
applied
sciences

Review

On Applications of Spiking Neural P Systems

Songhai Fan 1,†, Prithwineel Paul 2,3,† , Tianbao Wu 1, Haina Rong 3 and Gexiang Zhang 2,3,*,†

1 State Grid Sichuan Electric Power Company, Chengdu 610094, China; fansonghai@126.com (S.F.);
wu_tianbao@163.com (T.W.)

2 Research Center for Artificial Intelligence, Chengdu University of Technology, Chengdu 610059, China;
prithwineelpaul@gmail.com

3 School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China;
hainarong@swjtu.edu.cn

* Correspondence: zhanggexiang19@cdut.edu.cn
† These authors contributed equally to this work.

Received: 8 August 2020; Accepted: 28 September 2020; Published: 9 October 2020
����������
�������

Abstract: Over the years, spiking neural P systems (SNPS) have grown into a popular model in
membrane computing because of their diverse range of applications. In this paper, we give a
comprehensive summary of applications of SNPS and its variants, especially highlighting power
systems fault diagnoses with fuzzy reasoning SNPS. We also study the structure and workings of
these models, their comparisons along with their advantages and disadvantages. We also study the
implementation of these models in hardware. Finally, we discuss some new ideas which can further
expand the scope of applications of SNPS models as well as their implementations.

Keywords: spiking neural P systems; fault diagnosis; hardware implementation; NP-complete;
pattern recognition; membrane computing

1. Introduction

In 1965, Gordon Moore predicted that the components of integrated circuits will reach a physical
limit [1]—i.e., miniaturization of silicon based circuits will eventually slow down. With this prediction,
many computer scientists shifted their focus on constructing computing devices which can be an
alternative to the silicon-based computer. Natural motivations to construct these models came
from different biological phenomena and the area which investigates these computing mechanisms
became well-known as unconventional computing. One of the biggest motivations of constructing
bio-computers came from the experiment performed by Leonard Adleman in his laboratory where,
with the use of DNA molecules, restriction enzymes and other chemicals, a well-known NP-complete
problem—i.e., HPP (Hamilton path problem)—was solved [2]. It initiated a popular area of research
known as DNA computing. Furthermore, following the experiment of Adleman, many researchers
used DNA molecules as computing units to solve many computationally hard problems. Along with
the experimental branch of DNA computing, a theoretical branch of DNA computing was introduced
by Tom Head where the splicing of DNA molecules was mathematically modelled using the concepts
of formal language theory [3]. This theoretical branch of DNA computing became very popular
among formal language theorists [4]. Following the success of DNA computing, Gh. Păun introduced
another area inspired from the structure and functioning of biological cells/membranes and it became
popularly known as Membrane computing.

Since the introduction of Membrane computing in 1998, it has become a popular direction
of research. The seminal paper by Gh. Păun [5] was mentioned by the Institute for Scientific
Information(ISI) in 2003 as a fast-breaking in computer science research. Membrane computing
models are known as P systems and work as parallel and distributive computing models. Moreover,

Appl. Sci. 2020, 10, 7011; doi:10.3390/app10207011 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-8351-3407
https://orcid.org/0000-0002-6072-3652
https://orcid.org/0000-0001-8034-0977
http://dx.doi.org/10.3390/app10207011
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/20/7011?type=check_update&version=2

Appl. Sci. 2020, 10, 7011 2 of 26

in P systems the objects present in the membranes are represented by a multiset of objects, strings, etc.,
and these objects can also evolve using the rules present in the membranes. One target is also attached
to the rules so that the newly generated objects can be sent to the membranes mentioned by the target.
The newly generated objects can be sent to upper or lower membranes or can be sent to any other
connected cells/membranes. Depending on this criteria, membrane computing models are divided
into three categories: cell-like, tissue-like and neural-like.

In cell-like P systems, the objects can be sent only to upper and lower membranes of the membrane
where the rule is applied. However, the inter-cellular communications are possible in tissue-like and
neural-like systems. Neural-like P systems [6] were introduced in 2006, by Ionescu, Păun and Yokomori.
These models are known as spiking neural P systems (SNPS). These models were inspired by the
structure and functioning of the biological neurons. More specifically, they were inspired from the
structure and workings of third generation neural networks which are well-known as SNNs (spiking
neural networks). One of the fundamental features of SNNs is that they use time to encode the
information and also uses the concept of individual spikes. These properties of SNNs make it a model
which is much closer to the biological neurons. Moreover SNNs are hardware friendly and energy
efficient [7]. The idea of encoding time as information and individual spikes has been incorporated
in SNPS in the framework of formal language theory. In SNPS, the information is encoded in the
form of time differences between the spiking of a particular neuron. Moreover, the time difference
between the spikes by a specified neuron is collected and considered as the numbers generated by
the SNPS. SNPS also work as accepting devices where some neurons are designated as input neurons
an,d depending on the positive/negative output by the output neurons, the acceptance/rejection
of the strings received in the input neurons are decided to be accepted or rejected. SNPS models
are Turing complete. Furthermore, SNPS have established themselves as a very popular direction
of research in the last few decades, where the computing power of different variants of SNPS and
the use of SNPS models in solving many problems in computing as well as in real-life applications
have been investigated extensively. Many variants of SNPS have been introduced by incorporating
features from the biological neurons such as asynchronous systems [8], astrocytes [9], rule on
synapses [10], communication on request [11,12], synapses with schedules [13], structural plasticity [14],
weighted synapses [15], inhibitory synapses [16], anti-spikes [17], etc. These models have also
been used in solving problems related to real-life applications, such as fault diagnosis of power
systems [18–31], pattern recognition [32–34], computational biology [35], performing arithmetic
and logical operations and hardware implementation [36–47], solving computational hard
problems [18,48–64], computing morphisms [65,66], biochip design [67], programming for logic
controllers [68], etc.

