 10 3.68× 10 1.33× 10 7.92× 10−2 2.56× 10−6

g5 7.84× 10−1 5.88× 10−2 4.16× 10−2 2.51× 10−2 8.30× 10−1 6.87× 10−2 7.69× 10−1 4.65× 10−2 5.41× 10−4 9.45× 10−8

g6 3.95× 102 1.37× 102 5.21× 102 7.50× 10 1.65× 102 6.29× 10 1.46× 102 4.45× 10 1.41× 10−3 1.01
g7 8.52 2.30 9.27 1.97 2.46× 10 1.35 2.32× 10 1.27 2.02 5.45
g8 1.66× 104 4.53× 103 2.15× 104 4.89× 103 6.84× 103 1.79× 103 5.28× 103 2.12× 103 7.81× 10−1 2.21× 10−1

g9 3.92 1.40 4.25 8.73× 10−1 5.05 1.16 5.41 1.36 1.39 2.15
g10 3.83× 102 5.63× 10 3.78× 102 4.66× 10 1.96× 102 5.00× 10 2.00× 102 4.30× 10 1.89× 10−2 2.34× 10−1

g11 6.12× 103 3.03× 103 7.26× 103 2.18× 103 3.76× 103 2.28× 103 2.49× 103 1.71× 103 2.60× 10 2.32
g12 1.01× 104 8.28× 102 8.03× 103 5.42× 102 5.60× 103 8.80× 102 6.00× 103 9.99× 102 0.00 0.00
g13 5.89× 10−1 3.01× 10−1 1.08 2.99× 10−1 1.82 2.52× 10−1 1.57 2.80× 10−1 1.03× 10 4.23

Appl. Sci. 2020, 10, 6937 15 of 27

Table 10. Wilcoxon rank-sum test for the results of Table 9.

Criterion Methods R+ R− p-Value Best Method

Average Errors

FSEDA, EDA–MMSS 33 58 0.1370 –
FSEDA, DE/rand/1 21 70 0.0313 FSEDA

FSEDA, jDE 18 73 0.0183 FSEDA
FSEDA, GADS 18 73 0.0225 FSEDA

FSEDA, DERSFTS 22 69 0.0240 FSEDA
FSEDA, OBDE 22 69 0.0240 FSEDA
FSEDA, NADE 17 74 0.0138 FSEDA
FSEDA, MUDE 17 74 0.0183 FSEDA

FSEDA, MDE–DS 64 27 0.0812 –

The results of test functions with n = 100 are shown in Table 11. Their statistical measures
are reported in Table 12. The FSEDA method outperformed six out of nine methods used in this
comparison in terms of average solution quality.

Table 11. Average errors obtained by the compared methods for Test Set D with n = 100, and 300,000
maximum function evaluations.

FSEDA DE/rand/1 jDE GADS DERSFTS

g Av. Std. Av. Std. Av. Std. Av. Std. Av. Std.

g1 1.71× 10−1 6.15× 10−2 3.67 1.18× 10−2 8.13× 10−1 1.31× 10−1 3.01 8.21× 10−2 1.34 1.81× 10−1

g2 2.09 5.63× 10−1 1.71× 102 1.86× 10 1.36× 102 1.54× 10 1.52× 102 1.43× 10 1.64× 102 1.86× 10
g3 1.89× 10−1 7.82× 10−2 7.89× 104 8.59× 103 4.17× 104 6.64× 103 8.35× 104 2.67× 104 4.98× 104 1.22× 104

g4 9.02× 10−2 2.51× 10−2 4.03× 102 6.03× 10 2.01× 102 2.95× 10 3.87× 102 3.90× 10 2.35× 102 4.45× 10
g5 4.57× 10−4 8.43× 10−3 3.29× 10−3 1.74× 10−3 1.44× 10−1 4.27× 10−2 4.85× 10−3 5.85× 10−4 2.26× 10−1 6.38× 10−2

g6 1.09 1.65× 10−1 1.48× 103 1.91× 102 7.29× 102 1.06× 102 1.43× 103 2.36× 102 8.43× 102 2.09× 102

g7 1.93× 10 5.84 1.04× 10 1.99 5.81× 10 3.41 1.80× 10 1.12 2.98× 10 5.34
g8 2.06× 10−1 1.87× 10−1 2.18× 105 3.05× 104 1.00× 105 1.56× 104 2.05× 105 4.21× 104 1.36× 105 3.55× 104

g9 4.65× 10 3.32 1.53× 10 2.08 1.04× 10 3.18 2.48× 10 3.89 9.37 3.91
g10 9.19× 102 3.25× 102 1.21× 103 1.02× 102 1.08× 103 7.29× 10 1.15× 103 6.02× 10 1.18× 103 7.04× 10
g11 9.09× 10 1.83× 10 2.03× 104 3.06× 103 1.00× 104 2.52× 103 2.28× 104 1.01× 104 1.21× 104 3.78× 103

g12 4.45× 105 1.63× 105 2.68× 104 1.17× 103 3.97× 104 1.81× 103 2.88× 104 1.07× 103 3.18× 104 1.35× 103

g13 6.03× 10−1 2.98× 10−1 1.03 2.02× 10−1 6.82× 10−1 1.54× 10−1 1.13 1.74× 10−1 4.61× 10−1 1.76× 10−1

OBDE NADE MUDE NRDE MDE-DS

g Av. Std. Av. Std. Av. Std. Av. Std. Av. Std.

