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Abstract: As embedded software is closely related to hardware equipment, any defect in embedded
software can lead to major accidents. Thus, all defects must be collected, classified, and tested based
on their severity. In the pure software field, a method of deriving core defects already exists, enabling
the collection and classification of all possible defects. However, in the embedded software field,
studies that have collected and categorized relevant defects into an integrated perspective are scarce,
and none of them have identified core defects. Therefore, the present study collected embedded
software defects worldwide and identified 12 types of embedded software defect classifications
through iterative consensus processes with embedded software experts. The impact relation map
of the defects was drawn using the decision-making trial and evaluation laboratory (DEMATEL)
method, which analyzes the influence relationship between elements. As a result of analyzing the
impact relation map, the following core embedded software defects were derived: hardware interrupt,
external interface, timing error, device error, and task management. All defects can be tested using
this defect classification. Moreover, knowing the correct test order of all defects can eliminate critical
defects and improve the reliability of embedded systems.

Keywords: embedded software defects; content analysis; DEMATEL; cause–effect relationship; core
defects; impact relationship analysis

1. Introduction

Embedded systems are used in various industries, including automotive, railway, construction,
medical, aerospace, shipbuilding, defense, and space. However, these systems have software defects
that can cause fatal accidents. In the medical field, a safety-critical system defect in radiotherapy
resulted in more than six human injuries caused by excessive radiation in two years [1]. In the space
sector, the Ariane 5 Flight 501 that failed its maiden flight is reportedly an example of an accident
caused by a software defect [2]. In the defense sector, these defects caused the deaths of 28 US Army
soldiers and left 98 injured when a Patriot missile malfunctioned in Dhahran, Saudi Arabia [3]. As such,
fatal consequences can occur if defects are not eliminated in embedded systems. Therefore, all defects
must be collected and classified so that no untested embedded defects exist. As a result of investigating
an embedded software defect study, many studies based their analyses on embedded architecture,
as well as defects in interface, dynamic memory, and exception handling, and other miscellaneous
defects found in airplane or space-exploration applications. Although these studies are meaningful in
each field, all defects have not been consolidated and classified. If defects from some previous studies
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are the only ones referenced and tested, there may be defects that have not been tested and cause
serious problems.

To solve such problems, this study collected all possible defects experienced globally and classified
them into a systematic and integrated view by applying a content analysis technique. In addition,
when a defect occurs, the defect can affect other defects. Due to this characteristic, the defect can
become more and more serious. In this paper, these defects are considered core defects because they
can cause critical failures in the embedded system. These defects were derived by analyzing the impact
relationship between embedded software defects and applying decision-making trial and evaluation
laboratory (DEMATEL) methods. Using these methods will enable developers to eliminate defects
without omission using integrated defect types and improve embedded software quality via the
intensive management of core defects.

Various defects in the pure software field have been collected, classified, and studied
worldwide [4,5]. Mäntylä and Lassenius [4] argue that code review often undermines the benefits
of core review by focusing on the number of defects instead of the defect type. For this reason,
they collected and categorized defects that are useful in code review. Huh and Kim [5] collected a series
of pure software defect studies (Table 1) and classified the defects into specific functional categories in
their meta-analysis (Table 2). Using the analytic network process (ANP), they could derive what they
identified as core defects in general software applications, such as personnel, salary, and accounting
systems. By analyzing the impact relationship of those pure software defects, they could derive a set
of core defects. In their study, they concluded that targeting core defects could eliminate any related
peripheral defects, making it a more efficient troubleshooting method. The present study expands on
Huh and Kim’s [5] defect-classifying study, using their list of pure software defects as the present
study’s list of pure software area defects.

Table 1. Huh and Kim’s [5] references for pure software defects.

Researchers Software Defects

IEEE 1044 [6] IEEE 1044-1993 standard classification for software anomalies
HP Huber JT [7] Hewlett Packard’s defect origins, types, and modes

IBM ODC [8] Orthogonal defect classification (ODC) for software design and code
Other researchers Collected software defects defined by 21 researchers worldwide

Table 2. Huh and Kim’s [5] classified list of pure software defects.

Category Defects Sub-Defects

Logic

Conditional
statement

Checking, duplicating IF statement, empty IF statement, compared with other
variables, missing important conditions (case, etc.)

Rotation logic Infinite loops, infinite recursions, algorithm, logic sequences, flow control, error
checking, check scope, status handling, missing a step

Concurrent logic Synchronization, race conditions, mutual exclusions, critical sections, concurrent
processing, coordination process, condition loads

Interface,
Timing

External interface Human interface error, different protocols, incorrect protocols

Wrong function
(internal interface)

Return pointers, incorrect Application programming interface(API), software
architecture, function/class/object relationship, no existence subroutines, missing
return values, incorrect parameter’s error, calls incorrect subroutines, calls incorrect
module, incorrect interrupt

I/O timing Time overrun, incorrect Input/Output(I/O) timing

Computation
Division by zero Divide by zero

Expression Wrong operator, incorrect parenthesis usage, different unit calculations, incorrect
sign usage, missing expressions, wrong expressions

Precision loss Mixed modes, round/truncation calculations, underflow, overflow

Data
Data structure Error of data design, wrong data structures, wrong data units, pack/unpack

Data usage
Leaks, use after free, un-assignment, initialization pointer, memory violation, other
variable type usages, other variable use dimensions, null pointers, wrong index, use
other flags, error script variable usage, save/access errors, initialization errors