In this paper, we study the SNPS models and their applications. We also give comparisons of the
models, their structures and workings. Furthermore, we study their advantages and disadvantages
and the implementation of these models in hardware. Finally, we discuss some methodologies to
extend the works present in the literature. The main motivation to prepare this survey is as follows:

(1) To give an updated and comprehensive survey of the SNPS models, their structures and workings
and their applications;

(2) Study comparison of these models while solving these problems along with their advantages
and disadvantages;

(3) Study implementations of these models in hardware;
(4) Introduce some new ideas to expand the scope of applications of SNPS models.

The main contributions of this work are as follows:

(1) Listing a majority of the SNPS models used for solving problems in fault diagnosis,
pattern recognition, computational biology, intrusion detection, computing morphism,
performing arithmetic and logical operations. Additionally, their use in solving computationally

Appl. Sci. 2020, 10, 7011 3 of 26

hard problems, the construction of µ-fluidic biochip design and programming for PLC
(programmable logic controller);

(2) Studying a comparison of these models;
(3) Studying their advantages and disadvantages in solving problems;
(4) Discussing a possible extension of these models in applications.

The paper is organized in the following manner: Section 2, discusses the structure of the SNPS
model; in Section 3, we study the applications of SNPS models; Section 4 is conclusive in nature.

2. Spiking Neural P Systems

Definition 1 ([6,69]). A spiking neural P system of degree m ≥ 1 is a (m + 4)-tuple of the form Π =

(O, σ1, . . . , σm, syn, in, out), where

• O = {a} (Singleton alphabet; it is called spike);
• σ1, . . . , σm are neurons where σi = (ni, Ri), i ≥ 1

where

(a) ni ≥ 0 represents the initial number of spikes present in the neuron σi;

(b) Ri represents the finite set of rules present in the neuron σi and it contains two-types of rules:

(1) Spiking rule: E/ac → a; d , E is a regular language over {a} and c ≥ 1, d ≥ 0;

(2) Forgetting rule: as → λ, s ≥ 1 and as /∈ L(E) for all rules of type (1) in Ri;
• syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} represents the synapses and for any (i, j) ∈ syn, i 6= j, 1 ≤ i, j ≤ m;
• in, out ∈ {1, 2, . . . , m}

The spiking rules of the SNPS are applicable depending on the number of spikes and the regular
language over alphabet a—i.e., E. If at any time t, the neuron σi has k number of spikes and ak ∈
L(E), k ≥ c, then the spiking rule E/ac → a rule is applicable. Moreover, after application of this
rule, c spikes are consumed and remaining k− c spikes stay in the neuron and one spike is sent to
the neurons which have synaptic connection with σi. Note that, in this case, delay d = 0. If the delay
d 6= 0, and the spiking rule are applied at any moment t in any neuron σi, then the neuron becomes
inactive—i.e., it will not send any spike out of the neuron and it will not receive any spike from other
neurons from time t, t + 1, . . . , t + d− 1. At t + d, the neuron σi will be open again and it can receive
spikes from other neurons. At step t + d + 1, the spiking rule will be applicable again.

The spiking rules of SNPS can be of the form E/ac → ap; d where c ≥ p ≥ 1, d ≥ 0. These rules
are known as extended spiking rules and the SNPS model with this type of rules is called as extended
spiking neural P systems.

If E = {ac}, then the rule E/ac → a; d is simply written as ac → a; d.
The forgetting rules in σi are of the form as → λ and it is applicable only when a neuron contains

exactly s number of spikes and as /∈ L(E) for any spiking rule of the form E/ac → a; d, c ≥ 1, d ≥ 0.
Furthermore, after application of this rule s spikes are consumed.

Now we discuss the non-deterministic application of the spiking rules—i.e., if at any time t,
two rules of the form E1/ac1 → a; d and E2/ac2 → a; d where L(E1) ∩ L(E2) 6= ∅ are applicable, then
one of the rules is applied (i.e., one of the rule is chosen non-deterministically to be applied). Similarly,
if at any time more than two rules are applicable, one of them is selected non-deterministically.

In the next section we discuss the application of the SNPS and their variants. Throughout the
paper, in order to improve the readability, instead of writing the full names of the models, we use the
acronyms in Table 1.

Appl. Sci. 2020, 10, 7011 4 of 26

Table 1. List of acronym of SNPS models.

ACRONYM

SNPS Spiking Neural P Systems
FRSNPS Fuzzy Reasoning Spiking Neural P Systems
tFRSNPS Trapezoidal Fuzzy Reasoning Spiking Neural P Systems
AFSNPS Adaptive Fuzzy Reasoning Spiking Neural P Systems
rFRSNPS Real Fuzzy Reasoning Spiking Neural P Systems

WFRSNPS Weighted Fuzzy Reasoning Spiking Neural P Systems
MFRSNPS Modified Fuzzy Reasoning Spiking Neural P Systems

TFSNPS Time Free Reasoning Spiking Neural P Systems
IFSNPS Intuitionistic Fuzzy Reasoning Spiking Neural P Systems

ESTSNPS Electrical Synaptic Transmission based Spiking Neural P Systems
OSNPS Optimization Spiking Neural P Systems

IVFSNPS Interval-Valued Fuzzy Reasoning Spiking Neural P Systems
srSNPS Spiking Neural P Systems with Self-Updating Rules

SNPSPCR Spiking Neural P Systems with Pre-Computed Resources
NLPPS Neural-like Probabilistic P Systems

IMSNPS Improved Spiking Neural P Systems
SNPBR Spiking Neural P Systems with Budding Rules

SNPSNDB Spiking Neural P Systems with Neuron Division and Budding rules
SNPSP Spiking Neural P Systems with Structural Plasticity