g1 3.61 2.08× 10−2 3.65× 10−1 1.04× 10−1 3.35× 10−1 7.49× 10−2 0.00 0.00 0.00 0.00
g2 1.99× 102 2.44× 10 7.82× 10 1.55× 10 6.18× 10 9.87 1.25 6.36× 10−1 6.46× 10−1 5.21
g3 1.02× 105 1.35× 104 3.15× 104 7.64× 103 2.61× 104 7.26× 103 2.61 2.79 4.41× 10−1 8.48× 10−1

g4 5.59× 102 7.46× 10 1.24× 102 3.30× 10 1.06× 102 2.16× 10 5.91× 10−1 5.03× 10−1 6.68× 10−2 1.24× 10−2

g5 5.79× 10−3 8.33× 10−4 3.75× 10−1 8.11× 10−2 1.70× 10−1 4.36× 10−2 1.54× 10−3 6.03× 10−2 4.82× 10−4 2.45
g6 2.00× 103 2.19× 102 4.50× 102 1.55× 102 4.00× 102 1.05× 102 1.76 7.00× 10−1 7.73× 10−2 4.54× 10−1

g7 1.85× 10 2.77 6.53× 10 3.43 7.20× 10 2.22 7.10 1.34 1.24 2.14× 10−1

g8 2.92× 105 4.01× 104 6.60× 104 1.89× 104 6.11× 104 1.82× 104 1.09 1.53 3.69× 10−2 1.45
g9 7.65 2.98 1.29× 10 2.03 1.28× 10 2.26 4.85× 10 5.78× 10−2 6.22 1.21
g10 1.34× 103 1.43× 102 5.01× 102 8.09× 10 5.80× 102 8.04× 10 1.35× 10−1 1.09× 10−1 1.54× 10−2 4.75× 10−3

g11 2.83× 104 5.26× 103 8.18× 103 3.20× 103 7.16× 103 2.46× 103 1.07× 102 2.16× 10 9.45× 10 2.78
g12 2.78× 104 1.19× 103 1.96× 104 1.64× 103 2.06× 104 1.74× 103 0.00 0.00 0.00 0.00
g13 8.49× 10−1 1.76× 10−1 1.78 1.12× 10−1 1.57 1.90× 10−1 1.97× 10 2.46 1.86× 10 5.46× 10−1

Table 12. Wilcoxon rank-sum test for the results of Table 11.

Criterion Methods R+ R− p-Value Best Method

Average Errors

FSEDA, DE/rand/1 22 69 0.0402 FSEDA
FSEDA, jDE 17 74 0.0402 FSEDA

FSEDA, GADS 21 70 0.0313 FSEDA
FSEDA, DERSFTS 19 72 0.0313 FSEDA

FSEDA, OBDE 21 70 0.0402 FSEDA
FSEDA, NADE 25 66 0.0355 FSEDA
FSEDA, MUDE 25 66 0.0513 –
FSEDA, NRDE 41 50 0.6260 –

FSEDA, MDE–DS 68 23 0.0812 –

Appl. Sci. 2020, 10, 6937 16 of 27

5. Stochastic Programming Applications

In this section, we investigate the strength of the proposed methods in solving real-world problems.
Therefore, the FSEDA and ASEDA methods attempted to find the best solutions for three different real
stochastic programming applications:

• The product mix (PROD-MIX) problem [76,77];
• The modified production planning Kall and Wallace (KANDW3) problem [77,78];
• The two-stage optimal capacity investment Louveaux and Smeers (LANDS) problem [77,79].

These applications are constrained stochastic programming problems. Therefore, the penalty
methodology [80] was used to transform these constrained problems into a series of unconstrained
ones. These unconstrained solutions are assumed to converge to the solutions of the corresponding
constrained problem.

To solve these problems, the proposed EDA-based methods were used with the parameters in
Table 1, except the population size, which was adjusted to R = 300. The penalty parameter was set to
λ = 1000. The algorithms were terminated when they reached 30, 000 function evaluations.

5.1. PROD-MIX Problem

This problem assumes that a furniture shop has two workstations (j = 1, 2); the first workstation
is for carpentry and the other for finishing. The furniture shop has four products (i = 1, . . . , 4).
Each product i consumes a certain number of man-hours tij at j a workstation, with man-hours hj being
limited at each workstation j. The shop should purchase man-hours vj from outside the workstation j
if the man-hours exceed the limit. Each product earns a certain profit ci. The most important aspect is
to maximize the total profit of our shop and minimize the cost of purchased man-hours.

5.1.1. The Mathematical Formulation of the PROD-MIX Problem

The formal description of the PROD-MIX Problem can be defined as follows [76,77]. The required
values for parameters and constants are also expressed.

i The product class (i = 1, . . . , 4).
j The workstation (j = 1, 2).
xi The quantities of product (decision variables).
vj The outside purchased man-hours for workstation j.
ci The profit per product unit at class i, c = [12.0, 20.0, 18.0, 40.0].
qj The man-hour cost for workstation j, q = [5.0, 10.0].
tij Random man-hours at workstation j per unit of product class i,

t =

[
U(3.5, 4.5) U(8.0, 10.0) U(6.0, 8.0) U(9.0, 11.0)
U(0.8, 1.2) U(0.8, 1.2) U(2.5, 3.5) U(36.0, 44.0)

]
.

hi Random available man-hours at j workstation,
h = [N(6000, 100), N(4000, 50)].

Therefore, the object function for the PROD-MIX Problem can be expressed as

f (x, v) = max

(
∑

i
cixi −E[∑

j
qjvj]

)
, (11)

s.t. ∑i tijxi < hj + vj, ∀ j, (12)

xi, vi ≥ 0, ∀ i, j.

Appl. Sci. 2020, 10, 6937 17 of 27

5.1.2. Results of the PROD-MIX Problem

The FSEDA method found a new solution with value fmax = 20, 580.99, and the decision variable
values xmax = (1356.2, 17.4, 88.1, 38.1). The best known value for this problem is f ∗ = 17, 730.3, [76,77].
Figure 3 shows the comparison between the performance of the ASEDA and FSEDA methods.
This figure shows that the FSEDA method demonstrated the best performance in terms of reaching the
optimal solution.

0 0.5 1 1.5 2 2.5 3

Function Evaluations 10
4

1.92

1.94

1.96

1.98

2

2.02

2.04

2.06

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e
s

10
4 PROD-MIX Problem

ASEDA

FSEDA

Figure 3. The FSEDA and ASEDA performance for the product mix (PROD-MIX) Problem.