Data value self Wrong input data, wrong operation data, wrong external data, wrong sensor data
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Next, the present study investigated other studies that focused on embedded software defects.
Barr [9,10] presented 10 important embedded software defects: race conditions, non-reentrant functions,
missing volatile keywords, stack overflow, heap fragmentation, memory leaks, deal locks, priority
inversions, and incorrect priority assignments. On the other hand, Lutz [11] classified 387 errors
encountered during the Voyager and Galileo missions. Meanwhile, Hagar [12] presented test methods
for various embedded defects. Lee et al. [13] defined 11 faults for input, control, and output, and then
tested them within a vehicle’s embedded system. Jung et al. [14] studied defects that violate the Motor
Industry Software Reliability Association-C (MISRA-C) 2004 coding rules, using static analysis tools.
Then, Bennett and Wennberg [15] tried a different approach to defect analysis by studying a method
of cost-effective testing using an integrated test for five types of defects found during spacecraft
development. Researchers like Seo [16] studied and tested defects that occur in the interface between
the software (SW) and hardware (HW) of embedded systems. Choi [17] defined dynamic memory
defects and subsequently tested for them in embedded systems. Studies, such as Lee’s [18] 2010 study,
went as far as examining methods for recovering faults through exception processing routines when
they occurred in embedded systems. Other researchers still approached their analysis by manually
injecting and testing the defects, such as Cotroneo et al. [19], who investigated their test’s ability to
inject defects into an embedded system. Lee et al. [20] and Lee and Park [21] conducted similar fault
injection tests, putting six defects into the defense embedded system. Lee [22] then also studied fault
injection tests for six orthogonal defect classification (ODC) defects in an aerospace embedded system.

Despite the exhaustive number of studies conducted, they have neither comprehensively
aggregated these defects nor classified them as mutually exclusive and collectively exhaustive (MECE).
Moreover, there has been no attempt to derive significant defects using the influence relationship of
the defects. For this reason, this study collected globally embedded software defects and classified
them as mutually exclusive and collectively exhaustive(MECE), with the intent to derive core defects
so that they can be applied to embedded software applications.

2. Materials and Methods

All collected defects were categorized as MECE to address numerous unique defects noted by
the different researchers. This study used content analysis to categorize and integrate terms based on
their characteristics and meanings [23], thus creating the categories used here. Then, the DEMATEL
method was used to identify the impact relationship between the defect categories and distinguish
cause defects from effect defects [24].

2.1. Content Analysis

First, the present study used content analysis, a method suited for studying multifaceted and
sensitive phenomena and its characteristics, to categorize many defects [25]. This technique categorizes
and structures information derived from textual material, quantifying qualitative data. However,
the method can be time-consuming, and problems may arise when interpreting or transforming
ambiguous or extensive information. Moreover, content analyses may suffer from researcher
overinterpretation, calling into question the validity of the analysis [25]. However, with a step-by-step
analysis, it is one way to effectively classify sensitive topics, with its constructed categories open to
change whenever appropriate throughout the analysis process [26]. This mixed approach to data
analysis enables researchers to measure the reliability of their classifications [27]. Generally, content
analysis is performed using either Honey’s content analysis technique or the bootstrapping technique.
The present study applied the bootstrapping content analysis technique and utilized a seven-step
procedure, as shown in Table 3 [23].

Following the bootstrapping procedures (Table 3), the researcher and collaborator classied each of
the elements, respectively, and matched classifications are shown in Table 4. Researcher categories are
recorded in the left column and collaborator categories are recorded in the top row. When there is
a matched category for the category in the left column and the category in the top row, this is adopted
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as an agreed category. If the categories do not match, new categories have to be created after discussion
between the researcher and collaborators. The agreed categories were adopted through this repeated
process of consensus. Additionally, elements are recorded within the diagonal cell of the agreed
categories (elements are recorded as construct number). When the recorded elements in a diagonal
cell match, they are then adopted as agreed elements. If any elements do not match, the researcher
and collaborator reclassify through their discussion. The agreed elements were adopted through this
repeated process of consensus. The reliability of the agreed elements is measured by the classification
index, with reliability referring to the percentage of agreed values located diagonally. In this scale,
80%–89% or more is rated as good, while 90% or more is rated as excellent [23].

Table 3. The classification procedures of bootstrapping content analysis.

Step Procedures

1 Create an appropriate category that contains the attributes of the first element
2 Create a new category if the following element is different from the first element
3 Distribute the following elements into similar categories
4 Combine and detach existing categories as needed to create new ones
5 Repeat until all elements are classified
6 Place all unclassifiable elements in the miscellaneous group
7 Repeat classification until the elements in the miscellaneous group account for less than 5% of the total

Table 4. An example of a reliability table where elements are matched by researchers and collaborators.