ASYSNPS Asynchronous Spiking Neural P Systems
SNPC Spiking Neural P Systems with Chain structures

SNPSAS Spiking Neural P Systems with Anti-Spikes
SNPSDD Spiking Neural P Systems with Dendritic Delay

SNPSACL Spiking Neural P Systems Astrocyte-Like Control
ESNPSEIA Extended Spiking Neural P Systems with Excitatory and Inhibitory Astrocytes

HSNPS Spiking Neural P Systems with Hebbian Learning
TFRSNPS Triangular Fuzzy Reasoning Spiking Neural P Systems
rTFRSNPS Temporal Fuzzy Reasoning Spiking Neural P Systems with real numbers

3. Applications of Sn P Systems

In this section, we discuss the application of spiking neural P systems in solving problems
related to the fault diagnosis of power systems, computationally hard problems, pattern recognition,
performing arithmetic and logical operations and their implementation in hardware as well as writing
programming languages based on these models, computing morphisms, computational biology,
fingerprint recognition, etc.

We give a summary of the SNPS models and their corresponding applications in Figure 1. We also
divided the applications of the SNPS models into five subsections—i.e., (1) Power Systems Fault
diagnosis; (2) Solving computationally hard problems; (3) Performing Arithmetic and logical operations
and hardware implementation; (4) Pattern recognition; (5) Other applications.

Appl. Sci. 2020, 10, 7011 5 of 26

SNPS

SNPSP

ASNPS

SNPC

FRSNPS

AFSNP

SNPSPCR

HSNPS

WSNPS

SNPSDD

SNPSALC

OSNPS

ISNPS

TFSNPS

SNPSNDB

Logic operation

Logical and arithmetic operations

Subset-Sum problem

Nuclear export signal

Recognize English letters

Computing k-block morphism

Computing morphism

Arithmetic operations

Signed integer arithmetic

Decoder design

Skeletonizing images

Programmable Logic Controller Stage Programming

Parallel Image Skeletonizing

Deterministic solutions to QSAT and Q3SAT

Solving Numerical NP-complete Problems

Fault Diagnosis Method for Power Transmission Networks

Deadlock resolution problem

Logical and arithmetic operations

Intrusion detection

fuzzy knowledge representation

Fault Diagnosis Models for power systems/

Electric Locomotive/ Metro Traction Power Systems

Traction Power Supply Systems of High-speed RailwaysIVFSNPS

TFRSNPS

MFSNPS

WFRSNPS

ESTBSNPS

Solving TSP

Solving HPP

Solving SAT

Integer factorization

Solving Subset-Sum

Parallel multiplier circuit

Design of logic gates

µ-fluidic system design and simulation

MODELS APPLICATIONS

FDSNPS

srSNPS

DRSNPS

; Fault Section Estimation of Power Systems

SNPS ; MPUs design

rTFRSNPS

SNPSAS Logical and arithmetic operations; Fingerprint recognition

tFRSNPS Fault diagnosis; Intrusion detection

NLLPS MIS problem

Solving 0/1 knapsack problem; Fault diagnosis

ESNPSEIA Logical and arithmetic operations

Figure 1. List of SNPS models and applications.

Appl. Sci. 2020, 10, 7011 6 of 26

3.1. Power Systems Fault Diagnosis

The complexity of power systems has increased significantly with the increasing complexity
and size of generators, transmission lines, busbars and transformers. PRs (protective relays) and
CBs (circuit breakers) protect these devices. One of the major components associated with the power
system is called SCADA (supervisory control and data acquisition) and whenever a fault occurs in a
power systems, the SCADA system sends a large number of alarm messages. Additionally, at the same
time, the protective devices are capable of quick identification of the faults by activation of the PRs
and tripping of the CBs to isolate the fault section. It is also a natural phenomenon that the messages
received from the SCADA are incomplete and the uncertainty associated with the tripping of PRs
and CBs increases the complexity of the fault diagnosis. The parallel and distributed architecture of
bio-computing models provided a theoretical framework which can solve these problems effectively.
One of the main advantages of these models is that multiple operations can be performed in a step of
computation and it helps to solve many real life problems efficiently as well as quickly. The membrane
computing model—i.e., fuzzy reasoning spiking neural P system (FRSNPS)—was introduced by
Peng, et al. in 2013 [20] with the purpose to solve the problem of fault diagnosis. This model along
with the parallel and distributed architecture has capabilities, such as fuzzy knowledge representation,
fuzzy reasoning, non-determinism, non-linearity, dynamic reasoning, high understandability and
synchronization. Moreover FRSNPS models can simulate model fuzzy production rules graphically
which makes the model more easily understandable.

At first we discuss the mathematical structure of the FRSNPS.

Definition 2 ([20]). A FRSN P system of degree m ≥ 1, is a (m + 4)-tuple of the form Π =

(A, σ1, . . . , σm, syn, I, O) where

(1) A = {a} is the singleton alphabet (the object a is called spike).
(2) r1, . . . , rm are neurons with the form ri = (αi, τi, ri) with i ∈ {1, . . . , m} where

(i) αi ∈ [0, 1] represents the (potential) value of spike contained in neuron σi (also called pulse value);

(ii) τi ∈ [0, 1] represents the truth value associated with neuron σi;

(iii) ri (firing/spiking rules) contained in neuron σi are of the form E/aα → aβ, where α, β ∈ [0, 1].
(3) syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with i 6= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses

between neurons).
(4) I, O ⊆ {σ1, σ2, . . . , σm} represent the input neuron set and output neuron set, respectively.