5.2. The KANDW3 Problem

In the KANDW3 Problem [77,78], a refinery makes J different products by blending I raw
materials. The refinery produces the quantities xit of the raw material i in period t with cost ci to meet
the demands djt. Each product j requires the raw material i to be stored in aij. If the refinery does not
satisfy the demands in period t, it should outsource y the product with cost h. The main objective is to
satisfy the demand completely with a minimum cost.

5.2.1. The Mathematical Formulation of the KANDW3 Problem

The formal description of the KANDW3 Problem can be defined as follows [77,78]. The required
values for parameters and constants are also expressed.

i The materials (i = 1, . . . , I).
j The products (j = 1, . . . , J).
t The time periods (t = 1, . . . , T).
xit The quantity of material i in the period t (decision variables).
yjt The quantity of outsourced product j in period t.
ci The cost of raw material i, c = [2.0, 3.0].
aij The amount of raw material i to a unit of product j,

a =

[
2.0 6.0
3.0 3.4

]
.

hjt The cost of outsourced product j in period time t,

h =

[
7.0 10.0

12.0 15.0

]
.

b The capacity of the inventory, b = 50.
djt Random demands of product j in period t.

Appl. Sci. 2020, 10, 6937 18 of 27

The values for demands can be obtained from the Figure 4. The object function for the KANDW3
Problem [77,78] can be expressed as

f (x, v) = min

(
∑
i,t

cixit +E[∑
j,t

hjtyjt]

)
. (13)

s.t. ∑i,t xit ≤ b,

v ∑i aijxit + yjt ≥ djt, ∀ j, t, (14)

xit, yjt ≥ 0, ∀ i, j, t.

Figure 4. Demand values in the The modified production planning Kall and Wallace (KANDW3) Problem.

5.2.2. Results of KANDW3 Problem

The FSEDA method found the objective function value fmin = 1558.9, with the decision variable
values xmin = (2, 13, 10, 20). The best known value for the KANDW3 Problem is f ∗ = 2613,
as mentioned in [78]. Therefore, the proposed method found a new minimal value for the KANDW3
Problem. The comparison between the ASEDA and FSEDA methods is shown in Figure 5. In this
figure, the FSEDA method provided better solutions as compared to the ASEDA method.

Appl. Sci. 2020, 10, 6937 19 of 27

0 0.5 1 1.5 2 2.5 3

Function Evaluations 10
4

1500

1600

1700

1800

1900

2000

2100

2200

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e
s

KANDW3 Problem

ASEDA

FSEDA

Figure 5. The FSEDA and ASEDA performance for the KANDW3 Problem.

5.3. The LANDS Problem

Power plants are the key issue in the LANDS Problem [77,79]. Assume that there are four types
of power plants which can be operated by three different modes to meet the electricity demands;
the operating level yij of power plant i in mode j to satisfy the demands dj with the cost hij. The budget
b is considered as a constraint which limits the total cost. The main objective is to determine the
optimal capacity investment xi in the power plant i.

5.3.1. The Mathematical Formulation of the LANDS Problem

The formal description of the LANDS Problem can be defined as follows [77,79]. The required
values for parameters and constants are also expressed.

i The power plant type (i = 1, . . . , 4).
j The operating mode (j = 1, . . . , 3).
xi The capacity of power plant i (decision variable).
yij The operating level of power plant i in mode j.
ci The unit cost of capacity installed for plant type i, c = [10.0, 7.0, 16.0, 6.0].
hij The unit cost of operating level of power plant i in mode j,

h =

40.0 24.0 4.0
45.0 27.0 4.5
32.0 19.2 3.2
55.0 33.0 5.5

.

m The minimum total installed capacity m = 12.0.
b The available budget for capacity installment, b = 120.0.
dj Random power demands in mode j, d = [ε, 3.0, 2.0],

where ε has values 3.0, 5.0, or 7.0 with probability 0.3, 0.4, and 0.3, respectively.

Therefore, the object function for the LANDS Problem [77,79] can be expressed as

f (x, v) = min

(
∑
i,t

cixi +E[∑
i,j

hijyij]

)
, (15)

Appl. Sci. 2020, 10, 6937 20 of 27

s.t. ∑i xi ≥ m,

∑i cixi ≤ b,

∑j yij ≤ xi, ∀ i, (16)

∑i yij ≥ d̄j, ∀ j,

xi, yij ≥ 0. ∀ i, j.

5.3.2. Results of the LANDS Problem

The objective function value fmin = 413.616 was obtained by the FSEDA method with the decision
variables xmin = (2.6, 2.7, 2.6, 4.3). The best known function value for this problem is f ∗ = 381.85,
which is presented in [79]. Figure 6 presents the comparison between the FSEDA and ASEDA
performance for the LANDS Problem. In Figure 6, the FSEDA method reached the best solution
faster than the ASEDA method.

0 0.5 1 1.5 2 2.5 3

Function Evaluations 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

 V
a
lu

e
s

LANDS Problem

ASEDA

FSEDA

Figure 6. The FSEDA and ASEDA performance for the two-stage optimal capacity investment
Louveaux and Smeers (LANDS) Problem.

6. Conclusions

In this paper, four new algorithms are presented to deal with various problems and applications.
The first method is called Fuzzy Sampling Random Search (FSRS), which is a new sampling search
technique. The other three methods are EDA-based methods which are denoted by DEDA, ASEDA,
and FSEDA. The DEDA method is proposed to deal with deterministic nonlinear programming
problems. While the ASEDA and FSEDA methods are designed with average and fuzzy sampling
techniques, respectively, to deal with stochastic programming problems. Several sets of benchmark
tests involving nonlinear and stochastic programming problems were tested, and the results
demonstrate the promising performance of the novel methods. In fact, using a fuzzy membership
function is very efficient in containing the anomalous function simulations resulting from small
sample sizes. The numerical simulations show that the ASEDA and FSEDA methods are promising
simulation-based optimization tools. Moreover, the FSEDA method obtained new optimal solutions
for two out of three real-world applications. Finally, the experimental analysis of the proposed
methods has enabled us to suggest extending the present work using different metaheuristics to solve
simulation-based optimization problems in both continuous and combinatorial domains.