Researcher
Collaborator Category C1

(Matched with R1)
Category C2

(Matched with R2)
Category C3

(Non-Matched)
Category R1

(matched with C1)
1.1, 2.1, 4.2, 3.2, 3.3

(matched)
1.4

(non-matched) -

Category R2
(matched with C2) - 2.2, 2.3, 2.4, 3.1, 3.4

(matched)
2.5

(non-matched)

Category R3
(non-matched) - 1.2, 4.3

(non-matched)

Category R4
(non-matched) - 4.4

(non-matched)
4.1, 1.3

(non-matched)

2.2. DEMATEL Method

The decision-making trial and evaluation laboratory (DEMATEL) method was initially developed
to solve complex and intertwined problems by the Science and Human Affairs Program of the Battelle
Memorial Institute of Geneva. This study used the DEMATEL method for five reasons: (1) it can
analyze the impact of relationships between complex factors; (2) it can create an impact relationship
map (IRM) that can be used to visualize the relationship between factors, clearly illustrating one’s
effect on another; (3) the alternatives can be ranked, and these weights can be measured through a
six-step derivation process to get the cause-and-effect relationships between elements [28]; (4) factors
affected by other factors are assigned a lower priority, whereas factors that affect others are given
higher priority [29]; and (5) lastly, a similar methodology was conducted by Seyed-Hossein et al. [30]
with notably positive results, wherein they performed a reprioritization of the system failure modes by
applying the DEMATEL method to the defects observed in the turbocharged engine. Their experiment
covered the disadvantages of the traditional risk priority number (RPN) method for the failure mode
and effects analysis (FMEA) defect of the said engine. This DEMATEL method, however, has two
primary disadvantages: (1) the factors are only ranked according to the relationship between them,
and (2) a relative weight cannot be assigned to each expert evaluation [31].
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2.2.1. Step 1: Deriving the Direct Relation Matrix (DRM)

The impact values that the i row element affects the j column elements were collected from
respondents, and the DRM was calculated, averaging the impacts values. The DRM A is shown below
in Equation (1).

A =



a11 · · · a1 j · · · a1n
...

...
...

ai1 · · · ai j · · · ain
...

...
...

an1 · · · anj · · · ann


(1)

2.2.2. Step 2: Normalizing the Matrix

The largest value or values are chosen by comparing the maximum value of the sum of rows to
the maximum value of the sum of columns, seen in Equation (2). The DRM (A) is then divided by this
value; then, the normalized matrix (N) is calculated, as seen in Equation (3).

s = max[max
n∑

j=1

A ji, max
n∑

i=1

Ai j] (2)

N =
A
s

(3)

2.2.3. Step 3: Calculating for the Total Relation Matrix (TRM, T)

The total influence matrix T is calculated by adding together all the direct and indirect effects
using the normalized direct influence matrix N to get the TRM, T.

T = N + N2 + N3 + · · ·+ Nm = N(I −N)−1, when m→∞ (4)

2.2.4. Step 4: Separating the Influencing (Cause) Elements and the Influenced (Effect) Elements

The sum of the rows (D) shows the level of direct influence. Meanwhile, the sum of the columns
(R) represents the level of indirect influence, as seen in Equations (5) and (6). The D value numerically
expresses the degree of how much one factor affects other factors, while the R-value expresses the
degree of how much one factor is affected by other factors. On the one hand, D+R is the sum of the
values affecting other factors and the values affected by other factors. On the other hand, D-R is the
difference in the values that affect other factors and the value affected by other factors. The larger
the value of D-R, the greater the influencing power of the factors; the smaller its value, the more it is
affected by other factors [32]. The factors with positive D-R values are considered the cause group,
while the elements with negative D-R values are considered the effect group [25].

D = [Di]n×1 =[
m∑

i=1

Ti j]n×1 (5)

R =
[
R j]1×n =[

n∑
i=1

Ti j]n×1 (6)

2.2.5. Step 5: Calculating the Threshold

The threshold is calculated as the average of the matrix, as seen in Equation (7) [28].

σ =

∑n
i=1
∑n

j=1[Ti j]

n
(7)
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2.2.6. Step 6: Drawing the Cause and Effect Diagram

The cause and effect diagrams visualize the complex interrelationships of all elements and provide
information on the most important elements and influencing factors [33]. The diagram is drawn using
the values of the matrix elements greater than the threshold [34].

2.3. Research Procedure

This study went through several stages: beginning with data collection, then the standardization
of terms, content analysis, survey collection, and, finally, the derivation of core defects (Figure 1).
In the first stage, previously studied embedded software defects and critical factors are collected
without omission. Second, the terms are standardized to eliminate the errors caused by differences in
classification, as the terms used by researchers did not match. Third, the bootstrapping content analysis
technique is used (Table 3). Fourth, the opinions of experts are collected through questionnaires,
and the cause-and-effect relationships among defects are analyzed using the DEMATEL technique.
Finally, the core defects are derived by analyzing the resulting cause-and-effect relationship diagram.
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2.4. Materials

2.4.1. Collected Critical Embedded Elements and Embedded Software Defects

Only pure software defects and embedded hardware-controlling software defects were collected
for this study. It must be noted that hardware-controlling defects were excluded from the study.
Using the pure software defects that were previously studied (Table 1) and classified (Table 2),
embedded software defects were collected, as shown in Table 5.

Table 5. Embedded software defects and sources.

Researcher Embedded Software Defects Researcher Embedded Software Defects

Barr [9]

Race condition
Non-reentrant function

Missing volatile keyword
Stack overflow

Heap fragmentation

Barr [10]

Memory leak
Deadlock

Priority inversion
Incorrect priority assignment
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Table 5. Cont.