The rules of this model are different from the rules in the SNPS model in [6] and also instead of
the number of spikes, the value of the spikes is represented by number αi ∈ [0, 1]. The neurons in
fuzzy reasoning spiking neural P systems (FRSNPS) are divided into two categories—i.e., proposition
neurons and rule neurons. Moreover, rule neurons are divided into two categories—i.e., AND and OR
neurons. Based on the firing mechanism and matrix operations, a reasoning algorithm was introduced
in [20]. This matrix reasoning algorithm in the framework of FRSNPS is capable of diagnosing single
and multiple faults irrespective of proper functioning of the PRs. Moreover the fault diagnosis method
based on FRSNPS has good fault tolerant capacity. This method is also suitable for online applications,
since the construction and storing of these models in a file can be done in advance and it only takes
five reasoning steps to obtain the results of the diagnosis. Inspired by this model, a new variant of
FRSNPS, called MFRSNPS (modified fuzzy reasoning spiking neural P systems) was introduced in [25]
by He et al. In this model, rule neurons are divided into three categories—i.e, general, AND and
OR rule neurons. MFRSNPS have also been used in fault diagnoses of metro traction power supply
systems [25]. The energy systems of rail transportation systems are called traction power supply
systems and play an important role in safe and reliable operations of trains. It is important to note that
the identification of the faults in traction power supply systems is important for uninterrupted supply

Appl. Sci. 2020, 10, 7011 7 of 26

of the power. Additionally, the identification of the faults is impacted by the uncertain and incomplete
operation information received from the SCADA. The MFRSNPS models are very effective in the
diagnosis of the fault section while certain/uncertain as well as complete/incomplete informations is
received from the SCADA systems.

Since the introduction of the first FRSNPS model in [20], different variants of FRSNPS models have
been introduced where the value of the spikes inside the neurons is represented by a triangular fuzzy
number (TFRSNPS) [27], intuitionistic fuzzy numbers (IFSNPS) [70], interval-valued fuzzy numbers
(IVFSNPS) [71,72], real numbers (rFRSNPS) [21] and trapezoidal fuzzy numbers (tFRSNPS) [73].
Additionally, a temporal fuzzy reasoning spiking neural P systems with real numbers (rTFRSNPS)
was proposed [74] by Huang, et al. in 2016. It is also important to note that, in tFRSNPS, both the
value of the spike and truth value are represented by a trapezoidal fuzzy number in [0, 1]; in rFRSNPS,
both potential and truth value are real numbers in [0, 1]. However, in TFSNPS, the potential is a
triangular fuzzy number and truth value is a real number in [0, 1]; in IFSNPS, the potential value is
an intuitionistic fuzzy number and the CF is a real number in [0, 1], and in IVFSNPS, both potential
and CF are interval-valued fuzzy numbers. Moreover, the rule neurons of these models have different
structures. The tFRSNPS and rFRSNPS models contain proposition neurons and, in general, AND
and OR neurons. However, the TFRSNPS, IFSNPS and IVFSNPS models have proposition neurons
and AND and OR rule neurons. IVFRSNPS models are flexible and capable of handling incomplete
and uncertain messages. The IFSNPS models are also very effective in the identification of faults in
power systems where the messages received from the SCADA systems are incomplete and uncertain.
The interval-valued fuzzy reasoning spiking neural P systems (IVFRSNPS) [71] introduced in 2019 can
also process the incomplete and uncertain messages and can identify the faulty sections efficiently.

The efficiency of the reasoning algorithm plays an important role in the efficiency of system and
identification of faults quickly and effectively. In tFRSNPS, the inference ability of these models was
developed by introducing a matrix-based fuzzy reasoning algorithm which is based on dynamic firing
mechanism. The rFRSNPS model proposed in [21,75], has been used for the fault diagnosis of electric
locomotive systems where the relationship between the breakdown signals and faulty sections in the
locomotive unit have been represented by the fuzzy production rules. These rules are further simulated
by the rules in rFRSNPS. More specifically, in [21,75] fault diagnosis model for Shaoshan4 (SS4) electric
locomotive systems has been investigated. In [76], the rFRSNPS model was used for classification of ten
types of faults occurring in the lines of power systems. The proposed method in [76] is a combination
of wavelet transform, singular value decomposition and a rFRSNPS model. Moreover, the proposed
method is more feasible and effective and in comparison with benchmark methods has superiority
in robustness of noise. In 2018, another fault line detection method based on the rFRSNPS model
was introduced [77] by Rong et al. More specifically, this model was introduced for fault diagnosis in
small current grounding systems. Additionally, steady and transient component features present in
the current or voltage signals were considered in this paper. Information gain degree is an important
aspect of feature information fusion and the weight of the importance of features is measured by it.
In [77], these features were reduced using the rough set theory. Another fault diagnosis model based
on the trapezoidal fuzzy reasoning spiking neural P systems was introduced in [19] by Wang et al. in
2015. This model was named FDSNPS and a matrix-based fuzzy reasoning algorithm was introduced.
The strictly mathematical expression of this model helps this model to be intuitively illustrative,
and also, since it can effectively handle the incomplete and uncertain messages, this model has good
fault tolerant capacity. Moreover, the trapezoidal fuzzy reasoning spiking neural P systems framework
is capable of representing the relationship between the PRs and the faults efficiently and hence the
model becomes easily understandable. Additionally, the fault diagnosis model introduced in [19] is
capable of performing the task of identifying single/multiple faults when incomplete and uncertain
messages are received from SCADA systems. Triangular fuzzy reasoning spiking neural P systems
(TFRSNPS) were introduced in [27], by the integration of the idea of triangular fuzzy numbers in SNPS.
The effectiveness and ability of the fuzzy reasoning method based on this model have been investigated

Appl. Sci. 2020, 10, 7011 8 of 26

over the ring network with 220kV. More specifically, the reasoning method has been used to identify
the fault in the bus, line and transformer in the ring network. This process is performed after the PRs
and CBs receive incomplete and uncertain messages from SCADA. The reasoning algorithm based on
this model is fast and highly accurate, while longitudinal differential protection has been considered.