Appl. Sci. 2020, 10, 6937 21 of 27

Supplementary Materials: The following are available at http://www.mdpi.com/2076-3417/10/19/6937/s1:
MATLAB codes for the FSEDA method.

Author Contributions: Conceptualization, A.-R.H. and A.A.A.; methodology, A.-R.H., A.A.A., and A.F.; software,
A.A.A.; validation, A.-R.H. and A.A.A.; formal analysis, A.-R.H., A.A.A., and A.F.; investigation, A.-R.H.
and A.A.A.; resources, A.-R.H., A.A.A., and A.F.; data creation, A.-R.H. and A.A.A.; writing—original draft
preparation, A.-R.H. and A.A.A.; writing—review and editing, A.-R.H. and A.F.; visualization, A.-R.H., A.A.A.,
and A.F.; project administration, A.-R.H.; funding acquisition, A.-R.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the National Plan for Science, Technology, and Innovation (MAARIFAH)—King
Abdulaziz City for Science and Technology—the Kingdom of Saudi Arabia, award number (13-INF544-10).

Acknowledgments: The authors would like to thank King Abdulaziz City for Science and Technology,
the Kingdom of Saudi Arabia, for supporting project number (13-INF544-10).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Classical Test Functions—Set A

Set A contains 14 test functions listed in Table A1 [10,62].

Table A1. Test functions for global optimization: Set A.

No. f Function Name n No. f Function Name n

1 RC Branin RCOS 2 8 RT10 Rastrigin 10
2 GP GoldsteinPrice 2 9 R10 Rosenbrock 10
3 R2 Rosenbrock 2 10 RT20 Rastrigin 20
4 H3,4 Hartmann 3 11 R20 Rosenbrock 20
5 S4,7 Shekel 4 12 PW24 Powell 24
6 P4,0.5 Perm 4 13 DP25 DixonPrice 25
7 T6 Trid 6 14 AK30 Ackley 30

Appendix B. Classical Test Functions—Set B

Set B contains 40 test functions listed in Table A2 [10,62].

Table A2. Test functions for global optimization: Set B.

No. Function Name f n No. Function Name f n

1 Branin RCOS RC 2 2 Bohachevsky B2 2
3 Easom ES 2 4 Goldstein Price GP 2
5 Shubert SH 2 6 Beale BL 2
7 Booth BO 2 8 Matyas MT 2
9 Hump HM 2 10 Schwefel SC2 2

11 Rosenbrock R2 2 12 Zakharov Z2 2
13 De Joung DJ 3 14 Hartmann H3,4 3
15 Colville CV 4 16 Shekel S4,5 4
17 Shekel S4,7 4 18 Shekel S4,10 4
19 Perm P4,0.5 4 20 Perm P0

4,0.5 4
21 Power Sum PS8,18,44,114 4 22 Hartmann H6,4 6
23 Schwefel SC8 6 24 Trid T6 6
25 Trid T10 10 26 Rastrigin RT10 10
27 Griewank G10 10 28 Sum Squares SS10 10
29 Rosenbrock R10 10 30 Zakharov Z10 10
31 Rastrigin RT20 20 32 Griewank G20 20
33 Sum Squares SS20 20 34 Rosenbrock R20 20
35 Zakharov Z20 20 36 Powell PW24 24
37 DixonPrice DP25 25 38 Levy L30 30
39 Sphere SR30 30 40 Ackley AK30 30

http://www.mdpi.com/2076-3417/10/19/6937/s1

Appl. Sci. 2020, 10, 6937 22 of 27

Appendix C. Test Functions with Noise—Set C

Set C contains seven test functions (f1– f7), and Gaussian noise with (µ = 0, σ = 10) was added to
each function except f6, which contains uniform random noise U(−17.32, 17.32).

Appendix C.1. Goldstein and Price Function

Definition: f1(x) = [1+(x1 + x2 + 1)2(19− 14x1 + 13x2
1− 14x2 + 6x1x2 + 3x2

2)][30+(2x1− 3x2)
2(18−

32x1 + 12x2
1 − 48x2 − 36x1x2 + 27x2

2)].
Search space: −2 ≤ xi ≤ 2, i = 1, 2.
Global minimum: x∗ = (0,−1); f1(x∗) = 3.

Appendix C.2. Rosenbrock Function

Definition: f2(x) = ∑4
i=1

(
100

(
x2

i − xi+1
)
)2 + ((xi − 1)2

)
+ 1.

Search space: −10 ≤ xi ≤ 10, i = 1, 2, . . . , 5.
Global minimum: x∗ = (1, . . . , 1), f2(x∗) = 1.

Appendix C.3. Griewank Function

Definition: f3(x) = 1
40 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 2.

Search space: −10 ≤ xi ≤ 10, i = 1, 2.
Global minimum: x∗ = (0, 0), f3(x∗) = 1.

Appendix C.4. Pinter Function

Definition: f4(x) = ∑n
i=1 ix2

i + ∑n
i=1 20i sin2(xi−1 sin xi − xi + sin xi+1) + ∑n

i=1 i log10[1+ i(x2
i−1− 2xi +

3xi+1 − cos xi + 1)2], where x0 = xn and xn+1 = x1.
Search space: −10 ≤ xi ≤ 10, i = i = 1, 2, . . . , 5.
Global minimum: x∗ = (0, . . . , 0), f4(x∗) = 1.

Appendix C.5. Modified Griewank Function

Definition: f5(x) = 1
40 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
−∏n

i=1 e−x2
i + 2.