Researcher Embedded Software Defects Researcher Embedded Software Defects

Ji and Bao [35]

Initialize
Input

Interface
Output
Control

Fault detection
Fault handles
Performance

Noergaard [36]

Managing data: serial and parallel I/O
Interfacing the I/O components

Device driver
Flash memory

Multitasking and process management
Memory management

I/O and file system management

Choi et al. [37]

Task management
Inter-task communication

Time management
Interrupt

Signal processing
I/O management

Memory management
Networking
File system

Jung et al. [14]

Types
Declarations and definitions

Pointer type conversion
Arithmetic type conversion

Expressions
Control flow

Control statement expressions
Switch statements

Functions

Hagar [12]

Data computation bug
Structural logic flow

Long duration control
Logic and control law

Data
Computation

Software(S/W)-to-Hardware(H/W)
interface

H/W-to-S/W interface
S/W-system fault tolerance

S/W error recovery
H/W to S/W communications bug

Time-related
Human interface

Seo and Choi
[38]

Memory
Timer

I/O device
Task management

Exception handling
Inter-task communication

Virtual memory management
Physical memory management

Time management
Interrupt handling

I/O management (i.e., device driver I/O)
Networking
File system

Sung et al. [39]

Task management
Inter-task management

Time management
Interrupt/signal/exception handling

Memory management
I/O management

Networking
File system
I/O device

Timer
Hardware initialization

Rodriguez
-Dapena [40]

Calculations faults
Data faults

Internal interface faults
Logic faults

Control flow faults
Interface between components

Control flow between components
H/W to S/W interface faults

H/W to S/W interface
User interface faults

Seo [16] S/W-to-H/W interface
S/W-to-S/W interface Lee [18] Exception handling

Lutz [11]

Process flow Interface
specification Bennett and

Wennberg [15]

Internal faults
Interface faults

Program fault
Internal faults
Interface faults

Functional faults
Function faults

Operating faults
Condition faults
Behavior faults

Sung [41] Kernel
Interface

Task management
Inter-task

communication
Time management
Interrupt/exception

handling
Memory

management
I/O management

Networking
File system

Lee [22]

Assignment
Checking
Interface

Algorithm

Lee et al. [20];
Lee and Park [21]

Time out
Data violation

Complete with delay
Error without effect

Exception

Hardware interface
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Table 5. Cont.

Researcher Embedded Software Defects Researcher Embedded Software Defects

Jung
[42]

Control logic

Jones [43]

Getting bored and
running

Run-time environment
(e.g., stack and heap
allocation, memory

models, etc.)
Sensor

Missing S/W logic
between sensor

and system
Wrong

alalog/digital
conversion

Knocking off the
obvious mistakes

Initialization
Pointer dereferencing

Arithmetic errors

Key
Wrong A/D

conversion table,
Key alone event Background/

foreground issues

Reentrancy
Atomicity

Interrupt response
timesLCD panel Display error

Indicator Indication error
Buzzer Timing related

Resource allocation
mistake

Priority/schedule
issues

Deadlocks
Priority inversion
Race conditions

Motor actuator
Analog/digital (A/D)

conversion error
Digital/analog (D/A)

conversion error

Durães and
Madeira [44];

Cotroneo et al.
[19]

Missing variable initialization
Missing variable assignment with a value

Missing variable assignment
with an expression

The incorrect value assigned to a variable
Missing function call

Missing IF construct + statements
Missing IF construct + statements +

ELSE construct
Missing small and localized part of

the algorithm
Missing IF construct around statements

Missing AND in expression used as
branch condition

Missing OR in expression used as
branch condition

Wrong variable used in the parameter of
function call

Wrong arithmetic expression in function
call parameter

Lee et al. [13]

Input data
handling logic

Aanalog/digital
sampling

Aanalog/digital
conversion

Fail-safe
Interrupt

Control logic

Expression
Data processing
Branch control
Loop control

Output data
Handling logic

Output port set
Abort output

(Incorrect time,
feedback control error)

Fail-safe

YN Choi [17]

Memory allocation
Leakage

Zero allocation
Fail allocation

Memory access

Null pointer access
Free pointer access

Invalid pointer access
Outbound access

Collision

Memory free
Illegal free

Null pointer free
Duplicate free

2.4.2. Standardization of Terms

As the terms of defects studied by each researcher in Tables 2 and 5 are not consistent, this study
standardized the terms of defects. Standardization was discussed with four embedded software
experts (as shown in Table 6) who helped classify representative words based on the defects classified
in the previous studies in Table 2. The standardized terms of defects that were identified are shown
in Table 7.
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Table 6. Four embedded software experts involved in terms standardization.

Experts

Embedded Software Expert

Field of Embedded Software
Development

Number of Years of Embedded
Software Experience

Experts Class or
Certification

Experts 1 Mobile, Internet of thing 20 years IT Auditor
Experts 2 Internet Cable TV, IoT, Device driver 10 years Professional engineer
Experts 3 Mobile, industrial device control 8 years Top engineer
Experts 4 Industrial control 8.5 years Professional engineer

Table 7. Standardized embedded software defect terms.