Another new variant of FRSNPS was introduced in 2015 by Wang, et al. [24] which is conceptually
different from the previous models. In this model. weights are associated with the synapses connecting
the neurons and it is known as weighted fuzzy reasoning spiking neural P systems (WFRSNPS).
Moreover this model was used for fault diagnosis in traction power supply systems, which generally
occur in high-speed railways. The neurons of this system are of four types—i.e., proposition neuron,
general, AND and OR rule neurons. The relationship between the PRs and CBs and the faults can
be easily represented in the framework of WFSNPS and also a weighted matrix-based reasoning
algorithm was introduced in [24]. Additionally, the proposed method has satisfying results for fault
diagnosis in normal supply and over zone feeding where the information received from the SCADA
system is complete/incomplete. Moreover, with simple reasoning this method can obtain good
results. This idea of associating weights with the synapses was further extended in [22] by Tu et al.
It is well-known that the machine learning algorithms deal with updating the weights in the neural
networks and these algorithms have been used to solve many problems in neural networks. This idea
was extended for spiking neural P systems in [22] where the weights associated with the synapses
were updated using the learning algorithms in the framework SNPS. Additionally, it was used very
effectively in identifying the faults in power systems. Adaptive fuzzy spiking neural P systems
(AFSNPS) are one of the variants of WFSNPS. The problem of fault diagnosis of power systems
was solved in the framework of AFSNPS in [22] by Tu et al., where the rules were constructed in
such a manner that they could simulate weighted fuzzy production rules. Moreover, the adjustment
of the weights on the synapses connecting the proposition neurons and rule neurons helped the
system to adjust automatically. Additionally, AFSNPS models can perform dynamic fuzzy reasoning.
Along with simple reasoning processes, this method is faster compared to other algorithms and
has parallel processing capabilities. In AFSNPS, the weights are updated using the Widrow–Hoff
learning rules. AFSNPS have some intrinsic properties, such as simple learning process, fast speed
and parallel processing. These properties are useful in solving the problem of fault diagnosis and
hence AFSNPS is a good model for fault diagnosis. The AFSNPS has been further improved by
integration of PSO (particle swarm optimization) in the learning algorithm of AFSNPS [23] in 2016 by
Wang et al. In this method, the PSO algorithm optimizes the learning algorithm in the framework of
AFSNPS. This method also has a matrix reasoning algorithm. The PSO algorithm also improves the
efficiency and accuracy of the method. Additionally, compared with other methods AFSNPS with PSO
algorithms have better convergence speed of diagnosis, higher accuracy and are also conducive to the
changes in the topology of the grid. One of the major advantages of the AFSNPS model is the learning
ability to adjust automatically. This feature helps to obtain the diagnosis results which are closer to
the actual situations. However since a large amount of samples are required to train these networks,
modelling of large scale networks is difficult using this method.

In 2014, the OSNPS model [18] was introduced by Zhang et al., which provides a framework to
solve optimization problems using SNPS. The fault section estimation problem can be formulated as
an optimization problem (i.e., FSE, fault section estimation). The effective solution to this optimization
problem is possible by formulating it into the 0–1 integer programming problem. In [26], OSNPS was
used to solve this problem by Wang et al. The structure of OSNPS is very different from the traditional
SNPS models. In this model, an ESNPS (extended spiking neural P system) was introduced where
a guider is associated with each rule inside the neurons in order to adjust the selection probabilities.
This model is capable of automatically finding the faults in the power systems efficiently after receiving
the inputs from SCADA systems. Moreover, it is capable of finding the faults when the received
messages are uncertain and incomplete. Additionally, this model is efficient in finding single/multiple
faults. Recently, in [78], a new variant of the OSNPS model is introduced to solve the problem of fault

Appl. Sci. 2020, 10, 7011 9 of 26

section estimation. This model is called AOSNPS (Adaptive Optimization Spiking Neural P System)
and it is efficient in the identification of single and multiple faults as well as multiple faults while
receiving with incomplete and uncertain messages from SCADA. One of the distinctive feature of this
model is dynamic guider algorithm which has capabilities such as adaptive learning and diversity
based adaption ability.

Based on the dissolved and gas analysis (DGA) in the framework of FRSNPS [31], a new method
for fault diagnosis was introduced in 2016. DGA is a very informative method. In this method,
a sample of oil is taken and the concentration of the dissolved gases in this sample is tested. The IEC
ratio of gases is given as input signature in the FRSNPS diagnosis model and the reasoning process
can also be graphically represented by FRSNPS. The uncertainty in processing—the reasoning based
on the rules of the system, symbolic representation and parallel computing ability—makes this
diagnosis method more accurate, faster and adaptive to any kind of change happening in the system.
Furthermore, the matrix-based reasoning process can be graphically represented, which makes it more
easily understandable.

Very recently, some new types of SNPS have been introduced by integrating some new biological
phenomena into the SNP model. Moreover, these models have been used in the fault diagnosis of power
systems. A new method of fault diagnosis method for power transmission networks was introduced
in 2020 by Liu et al., where spiking neural P systems with self-updating rules and biological apoptosis
mechanisms (srSNPS) [29] were used for this task. This model was constructed by combining the idea of
attribute reduction ability (concept from rough set) and apoptosis mechanism (from biological neurons)
in the framework of membrane computing models—i.e., spiking neural P systems. One of important
features of apoptosis algorithms is that these algorithms can devise the conditional neurons in such a
manner that they can remove the unnecessary information received from SCADA systems. This further
helps the model to perform better while uncertain and incomplete messages are received. The fault
diagnosis method in the framework of srSNPS can be divided into four sections—i.e., (1) transmission
network partition; (2) construction of SNPS model; (3) the correction of the pulse value; (4) computing
along with evaluation of protective device behaviour. The topological adaptive ability is improved by
the transmission network partition. Moreover, this method has good ability to interpret the diagnosis
result. However, during this process, it maintains high fault tolerance along with fast diagnosis speed,
even though the messages received from the SCADA system are uncertain and incomplete. One of the
major advantages of this model is that historical statistics and expertise are not required. Other new
variant of the SNPS model, which have been used for the task of fault diagnosis, are called electrical
synaptic transmission-based spiking neural P systems(ESTSNPS). This model was introduced in [30] by
adding some new synapses and neurons, removing the delay and adding bidirectional characteristics
of electric synaptic transmission with the original definition of SNPS. Additionally, the rules of this
model are on the electric synapse. The fault diagnosis method based on ESTSNPS is very effective and
are capable of identifying single/multiple faults, misinformation faults in distribution networks with
DGs (distributive generators) with high accuracy quickly. It also has high traceability.