Search space: −10 ≤ xi ≤ 10, i = 1, 2.
Global minimum: x∗ = (0, 0), f5(x∗) = 1.

Appendix C.6. Griewank Function with Non-Gaussian Noise

Definition: f6(x) = 1
40 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 2.

The simulation noise was changed to the uniform distribution U(−17.32, 17.32)
Search space: −10 ≤ xi ≤ 10, i = 1, 2.
Global minimum: x∗ = (0, 0), s f6(x∗) = 1.

Appendix C.7. Griewank Function with (50D)

Definition: f7(x) = 1
40 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 2.

Search space: −10 ≤ xi ≤ 10, i = 1, 2, . . . , 50.
Global minimum: x∗ = (0, . . . , 0), , f7(x∗) = 1.

Appendix D. Test Functions with Noise—Set D

Set D contains 13 test functions (g1–g13), and Gaussian noise with (µ = 0, σ = 0.2) was added to
each function.

Appl. Sci. 2020, 10, 6937 23 of 27

Appendix D.1. Ackley Function

Definition: g1(x) = 20 + e− 20e−
1
5

√
1
n ∑n

i=1 x2
i − e−

1
n ∑n

i=1 cos(2πxi).
Search space: −15 ≤ xi ≤ 30, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g1(x∗) = 0.

Appendix D.2. Alpine Function

Definition: g2(x) = ∑n
i=1 |xi sin xi + 0.1xi|.

Search space: −10 ≤ xi ≤ 10, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g2(x∗) = 0.

Appendix D.3. Axis Parallel Function

Definition: g3(x) = ∑n
i=1 ix2

i .
Search space: −5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g3(x∗) = 0.

Appendix D.4. DeJong Function

Definition: g4(x) = ‖x‖2.
Search space: −5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g4(x∗) = 0.

Appendix D.5. Drop Wave Function

Definition: g5(x) = −
1+cos 12

√
‖x‖2

1
2 ‖x‖2+2

.

Search space: −5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g5(x∗) = 0.

Appendix D.6. Griewank Function

Definition: g6(x) = 1
40 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 2.

Search space: −600 ≤ xi ≤ 600, i = 1, 2, . . . , 50.
Global minimum: x∗ = (0, . . . , 0), g6(x∗) = 1.

Appendix D.7. Michalewicz Function

Definition: g7(x) = −∑2
i=1 sin (xi) sin2m

(
ix2

i
π

)
; m = 10.

Search space: 0 ≤ xi ≤ π, i = 1, 2, . . . , n.
Global minima: g7(x∗) = −29.6309; n = 30.

Appendix D.8. Moved Axis Function

Definition: g8(x) = ∑n
i=1 5ix2

i .
Search space: −5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); g8(x∗) = 0.

Appendix D.9. Pathological Function

Definition: g9(x) =
n−1

∑
i=1

[
1
2 +

sin2
(√

100x2
i +x2

i+1−0.5
)

1+10−3(x2
i −2xixi+1+x2

i+1)
2

]
.

Search space: −100 ≤ xi ≤ 100, i = 1, 2, . . . , n.

Appl. Sci. 2020, 10, 6937 24 of 27

Appendix D.10. Rastrigin Function

Definition: g10(x) = 10n + ∑n
i=1
(

x2
i − 10 cos (2πxi)

)
.

Search space: −2.56 ≤ xi ≤ 5.12, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), g10(x∗) = 0.

Appendix D.11. Rosenbrock Function

Definition: g11(x) = ∑4
i=1

(
100

(
x2

i − xi+1
)
)2 + ((xi − 1)2

)
+ 1.

Search space: −10 ≤ xi ≤ 10, i = 1, 2, . . . , 5.
Global minimum: x∗ = (1, . . . , 1), g11(x∗) = 1.

Appendix D.12. Schwefel Function

Definition: g12(x) = −∑n
i=1

(
xi sin

√
|xi|
)

.
Search space: −500 ≤ xi ≤ 500, i = 1, 2, . . . , n.
Global minimum: x∗ = (1, . . . , 1), g12(x∗) = −418.9829n.

Appendix D.13. Tirronen Function

Definition: g13(x) = 3e−
‖x‖2
10n − 10e−8‖x‖2

+ 5
2n ∑n

i=1 cos
[
5
(
xi + (1 + i mod 2) cos ‖x‖2)].

Search space: −10 ≤ xi ≤ 5, i = 1, 2, . . . , n.

References

1. Kizhakke Kodakkattu, S.; Nair, P. Design optimization of helicopter rotor using kriging. Aircr. Eng.
Aerosp. Technol. 2018, 90, 937–945. [CrossRef]

2. Kim, P.; Ding, Y. Optimal design of fixture layout in multistation assembly processes. IEEE Trans. Autom.
Sci. Eng. 2004, 1, 133–145. [CrossRef]

3. Kleijnen, J.P. Simulation-optimization via Kriging and bootstrapping: A survey. J. Simul. 2014, 8, 241–250.
[CrossRef]

4. Fu, M.C.; Hu, J.Q. Sensitivity analysis for Monte Carlo simulation of option pricing. Probab. Eng. Inf. Sci.
1995, 9, 417–446. [CrossRef]

5. Plambeck, E.L.; Fu, B.; Robinson, S.M.; Suri, R. Throughput optimization in tandem production lines
via nonsmooth programming. In Proceedings of the 1993 Summer Computer Simulation Conference,
Los Angeles, CA, USA, 1 July 1993; pp. 70–75.

6. Pourhassan, M.R.; Raissi, S. An integrated simulation-based optimization technique for multi-objective
dynamic facility layout problem. J. Ind. Inf. Integr. 2017, 8, 49–58. [CrossRef]

7. Semini, M.; Fauske, H.; Strandhagen, J.O. Applications of discrete-event simulation to support manufacturing
logistics decision-making: A survey. In Proceedings of the 38th conference on Winter Simulation, Winter
Simulation Conference, Monterey, CA, USA, 3–6 December 2006; pp. 1946–1953.