Code Embedded Software Defects Code Embedded Software Defects

1-1 Data access 4-1 Wrong interrupts
1-2 Shared memory 4-2 Incorrect subroutine called
1-3 Data violation 4-3 Nonexistent subroutine call
1-4 Data boundary error 4-4 Wrong parameter
1-5 Type mismatch 4-5 Inter-task communication
1-6 Save storage data 4-6 Internal interface
1-7 Flash memory 4-7 Module interface
1-8 Memory initialization 4-8 Incorrect API usage
1-9 Memory management 4-9 Wrong protocol
1-10 Memory access 4-10 Software architecture
1-11 Resource leaks 4-11 Exception handling
1-12 Memory free error 4-12 None sensor logic
1-13 Memory overflow error 5-1 Missing computation
1-14 Memory violation error 5-2 Incorrect operand and operator
2-1 Wrong H/W interface 5-3 Incorrect parenthesis
2-2 I/O devices 5-4 Round and truncate
2-3 User interfaces 5-5 Sign convention
2-4 External interface 5-6 Divide by zero
2-5 Send and receive packets error 5-7 Arithmetic overflow and underflow
2-6 Networking 6-1 Wrong logic
2-7 Input value error 6-2 Non-reentrant function
2-8 Output signal 6-3 Wrong objects
2-9 Data I/O process 6-4 Wrong relationship
2-10 Incorrect sensor data 6-5 Incorrect return
3-1 Optimization 6-6 Logic error
3-2 Time out 7-1 Infinite loops
3-3 Time fault causes data loss 7-2 If and case statements
3-4 Complete with delay 7-3 Check variables
3-5 Time delay 7-4 Serialization
3-6 Feedback control error 7-5 Deadlock
3-7 Set time and read 7-6 Concurrent processing
3-8 Time management 7-7 Task management

7-8 Recursion

2.4.3. Embedded Software Defects via Content Analysis

Using the content analysis procedures (as shown in Table 3), the researchers and collaborators
(as shown in Table 6) classified defects in Table 7 and used the reliability table in Table 4 to derive
matching classifications. This process was repeated several times to extract the 12 embedded software
defects shown in Table 8. The categorization index, a ratio of the agreed value located on the diagonal
line of Figure 2, was used to confirm the reliability of the agreed-upon classifications. The classification
index was evaluated at about 96%, with 64 of the 66 defects agreed upon by the researchers and experts,
qualifying it as “excellent.”
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Table 8. Derived final embedded software defects.

Code Embedded Software Defects Definition Sub-Defects

E1 Wrong logic Control logic and calculation Control flow, if, case, loop statements,
divided by zero

E2 Wrong function Function itself defects Non-reentrant function, incorrect objects

E3 Task management Concurrent processing error Deadlock, race condition, task management

E4 Exception handling Device driver exception
handle error

Software exception handling excluding
device driver error

E5 Internal software interface Communication error
between software

Internal interface, inconsistent module
interface, wrong parameter

E6 External interface Communication error with
the external system

Networking, send and receive packet error,
human interface

E7 Device driver Hardware control
device driver

I/O device, I/O port process,
I/O device status

E8 Hardware interrupt The processing routine for
hardware interrupt

Non interrupt routine, incorrect interrupt
routine, process error

E9 Timing error Defects that cannot complete
in time

Time out, time delay, feedback control error,
set time and read time

E10 Data, shared memory Data and static memory Data definition, data access, shared memory

E11 Dynamic memory Defect using
dynamic memory

Memory initialization, memory
management, resource leaks,

memory overflow

E12 Flash memory and file system Data storage device Flash memory, storage data save
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3. Results

3.1. Derived 12 Embedded Software Defects

The 12 embedded software defect classes and their sub-defects were generated after analyzing and
standardizing the numerous terms collected. This defect classification includes all the collected defects,
and targeting the defects summarily listed here may mitigate the risk that a defect will remain untested.
Next, using the DEMATEL method, this study determined the relationships between embedded
software defects to derive core defects

3.2. Expert Opinions on the Influence Relationships of Embedded Software Defects

The opinions of 16 experts (with an average of 9.5 years of embedded software development
experience) were collected using a survey to analyze the impact of the 12 identified defects. These experts
are professional engineers, top engineers, and information technology (IT) auditors, with 6 to 20 years
of embedded software experience, as shown in Table 9, along with their specific fields and survey
analysis results. The impact values of the 12 defects were collected from these experts with values
ranging from zero to four (zero—no impact, one—low impact, two—normal impact, three—high
impact, four—very high impact). Cronbach’s α was used to measure the reliability of the survey.
Its value was 0.906 using the SPSS tool and the Cronbach’s α, as shown in Table 9.

Table 9. Summary of Cronbach’s α analysis results for survey of embedded expert respondents.

No.

Embedded Expert Respondents Survey Analysis Result of Cronbach’s α

Field of Embedded
Software

Development

Number of Years
of Embedded

Software
Experience

Respondent
Class or

Certification

Scale Average
if This Item
was Deleted

Scale
Distribution if
This Item was

Deleted

Modified Full
Correlation

Cronbach’s α if
this Item was

Deleted

R1 IP CCTV, IoT, Device
driver 10 P.E. * 26.639 98.358 0.765 0.895

R2 Device driver 6.5 P.E. * 26.882 99.615 0.736 0.897

R3 Industrial device
control 6 P.E. * 27.778 103.559 0.312 0.911

R4 Mobile, IoT 20 IT auditor 27.333 101.231 0.534 0.902
R5 Mobile, IoT 9.5 IT auditor 27.222 99.447 0.676 0.898
R6 Mobile 10.5 IT auditor 27.132 97.346 0.671 0.897
R7 Mobile 14 P.E. * 27.681 102.680 0.584 0.901
R8 Mobile, IoT 12 P.E. * 27.208 99.649 0.546 0.902
R9 IoT 8 Top engineer 27.111 98.155 0.632 0.899
R10 Network cam, 7 P.E. * 26.757 98.843 0.717 0.897