All the above models mentioned above are efficient. However the implementations of these
models are manual which are also very time consuming as well as inefficient when dealing with
large scale networks. In order to solve this problem, an automatic implementation method [28] was
introduced in 2019. The method introduced in [28] is called MCFD (membrane computing fault
diagnosis) and it can solve the problem of fault diagnosis automatically.

Comparisons of the SNPS models solving the fault diagnosis problem are presented in Figures 2–4.

Remark 1. (1) Different variants of SNPS have been used to solve the problem of fault diagnosis of power
systems and these models can successfully solve these problems even after receiving incomplete and uncertain
messages from SCADA systems. Additionally, these models are capable of finding single/multiple faults.
However, these models are not effective when dealing with large scale power systems. It can be a future direction

Appl. Sci. 2020, 10, 7011 10 of 26

of research whether the above discussed models can be further extended using the properties of fuzzy logic to
efficiently solve fault diagnosis problems for large scale networks.

(2) The basic system of the automatic implementation method introduced in [28] is an FRSNPS model.
It can be a future direction of research to construct similar methods for other variants of FRSNPS and it will
also be interesting to study the comparison of the time and space complexity of these methods with the method
introduced in [28].

(3) Until now the models used in the fault diagnosis method have static network structures. It can be further
investigated whether it is possible to construct fault diagnosis methods using the SNPS models with dynamic
network structure, such as SNPS with structural plasticity [14] and SNPS with neuron budding rules [55] or
SNPS with neuron division and budding rule [56,57], etc., which can increase the size of the synapse graph.
Furthermore, we can compare the performance of these models with the existing models with static network.

MODEL

1. FRSNPS(FSNPS)

PROPERTIES

1. Π = (A, σ1, σ2, . . . , σm, syn, I,O)

2. Neuron: σi = (αi, τi, ri); αi ∈ [0, 1] (value of the spike)

τi(truth value); Spiking rule: ri : E/aα → aβ

3. No delay

4. Proposition neuron: σ = (α, τ, r), r : E/aα → aα

AND-type rule neuron: E/aα → aβ , α = min(α1, α2, . . . , αn),

β = α ∗ τ ; OR-type rule neuron: E/aα → aβ ,

α = max(α1, α2, . . . , αn), β = α ∗ τ
5. Composite fuzzy production rule:

Type 1 Ri: IF p1 and p2 and ...pk−1 Then pk(CF = τi)

Type 2 Ri: IF p1 THEN p2 and p3 and . . . and pk (CF = τi)

Type 3 Ri: IF p1 or p2 or . . . or pk−1 THEN pk(CF = τi)

2. tFRSNPS 1. Neurons: σi = (θi, ci, ri), θi(trapezoidal fuzzy number in [0, 1]

ci (trapezoidal fuzzy number in [0, 1])

2. Proposition neuron; general, AND and OR -rule neuron

3. Composite fuzzy production rule: Type 1, Type 2,

Type 3, Type 4 and Type 5

Type 4: pj(θj)→ pk(θk), θj (trapezoidal fuzzy number in [0, 1])

Type 5: p1(θ1)→ p2(θ2) or . . . or pk(θk)

3. AFSNPS 1. Π = (A,Np, Nr, syn, I,O); Np(proposition neuron set)

Nr(rule neuron set)

2. ~ωi = (ωi1, ωi2, . . . , ωisi) (weights on synapses connecting

proposition and rule neurons)

3. Spiking rule in proposition neuron: E/aα → aβ

Spiking rule in rule neuron: E/aα → aβ

4. Weighted fuzzy production rules of Type 1, Type 2

4. rFRSNPS 1. Proposition neuron: σi = (θi, ri) (θi is a real number in [0, 1])

2. Rule neuron: σi = (δi, ci, ri), δi (potential value, real number

in [0, 1])

ci(truth value, real number in [0, 1])

3. Spiking rule: E/aθ → aβ , θ and β real numbers

4. R1, R2, . . . , R12 fuzzy production rules

ADVANTAGES AND

DISADVANTAGES

1. Diagonize single and multiple

faults;

2. Good fault tolerant capacity;

1. Matrix-based fuzzy

reasoning algorithm based on dynamic

firing mechanism;

2. Quick and effective identification

of faults.

1. System can adjust automatically;

2. Dynamic fuzzy reasoning

Faster, simple and have parallel

processing capability;

better convergence speed of diagnosis,

higher accuracy;

and Type 3

3. Not good for large scale networks;

1. More feasible and effective ;

2. Superiority in robustness of noise;

Figure 2. List of SNPS models solving fault diagnosis problem.

Appl. Sci. 2020, 10, 7011 11 of 26

MODEL PROPERTIES ADVANTAGES AND

5. MFRSNPS 1. It contains three types of rule neurons: general,

AND and OR.

6. TFRSNPS 1. Neurons: σ = (αi, βi, ri), αi(triangular fuzzy

number, potential value),

βi ∈ [0, 1] is a real number;

2. Spiking rule: aα → aα or aα → aα
′

,

α, α
′
(triangular fuzzy numbers).