8. Chong, L.; Osorio, C. A simulation-based optimization algorithm for dynamic large-scale urban
transportation problems. Transp. Sci. 2017, 52, 637–656. [CrossRef]

9. Gürkan, G.; Yonca Özge, A.; Robinson, S.M. Sample-path solution of stochastic variational inequalities.
Math. Program. 1999, 84, 313–333. [CrossRef]

10. Hedar, A.R.; Allam, A.A.; Deabes, W. Memory-Based Evolutionary Algorithms for Nonlinear and Stochastic
Programming Problems. Mathematics 2019, 7, 1126. [CrossRef]

11. Friedrich, T.; Kötzing, T.; Krejca, M.S.; Sutton, A.M. Robustness of ant colony optimization to noise.
Evol. Comput. 2016, 24, 237–254. [CrossRef]

12. Ghosh, A.; Das, S.; Mallipeddi, R.; Das, A.K.; Dash, S.S. A modified differential evolution with distance-based
selection for continuous optimization in presence of noise. IEEE Access 2017, 5, 26944–26964. [CrossRef]

13. Hedar, A.R.; Allam, A.A.; Abdel-Hakim, A.E. Simulation-Based EDAs for Stochastic Programming Problems.
Computation 2020, 8, 18. [CrossRef]

http://dx.doi.org/10.1108/AEAT-12-2016-0250
http://dx.doi.org/10.1109/TASE.2004.835570
http://dx.doi.org/10.1057/jos.2014.4
http://dx.doi.org/10.1017/S0269964800003958
http://dx.doi.org/10.1016/j.jii.2017.06.001
http://dx.doi.org/10.1287/trsc.2016.0717
http://dx.doi.org/10.1007/s101070050024
http://dx.doi.org/10.3390/math7111126
http://dx.doi.org/10.1162/EVCO_a_00178
http://dx.doi.org/10.1109/ACCESS.2017.2773825
http://dx.doi.org/10.3390/computation8010018

Appl. Sci. 2020, 10, 6937 25 of 27

14. Jin, Y.; Branke, J. Evolutionary optimization in uncertain environments-a survey. IEEE Trans. Evol. Comput.
2005, 9, 303–317. [CrossRef]

15. Andradóttir, S. Simulation optimization. In Handbook of Simulation: Principles, Methodology, Advances,
Applications, and Practice, John Wiley & Sons: New York, USA, 1998; pp. 307–333.

16. Gosavi, A. Simulation-Based Optimization; Springer: Berlin, Germany, 2015.
17. Fu, M.C. Optimization for simulation: Theory vs. practice. Inf. J. Comput. 2002, 14, 192–215. [CrossRef]
18. BoussaïD, I.; Lepagnot, J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117.

[CrossRef]
19. Glover, F.W.; Kochenberger, G.A. Handbook of Metaheuristics; Springer: New York, NY, USA; Philadelphia,

PA, USA, 2006; Volume 57.
20. Ribeiro, C.C.; Hansen, P. Essays and Surveys in Metaheuristics; Springer Science & Business Media: New York,

NY, USA, 2012; Volume 15.
21. Siarry, P. Metaheuristics; Springer International Publishing: Cham, Switzerland, 2016.
22. Pellerin, R.; Perrier, N.; Berthaut, F. A survey of hybrid metaheuristics for the resource-constrained project

scheduling problem. Eur. J. Oper. Res. 2020, 280, 395–416. [CrossRef]
23. Doğan, B.; Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm.

Inf. Sci. 2015, 293, 125–145. [CrossRef]
24. Huang, C.; Li, Y.; Yao, X. A Survey of Automatic Parameter Tuning Methods for Metaheuristics. IEEE Trans.

Evol. Comput. 2019, 24, 201–216. [CrossRef]
25. Larrañaga, P.; Etxeberria, R.; Lozano, J.A.; Peña, J.M. Optimization in continuous domains by learning

and simulation of Gaussian networks. In Proceedings of the 2000 Genetic and Evolutionary Computation
Conference Workshop Program, Las Vegas, NV, USA, 8–12 July 2000; pp. 201–204.

26. Larrañaga, P.; Lozano, J.A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation;
Springer Science & Business Media: New York, NY, USA, 2001; Volume 2.

27. Hauschild, M.; Pelikan, M. An introduction and survey of estimation of distribution algorithms.
Swarm Evol. Comput. 2011, 1, 111–128. [CrossRef]

28. Yang, Q.; Chen, W.N.; Li, Y.; Chen, C.P.; Xu, X.M.; Zhang, J. Multimodal estimation of distribution algorithms.
IEEE Trans. Cybern. 2016, 47, 636–650. [CrossRef]

29. Krejca, M.S.; Witt, C. Theory of estimation-of-distribution algorithms. In Theory of Evolutionary Computation;
Springer International Publishing: Cham, Switzerland, 2020; pp. 405–442.

30. Homem-De-Mello, T. Variable-sample methods for stochastic optimization. ACM Trans. Model. Comput.
Simul. (TOMACS) 2003, 13, 108–133. [CrossRef]

31. Rakshit, P.; Konar, A. Differential evolution for noisy multiobjective optimization. Artif. Intell. 2015,
227, 165–189. [CrossRef]

32. Rakshit, P.; Konar, A.; Das, S. Noisy evolutionary optimization algorithms—A comprehensive survey.
Swarm Evol. Comput. 2017, 33, 18–45. [CrossRef]

33. Rakshit, P.; Konar, A. Principles in Noisy Optimization; Springer: Berlin, Germany, 2018.
34. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
35. Stoyan, D. Kruse, R., KD Meyer: Statistics with Vague Data. D. Reidel Publishing Company,

Dortrecht-Boston-Lancaster-Tokyo 1987, 279 S., Dfl. 150.–; US-$59.–; UK£ 42.–, ISBN 7027725624. Biom. J.
1989, 31, 312–312. [CrossRef]

36. Puri, M.L.; Ralescu, D.A.; Zadeh, L. Fuzzy random variables. In Readings in Fuzzy Sets for Intelligent Systems;
Morgan Kaufmann: San Mateo, CA, USA, 1993; pp. 265–271.