R11 Mobile, industrial
device control 8 Top engineer 27.819 101.743 0.478 0.904

R12 Industrial control 8.5 P.E. * 27.882 98.748 0.569 0.901
R13 Mobile 10 P.E. * 27.882 98.748 0.569 0.901

R14 Intrusion Prevention
System 6 P.E. * 27.569 97.939 0.477 0.906

R15 IoT 5 Top engineer 26.604 98.507 0.693 0.897
R16 Home automation 5 Top engineer 27.167 96.252 0.616 0.900

Average 9.125 N/A N/A N/A N/A 0.906

* P.E.: Professional engineer.

3.3. DEMATEL Analysis of Expert Opinions

The DEMATEL method was applied to the questionnaire in stages to analyze the impact
relationships of defects. First, for the collected questionnaire values, the arithmetic mean was
calculated using equation (1), and this was used to generate the generalized matrix (A; Table 10).
Second, to normalize the generalized matrix (A), the maximum value was calculated using equation (2)
and applied to equation (3), thus deriving a normalized matrix (N). Third, the TRM (T) was calculated
(Table 11) by multiplying N by the inverse matrix of the unit matrix (equation 4). Fourth, this study
calculated (equation 5) for the sum of columns (D) and the sum of the rows (R), (D+R), and (D-R)
factors in the TRM (T) of Table 12. Fifth, the threshold value was calculated using equation (7) to get a
value of 0.4928. Values smaller than the threshold values in matrix (T) were identified as having no
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impact, whereas larger values have an impact. Finally, the factor (D-R) in Table 12 is set on the y-axis,
while the factor (D+R) is set on the x-axis. These are then used to draw the impact relationship map.

Table 10. Generalized cause and effect matrix (A).

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

E1 0.0000 2.3125 2.6250 2.3750 1.6875 1.6250 2.4375 2.1875 2.6250 2.5000 2.6250 2.5000
E2 2.3125 0.0000 2.7500 2.3750 2.3125 2.1875 2.1875 2.1250 2.1875 2.2500 2.3125 1.6250
E3 1.9375 1.7500 0.0000 2.1250 2.3750 2.4375 2.2500 2.5625 2.6250 2.3125 2.3125 1.6875
E4 2.3125 1.9375 2.3125 0.0000 1.7500 1.9375 1.7500 1.8125 2.0625 1.7500 1.6250 1.3750
E5 1.9375 2.0625 2.3750 1.9375 0.0000 2.1875 2.0625 1.8750 2.2500 1.3750 1.6250 1.5000
E6 1.6250 1.3750 1.7500 1.6875 1.7500 0.0000 1.8750 2.0625 2.8125 1.4375 1.3750 0.8750
E7 1.5625 1.5000 1.8125 1.6250 1.6875 2.1875 0.0000 2.3125 2.5000 1.8125 1.8750 1.2500
E8 1.3750 1.2500 1.9375 1.3125 1.6250 2.1875 2.7500 0.0000 2.5000 1.6875 1.6875 1.4375
E9 1.6250 1.6875 2.3750 1.7500 2.0000 2.7500 2.4375 2.3750 0.0000 1.6875 1.3750 1.3750

E10 2.3125 2.3750 2.3125 2.0000 2.0000 1.8750 2.0000 1.9375 1.9375 0.0000 2.3125 1.6875
E11 2.2500 2.3125 2.1875 2.1250 2.0000 1.7500 2.0000 1.8750 2.0625 2.3125 0.0000 1.6250
E12 1.6875 1.6250 2.1250 1.3750 1.6875 1.7500 2.0625 2.3125 1.8125 2.1250 1.9375 0.0000

Table 11. Total cause and effect matrix (T).

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

E1 0.4742 0.5415 0.6444 0.5562 0.5387 0.5825 0.6266 0.6103 0.6662 0.5715 0.5711 0.4786
E2 0.5421 0.4435 0.6307 0.5416 0.5444 0.5846 0.6007 0.5907 0.6343 0.5467 0.5448 0.4360
E3 0.5205 0.4992 0.5229 0.5239 0.5378 0.5845 0.5939 0.5961 0.6390 0.5395 0.5353 0.4306
E4 0.4732 0.4474 0.5365 0.3879 0.4563 0.5006 0.5081 0.5035 0.5472 0.4602 0.4526 0.3714
E5 0.4677 0.4583 0.5472 0.4657 0.3998 0.5181 0.5274 0.5144 0.5631 0.4548 0.4595 0.3811
E6 0.4099 0.3897 0.4718 0.4103 0.4168 0.3884 0.4686 0.4684 0.5256 0.4086 0.4031 0.3210
E7 0.4337 0.4189 0.5034 0.4336 0.4405 0.4951 0.4291 0.5054 0.5459 0.4477 0.4462 0.3549
E8 0.4189 0.4024 0.4980 0.4148 0.4305 0.4869 0.5181 0.4140 0.5368 0.4355 0.4319 0.3545
E9 0.4573 0.4456 0.5472 0.4594 0.4730 0.5383 0.5412 0.5323 0.4838 0.4653 0.4514 0.3766

E10 0.5112 0.4991 0.5803 0.4982 0.5026 0.5394 0.5591 0.5495 0.5879 0.4345 0.5140 0.4130
E11 0.5048 0.4927 0.5711 0.4980 0.4981 0.5304 0.5540 0.5423 0.5865 0.5130 0.4262 0.4072
E12 0.4466 0.4317 0.5238 0.4335 0.4490 0.4888 0.5134 0.5150 0.5325 0.4679 0.4581 0.3156

Table 12. Results of the cause and effect analysis of embedded software defects.