3. Proposition neuron, AND and OR type rule neuron

4. Fuzzy production rule:

Type 1: IF p1 AND p2 AND . . . AND pn THEN pk (CF = β)

Type 2: IF p1 OR p2 OR . . . OR pn THEN pk (CF = β).

7. IFSNPS 1. Neuron: σi = (αi, τi, ri), αi (intuitionistic fuzzy number,

initial value of spikes),

τi ∈ [0, 1] (real number, confidence level)

2. Spiking rule: E/aα → aα or E/aα → aβ

3. Proposition neurons, AND and OR rule neurons

4. Models fuzzy production rules of Type 1 and Type 2.

8. ESTSNPS 1. Π = (A, σ1, σ2, . . . , σm, I/O,O/I)

2.E/aα → aβ ;E/aβ → aα

E/aα → λ;E/aβ → λ, α ∈ (−1, 0, 1), β ∈ (−1, 0, 1)

3. syn ⊆ {1, 2, . . . ,K,m} × {1, 2, . . . ,K,m}, i 6= j, (i, j) ∈ syn

9. OSNPS 1. Π = (O, σ1, . . . , σm+2, syn, I0) (ESNPS)

2. Neuron: σi = (1, Ri, Pi), Ri = {r1i , r2i }, r1i = {a→ a},
r2i = {a→ λ},
Pi = {p1i , p2i } (probabilities associated with rule rji) p

1
i + p2i = 1.

3. σm+1 = σm+2 = (1, {a→ a})
4. syn = {(i, j)|(i = m+ 2 ∧ 1 ≤ j ≤ m+ 1)∨
(i = m+ 1 ∧ j = m+ 2)}
5. I0 = {σ1, . . . , σm}
6. Combination of H ESNPS

10. IVFSNPS 1. Neuron: σi = (θi, ci, ri), θi(value of spikes, interval-valued

fuzzy numbers)

ci(CF of a fuzzy production, interval-valued fuzzy number)

2. Spiking rule: aθ → aθ or aθ → aβ , α, β (interval-valued

fuzzy numbers)

3. Proposition neuron, ⊕ and ⊗ rule neurons

4. Simulates fuzzy production rules of

Type 1: if p1 and p2 and . . . and pk−1 then pk (CF = c)

Type 2: if p1 or p2 or . . . or pk−1 then pk (CF = c).

DISADVANTAGES

1. Effective in diagnosis of the

fault section with certain/uncertain

and complete/incomplete informations;

1. Effective in identification of faults in power

systems with incomplete and uncertain

informations;

1. Effective in identification of faults in power

systems with uncertain and incomplete

messages;

1. Used in identification of faults

in the bus, line and transformer

in the ring network;

2. Effective in identification of faults in power

systems with incomplete and uncertain

informations;

3. Reasoning algorithm based on this model

is fast and highly accurate;

1. Capable of automatically finding the

faults in the power systems efficiently;

2. Capable of finding the faults with

uncertain and incomplete messages;

efficient in finding single/multiple faults;

3. Adaptive learning and diversity based

adaption ability;

1. Effective and capable of identifying single/

multiple faults, misinformation faults

in distribution networks with DGs (distributive

generators) with high accuracy and quickly;

High traceability.

Figure 3. List of SNPS models solving fault diagnosis problem.

Appl. Sci. 2020, 10, 7011 12 of 26

MODEL ADVANTAGES AND

DISADVANTAGES

11. rTFRSNPS

PROPERTIES

1. Proposition neurons: σi = (θi, ti, ri);

Rule neurons: σi = (δi, ci, ri)

θi, δi ∈ [0, 1] (real number, potential value of spikes),

ti ∈ {0, 1} (state of proposition)

ci ∈ [0, 1](real number, truth value of spikes)

2. Spiking rule: E/aθ → aβ , α, β ∈ [0, 1]

3. Proposition neuron, AND and OR neuron;

12. srSNPS 1. Π = (O,Me, σ1, . . . , σm, syn, in, out)

2. Microenvironment: Me = (Di, Cj), Di = (θdi/T , T, fi)

(i-th decision making neuron),

θdi/T ∈ {0, 1} (pulse value of i-th DN at time T),

T (sequence time of spikes),

fi : E/{aθdi/T → λ; g = 0} (forgetting rule of i-th DN)

Cj = (θcj/T , T, fj , Arj) (j-th condition neuron(CN) in Me),

θcj/T ∈ {0, 1} (pulse value of j-th CN at time T)

fj : E/{aθcj/T → λ; g = 0}
Arj : E/{Cj} → {Algorithm1L} (Apoptosis rule in Me)

3. Proposition neuron: σi = (θi, ri, ei), ri : E/aθ → aθ,

θi ∈ {0, 1}
ei : E/aθ → aθ, θ ∈ {0, 1}(pulse value), θ ∈ {0, 1}
(anti-spike of θ)

1. Self-updating rules and biological

apoptosis mechanism;

2. Perform better when uncertain and

incomplete messages are received;

3. Topological adaptive ability;

good ability to interpret the diagnosis result;

4. High fault tolerance; fast diagnosis speed;

5. Historical statistics and expertise

is not required;

1. Use temporal order information

of alarm messages to model

candidate fault sections;

2. Good ability to handle incomplete

and uncertain alarm messages;

3. Effective in single and multiple fault

situations with/without incomplete

and uncertain alarm messages;

Figure 4. List of SNPS models solving fault diagnosis problem.

In the next section, we discuss some models of SNPS which are capable of solving computationally
hard problems in polynomial and linear time. It is also well-known that sometimes it is not possible to
give analytic solutions to computationally hard problems. So, it is always useful to have a method
which can approximate the solution. In the next section we also discuss such methods based on spiking
neural P systems.