37. Gil, M.A.; López-Díaz, M.; Ralescu, D.A. Overview on the development of fuzzy random variables.
Fuzzy Sets Syst. 2006, 157, 2546–2557. [CrossRef]

38. Biswal, M.; Acharya, S. Solving multi-choice linear programming problems by interpolating polynomials.
Math. Comput. Model. 2011, 54, 1405–1412. [CrossRef]

39. Wang, S.; Watada, J. Fuzzy Stochastic Optimization: Theory, Models and Applications; Springer Science &
Business Media: New York, NY, USA, 2012.

40. Mousavi, S.M.; Jolai, F.; Tavakkoli-Moghaddam, R. A fuzzy stochastic multi-attribute group decision-making
approach for selection problems. Group Decis. Negot. 2013, 22, 207–233. [CrossRef]

41. Acharya, S.; Ranarahu, N.; Dash, J.K.; Acharya, M.M. Computation of a multi-objective fuzzy stochastic
transportation problem. Int. J. Fuzzy Comput. Model. 2014, 1, 212–233. [CrossRef]

http://dx.doi.org/10.1109/TEVC.2005.846356
http://dx.doi.org/10.1287/ijoc.14.3.192.113
http://dx.doi.org/10.1016/j.ins.2013.02.041
http://dx.doi.org/10.1016/j.ejor.2019.01.063
http://dx.doi.org/10.1016/j.ins.2014.08.053
http://dx.doi.org/10.1109/TEVC.2019.2921598
http://dx.doi.org/10.1016/j.swevo.2011.08.003
http://dx.doi.org/10.1109/TCYB.2016.2523000
http://dx.doi.org/10.1145/858481.858483
http://dx.doi.org/10.1016/j.artint.2015.06.004
http://dx.doi.org/10.1016/j.swevo.2016.09.002
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1002/bimj.4710310308
http://dx.doi.org/10.1016/j.fss.2006.05.002
http://dx.doi.org/10.1016/j.mcm.2011.04.009
http://dx.doi.org/10.1007/s10726-011-9259-1
http://dx.doi.org/10.1504/IJFCM.2014.067129

Appl. Sci. 2020, 10, 6937 26 of 27

42. Lacagnina, V.; Pecorella, A. A stochastic soft constraints fuzzy model for a portfolio selection problem.
Fuzzy Sets Syst. 2006, 157, 1317–1327. [CrossRef]

43. Dong, W.; Chen, T.; Tiňo, P.; Yao, X. Scaling up estimation of distribution algorithms for continuous
optimization. IEEE Trans. Evol. Comput. 2013, 17, 797–822. [CrossRef]

44. Mühlenbein, H.; Paass, G. From recombination of genes to the estimation of distributions I. Binary
parameters. In International Conference on Parallel Problem Solving From Nature; Springer: Berlin, Germany,
1996; pp. 178–187.

45. Sebag, M.; Ducoulombier, A. Extending population-based incremental learning to continuous search
spaces. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin, Germany, 1998;
pp. 418–427.

46. Bosman, P.A.; Thierens, D. Expanding from Discrete to Continuous Estimation of Distribution Algorithms:
The IDEA. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin, Germany, 2000;
pp. 767–776.

47. Bosman, P.A.; Thierens, D. Continuous iterated density estimation evolutionary algorithms within the IDEA
framework. In Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop
Program, Las Vegas, NV, USA, 8–12 July 2000; pp. 197–200.

48. Wagner, M.; Auger, A.; Schoenauer, M. EEDA: A New Robust Estimation of Distribution Algorithms; Research
Report (RR-5190); INRIA: Rocquencourt, France, 2004; No. inria-00070802, p. 16.

49. Grahl, J.; Bosman, P.A.; Rothlauf, F. The correlation-triggered adaptive variance scaling IDEA. In Proceedings
of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 July 2006;
pp. 397–404.

50. Bosman, P.A.; Grahl, J.; Rothlauf, F. SDR: A better trigger for adaptive variance scaling in normal EDAs.
In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, London, UK,
25–28 September 2007; pp. 492–499.

51. Dong, W.; Yao, X. Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms.
Inf. Sci. 2008, 178, 3000–3023. [CrossRef]

52. Yuan, B.; Gallagher, M. Playing in continuous spaces: Some analysis and extension of population-based
incremental learning. In Proceedings of the 2003 Congress on Evolutionary Computation, Canberra,
Australia, 8–12 December 2003; Volume 1, pp. 443–450.

53. Pošík, P. Distribution tree-building real-valued evolutionary algorithm. In International Conference on Parallel
Problem Solving from Nature; Springer: Berlin, Germany, 2004; pp. 372–381.

54. Ding, N.; Zhou, S.; Sun, Z. Optimizing continuous problems using estimation of distribution algorithm
based on histogram model. In Asia-Pacific Conference on Simulated Evolution and Learning; Springer: Berlin,
Germany, 2006; pp. 545–552.

55. Ding, N.; Xu, J.; Zhou, S.; Sun, Z. Reducing computational complexity of estimating multivariate
histogram-based probabilistic model. In Proceedings of the 2007 IEEE Congress on Evolutionary
Computation, Singapore, 25–28 September 2007; pp. 111–118.

56. Ding, N.; Zhou, S. Linkages detection in histogram-based estimation of distribution algorithm. In Linkage in
Evolutionary Computation; Springer: Berlin, Germany, 2008; pp. 25–40.

57. Ding, N.; Zhou, S.D.; Sun, Z.Q. Histogram-based estimation of distribution algorithm: A competent method
for continuous optimization. J. Comput. Sci. Technol. 2008, 23, 35–43. [CrossRef]

58. Ding, N.; Zhou, S.; Zhang, H.; Sun, Z. Marginal probability distribution estimation in characteristic space of
covariance-matrix. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 1589–1595.