Code Defects D R D+R D-R

E1 Wrong logic 6.86 5.66 12.52 1.20
E2 Wrong function 6.64 5.47 12.11 1.17
E3 Task management 6.52 6.58 13.10 −0.05
E4 Exception handling 5.64 5.62 11.27 0.02
E5 Internal software interface 5.76 5.69 11.44 0.07
E6 External interface 5.08 6.24 11.32 −1.16
E7 Device driver 5.45 6.44 11.89 −0.99
E8 Hardware interrupt 5.34 6.34 11.68 −1.00
E9 Timing error 5.77 6.85 12.62 −1.08
E10 Data, shared memory 6.19 5.75 11.93 0.44
E11 Dynamic memory 6.12 5.69 11.82 0.43
E12 Flash memory and file system 5.58 4.64 10.22 0.94

3.4. Influence Analysis between Embedded Software Defects

The DEMATEL method determined the degree of a defect’s influence power as each defect related
to each other, enabling this study to plot an IRM, as shown in Figure 3. The D column lists are the
sum of rows, and the R column lists are the sum of columns. The D value numerically expresses
the degree to which one defect affects other defects, while the R-value expresses the degree to which
one defect is affected by other defects. D+R is the sum of the values affecting other defects and the
values affected by other defects. The D+R value is useful for identifying the total value of defects.
On the other hand, D-R is the difference of values that affect other defects and the value affected by
other defects. The larger the value of D-R, the greater the influencing power of the defect, while the
smaller its value, the more it is affected by other defects. Therefore, defects with positive D-R values
are cause defects and belong to the cause group, while defects with negative D-R values are effect
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defects and belong to the effect defect group [25]. Additionally, the affecting defect, or the cause defect,
should be tested first because it affects other defects. Meanwhile, the affected defect should be tested
later as it is affected by other defects [30]. Therefore, defects with higher D-R values should be tested
first, whereas defects with lower D-R values should be tested later.
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As shown in Table 13, the D-R values of the following defects are positive and should be tested
first: wrong logic (E9), wrong function (E10), flash memory and file system defects (E6), data and
shared memory (E4), dynamic memory (E5), internal software interface (E7), and exception handling
(E12). Meanwhile, the D-R values of the following defects are negative and should be tested later:
task management (E11), device driver (E1), hardware interrupt (E2), timing error (E3), and the external
interface (E8) defects.

As defined at the beginning of the paper, core defects refer to defects that increasingly get more
severe due to other defects. Based on this, the five core defects that have been identified in the effect
group with negative D-R values and different characteristics are the following: external interface (E6),
timing error (E9), hardware interrupt (E8), device driver (E7), and task management (E3). Minimizing
these defects is vital, so tests that are appropriate for each defect characteristic should be performed.
The characteristics of the five core defects that were derived are as follows: the primary core defects
are defects with the smallest D-R value, which is an external interface fault, including network, serial
port, and human interface. For example, if there are defects in the human interface, other functions can
still work in a particular way and cause problems even if the user requests for the desired function.
It can be understood as the most important fault as it can lead to serious problems due to incorrect
operation if commands from an external system are incorrectly received. The second important defect
is the hardware interrupt defect, which includes operations like dividing by zero, overflow, underflow,
etc. If defects that interrupt processing occur, serious problems may follow. The third important defect
is the device driver, providing the interface to control the hardware. Defects occurring in the device
driver are essential to note because they prevent users from predicting how the embedded system will



Appl. Sci. 2020, 10, 6946 14 of 18

operate. The fourth important defect is the timing error. Embedded systems can be directly linked
to human life, such as automobile autonomous navigation systems, automatic navigation systems in
aviation, nuclear power plant control systems, and missile control devices in the defense industry.
If an immediate response function times out, unpredictable consequences may occur. The last important
defect is the task management defect since tasks may not be performed normally due to deadlock,
race condition, etc.

Table 13. Embedded software defects sorted with D+R and D-R.

Code Defects Sorted by D+R D+R Code Defects Sorted by D-R D-R

E3 Task management 13.1 E1 Wrong logic 1.2
E9 Timing error 12.62 E2 Wrong function 1.17
E1 Wrong logic 12.52 E12 Flash memory and file system 0.94
E2 Wrong function 12.11 E10 Data, shared memory 0.44
E10 Data, shared memory 11.93 E11 Dynamic memory 0.43
E7 Device driver 11.89 E5 Internal software interface 0.07
E11 Dynamic memory 11.82 E4 Exception handling 0.02
E8 Hardware interrupt 11.68 E3 Task management −0.05
E5 An internal software interface 11.44 E7 Device driver −0.99
E6 External interface 11.32 E8 Hardware interrupt −1
E4 Exception handling 11.27 E9 Timing error −1.08
E12 Flash memory and file system 10.22 E6 External interface −1.16

In a comprehensive interpretation of core defects, this study found that embedded systems should
be executed robustly without being affected by external systems and environments, and that interrupt
should be handled correctly. They should then be implemented to respond to different types of
hardware. The desired function must be performed within a limited time, ensuring that the original
function is executed faithfully without damaging other task types. Therefore, applying a test method
suitable for such characteristics would be the best way to minimize defects.

3.5. Validation with Embedded Software Developer Experts

This study collected six critical defects—considered the most important of the 12 embedded
defects listed in Table 8—from 10 embedded software development experts to confirm the reliability of
the study results. Table 14 illustrates that although some experts suggested that logic defects, exception
handling, data, and dynamic memory defects are also important, the common opinion is that hardware
interrupts, external software interface, timing error, device drivers, and task management defects are
the biggest impediments to proper system functioning. When looking at the important defects derived
from experts and the core defects derived from this study, there are only slight differences, with the
rest being approximately identical.

Table 14. Opinions of embedded software development experts on important defects.

Code Defects
Opinions of 10 Embedded Software Experts

Rank
1 2 3 4 5 6 7 8 9 10

E1 Device driver 6 4 4 1 2 3 1 1 4
E2 H/W interrupt 4 2 2 2 3 1 4 5 4 1
E3 Timing error 5 3 5 4 5 2 3 6 5 3
E4 Data and shared memory 6 5 5
E5 Dynamic memory 2 5 6
E6 Flash memory and file system 1 6 5 2
E7 Internal software interface 1
E8 External interface 6 3 3 5 3 1 2 2 3 2
E9 Wrong logic 1 6 3 6

E10 Wrong function 4 4
E11 Task management 3 5 1 4 5 5
E12 Exception handling 4 4 2 6 6
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3.6. The Difference between Previous Studies and This Study

Current embedded software defect research only includes specific areas that researchers consider
essential, as shown in Table 5. If defects are tested according to previous studies, there may be defects
that are not tested, which may cause failures. For this reason, the present study collected embedded
software defects worldwide, classified them as MECE and organized them into 12 categories and
sub-defects to solve this problem. Therefore, if 12 categories and sub-defects are used and tested,
they can account for all defects tested, minimizing the failure of the embedded system.

Given that defects affect each other, problems can arise if the effect defect is tested first and the
cause defect is tested later. For example, if a cause defect is found after removing the effect defects, the
effect defects must be tested again, as the cause defects may affect the effect defects. Therefore, testing
the cause defects first and then testing the effect defect later is a way to minimize the defect without
running multiple tests [30]. In the present study, the cause defects and the effect defects were derived
by analyzing the influence relationship between defects. Thus, the defect can be eliminated by testing
the cause defects first and then testing the effect defects later.

Embedded software defects range from minor defects to severe defects. Naturally, more weight
should be placed on severe defects than minor ones to improve the safety of embedded system. Various
embedded software defects have been studied, but there is insufficient research on major defects to
minimize embedded system failures. In the present study, the influence relationship between defects
was analyzed to identify the major defects. The cause defects and effect defects were identified using
the influence relationship between the defects. Cause defects may not cause failure by eliminating
their own defects. However, even if effect defects are eliminated by their own defects, defects can be
caused by cause defects. Therefore, effect defects should be intensively managed and tested more than
cause defects. The effect defects derived in this study are called core defects, and it was determined
that hardware-dependent defects are greatly affected by other defects. Therefore, if in-depth tests
are conducted on the core defects derived in this study, the failure of the embedded system can
be minimized.

4. Conclusions

This study was able to derive 12 defect categories and sub-defects using the content analysis
technique, draw the cause and effect relationship between embedded software defects, and derive
core defects using the DEMATEL method. After studying the data yielded throughout the different
stages of the study’s analyses, the results show that the core embedded software defects were the
external interface defect, the hardware interrupt defect, device driver defect, timing error, and task
management defect.

What this study does is integrate and organize pure software defects and embedded software
defects from around the world, opening avenues for other researchers to improve software quality.
This study also helps mitigate the risks that come from critical defects that might not have been tested.
Moreover, the impact relationships between defects can be better mapped through the diagrams
presented here. Lastly, using the cause and effect relationships, this study constructed a basis for
estimating defect weights. Future studies may validate and use them as criteria for targeting embedded
software defects.

There are also many industrial applications for this study. First, by eliminating the time required
to collect and classify the defects, one may immediately inspect and target any defects that may be
present. Second, when developing an embedded system, systems can remove defects more efficiently
and effectively using a guide that orders defects by importance. Third, analyzing the priorities of the
defects may facilitate a more accessible selection of the appropriate embedded software test technique.
Lastly, when performing a fault injection test, this study suggests that more defects can be injected and
tested in the source code where core defects are likely to occur.

In this study, embedded software defects were classified into 12 defect categories and sub-defects.
Moreover, the influence relationship of defects was analyzed for each of the 12 defect categories and
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classifying the defects into cause group defects and effect group defects. However, the weight of
the defect was not completely calculated, and the influence relationship of the sub-defects was not
analyzed. Therefore, future studies that derive the weights of sub-defects and studies that analyze
the influence relationship of sub-defects to identify cause defects and effect defects at the level of
sub-defects are essential. In addition, future researchers can look into how to improve the defect
removal rate while conducting embedded tests (such as defect injection tests) using the defects derived
in this study, compared to the existing tests.
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