59. Bosman, P.A.; Thierens, D. Numerical optimization with real-valued estimation-of-distribution algorithms.
In Scalable Optimization via Probabilistic Modeling; Springer: Berlin, Germany, 2006; pp. 91–120.

60. Wang, X.; Kerre, E. On the classification and the dependencies of the ordering methods. In Fuzzy Logic
Foundations and Industrial Applications; Springer: Berlin, Germany, 1996; pp. 73–90.

61. Klir, G.; Yuan, B. Fuzzy Sets and Fuzzy Logic; Prentice Hall: Upper Saddle River, NJ, USA: 1995; Volume 4.
62. Hedar, A.R.; Fukushima, M. Tabu search directed by direct search methods for nonlinear global optimization.

Eur. J. Oper. Res. 2006, 170, 329–349. [CrossRef]
63. García, S.; Fernández, A.; Luengo, J.; Herrera, F. A study of statistical techniques and performance measures

for genetics-based machine learning: Accuracy and interpretability. Soft Comput. 2009, 13, 959. [CrossRef]

http://dx.doi.org/10.1016/j.fss.2005.10.002
http://dx.doi.org/10.1109/TEVC.2013.2247404
http://dx.doi.org/10.1016/j.ins.2008.01.021
http://dx.doi.org/10.1007/s11390-008-9108-0
http://dx.doi.org/10.1016/j.ejor.2004.05.033
http://dx.doi.org/10.1007/s00500-008-0392-y

Appl. Sci. 2020, 10, 6937 27 of 27

64. Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures; CRC Press: Boca Raton, FL, USA,
2003.

65. Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson: Upper Saddle River, NJ, USA, 2013.
66. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests

as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.
2011, 1, 3–18. [CrossRef]

67. García-Martínez, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real
parameter optimization. J. Heuristics 2009, 15, 617–644. [CrossRef]

68. Hedar, A.R.; Allam, A.A. Scatter Search for Simulation-Based Optimization. In Proceedings of the
2017 International Conference on Computer and Applications (ICCA), Doha, UAE, 6–7 September 2017;
pp. 244–251.

69. Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential
evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006,
10, 646–657. [CrossRef]

70. Aizawa, A.N.; Wah, B.W. Scheduling of genetic algorithms in a noisy environment. Evol. Comput. 1994,
2, 97–122. [CrossRef]

71. Das, S.; Konar, A.; Chakraborty, U.K. Improved differential evolution algorithms for handling noisy
optimization problems. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh,
UK, 2–5 September 2005; Volume 2, pp. 1691–1698.

72. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M. Opposition-based differential evolution algorithms.
In Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC,
Canada, 16–21 July 2006; pp. 2010–2017.

73. Caponio, A.; Neri, F. Differential evolution with noise analyzer. In Workshops on Applications of Evolutionary
Computation; Springer: Berlin, Germany, 2009; pp. 715–724.

74. Mininno, E.; Neri, F. A memetic differential evolution approach in noisy optimization. Memetic Comput.
2010, 2, 111–135. [CrossRef]

75. Ghosh, A.; Das, S.; Panigrahi, B.K.; Das, A.K. A noise resilient differential evolution with improved
parameter and strategy control. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation
(CEC), San Sebastian, Spain, 5–8 June 2017; pp. 2590–2597.

76. King, A. Stochastic programming problems: Examples from the literature. Numer. Tech. Stoch. Optim. 1988,
3, 543–567.

77. King, A.J.; Wright, S.E.; Parija, G.R.; Entriken, R. The IBM stochastic programming system. In Applications of
Stochastic Programming; SIAM: Philadelphia, PA, USA, 2005; pp. 21–36.

78. Kall, P.; Wallace, S. Stochastic Programming; John Wiley & Sons: Chichester, UK, 1994.
79. Louveaux, F.V. Optimal Investments for Electricity Generateion: A Stochastic Model and A Test Problem.

In Numerical Techniques for Stochastic Optimization; Springer: Berlin, Germany, 1988; Volume 10, pp. 445–454.
80. Smith, A.E.; Coit, D.W. Penalty functions. Handb. Evol. Comput. Pages C 1997, 5, 1–6.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1109/TEVC.2006.872133
http://dx.doi.org/10.1162/evco.1994.2.2.97
http://dx.doi.org/10.1007/s12293-009-0029-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Estimation of Distribution Algorithms
	Estimation of Distribution Algorithms for Simulation-Based Optimization
	Sampling Techniques
	Variable Sampling Path
	Fuzzy Sampling

	EDA-Based Methods for Simulation-Based Optimization

	Numerical Experiments
	Parameter Tuning and Setting
	Global Optimization Results
	Fuzzy Sampling Performance
	Simulation-Based Optimization Results

	Stochastic Programming Applications
	PROD-MIX Problem
	The Mathematical Formulation of the PROD-MIX Problem
	Results of the PROD-MIX Problem

	The KANDW3 Problem
	The Mathematical Formulation of the KANDW3 Problem
	Results of KANDW3 Problem

	The LANDS Problem
	The Mathematical Formulation of the LANDS Problem
	Results of the LANDS Problem

	Conclusions
	Classical Test Functions—Set A
	Classical Test Functions—Set B
	Test Functions with Noise—Set C
	Goldstein and Price Function
	Rosenbrock Function
	Griewank Function
	Pinter Function
	Modified Griewank Function
	Griewank Function with Non-Gaussian Noise
	Griewank Function with (50D)

	Test Functions with Noise—Set D
	Ackley Function
	Alpine Function
	Axis Parallel Function
	DeJong Function
	Drop Wave Function
	Griewank Function
	Michalewicz Function
	Moved Axis Function
	Pathological Function
	Rastrigin Function
	Rosenbrock Function
	Schwefel Function
	Tirronen Function

	References