3.2. Solving Computationally Hard Problems

SNPS and their variants are very powerful and these models can characterize recursively
enumerable languages [79]. Until now, many variants of SNPS have been introduced, and investigating
computational power of these models has been a popular direction of research. However, the use of
these models in solving computationally hard problems has been much less investigated. The study
of the use of SNPS models in solving computationally hard problems was initiated in 2006 by Chen,
Ionescu and Ishdorj. In [49], along with SNPS, a new idea inspired by the biological phenomena
was incorporated into the SNPS model. It is well known that, in biological neurons at any time,
there exist millions of inactive neurons. In [49], this idea was used and it was assumed that an arbitrary
large number of inactive neurons are present in the initial configuration—i.e., neurons are present in
exponential numbers which can be activated in polynomial time. Furthermore, this idea was used
to deterministically solve the SAT problem which is a popular NP-complete problem in constant
time—i.e., the computation starts with an exponentially large precomputed workspace because of the
exponentially large number of inactive neurons present in the initial configuration where the neurons
can be activated in constant time. This idea of activating the inactive neurons in polynomial time was
further extended to solve some computationally hard problems in [48,50,51]. This new SNPS model is
also called SNPS with pre-computed resources. The fundamental concept of these models has been
that, instead of the production of exponential workspace in linear/polynomial time, it is always useful
to start with a precomputed workspace which is exponentially large. The neurons in these models are
inactive until a spike enters the neuron. In [51], the idea of SNPS with pre-computed resources was
used to solve the NP-complete problem SUBSET − SUM by Leporati and Gutiérrez-Naranjo. Initially
a semi-uniform family of SNPS was constructed and then specified instances of SUBSET − SUM
were solved by using this system. The systems introduced in [51] are deterministic. However

Appl. Sci. 2020, 10, 7011 13 of 26

depending on the size of the instances, the size of the system also grows exponentially. Another
solution of the SUBSET − SUM problem using SNPS with pre-computed resources is discussed in
[53] by Leporati et al. Along with the concept of pre-computed resources, the concept of maximal
parallelism has been used to solve the problem in [53]. Using maximal parallelism the conversion
of any integer from binary notation to unary notation is possible in polynomial time and during
this process the idea of pre-computed resources is used—i.e., the initialization of the P systems with
exponential number of spikes. It has also been shown in [53] that this conversion is not possible
when maximal parallelism is forbidden. Moreover, a construction of a uniform family of SNPS has
been provided where different sub-systems, whether deterministic or non-deterministic, sequential
or maximal parallel, work together in order to solve the SUBSET − SUM problem. This result was
further improved in [52]. In [52], a uniform construction of SNPS was introduced where the extended
rules or application of the rules in parallel was avoided. Moreover, the SUBSET-SUM and SAT
problems were solved using a constant number of steps where the system works in a non-deterministic
manner. In 2010, deterministic solutions of two well-known PSPACE-complete problems—i.e., QSAT
and Q3SAT using the concept of SNPS with pre-computed resources were investigated in [48] by
Ishdorj et al. Moreover, a deterministic solution of these two problems was provided. Additionally,
using this method, any instance of the QSAT problem can be solved using a time which is linear with
respect to n and m, where n represents the number of Boolean variable and m represents the number of
clauses in the instance. Similarly, using this method, any instance of Q3SAT can be solved in, at most,
n3 time, where n represents the number of Boolean variables.

Along with the assumption of presence of arbitrary number of spikes, the spiking rules also play
an important role in solving computationally hard problems. Generally the SNPS models contain two
types of rules—i.e., spiking rule and forgetting rule. Many researchers also introduced many new
types of rules which improve the computational power of the SNPS and also these rules can be used in
many areas of applications [63]. These rules of the SNPS systems also play an important role in solving
computationally hard problem. The SNPS systems with budding rules [55], SNPS with neuron division
and budding rules [56,57] and SNPS with structural plasticity [58] are examples of such models.
By applying the budding rules in a maximal parallel manner, in polynomial time an SNPS is capable
of increasing the size of its synapse graph. Moreover this feature can be further used to solve the
well-known NP-complete problem SAT in deterministic polynomial time with respect to the n number
of Boolean variables and m number of clauses in an instance. In [56], SNPS with neuron division
and budding rule were introduced by Pan, Păun and Pérez-Jiménez in 2009. These rules are capable
of generating exponential workspace in linear time. Furthermore, the SNPS with neuron division
and budding was used to obtain a uniform solution to the SAT problem. Similarly, as with SNPS
with budding rule and neuron division and budding rules, a new variant of SNPS was introduced
in [58] by Cabarle, Hernandez, and Martínez-del-Amor in 2015. This model is inspired by a popular
phenomenon in biological neuron networks—i.e., during the learning process biological neurons
are capable of creating new synaptic connections as well as removing old synaptic connections.
This feature is known as structural plasticity. In [58], a new model SNPS with structural plasticity was
introduced by combining the features of both SNPS and structural plasticity (SNPSSP). In SNPSSP,
the plasticity rule was introduced which can create new connections and remove old connections.
Furthermore, this model has been used in solving the SUBSET − SUM problem. More specifically,
a uniform solution and non-uniform solution of SUBSET− SUM were provided in [58] using SNPSSP.

In the case of SNPS with budding rule, neuron with division and budding rule and structural
plasticity, new rules were introduced. However, only using some restrictions of the traditional
spiking and forgetting rule, is it possible to solve computationally hard problems [59]. Improved
SNPS (IMSNPS) is one such model and it was introduced in 2013 by Xue and Liu. The distinctive
features of this model are that the priorities are associated with the rules present in the system.
More specifically, the rules are divided into three categories—i.e., (1) E/ac → ap, c ≥ 1, c ≥ p, p ≥ 1;
(2) ac → ap, c ≥ 1, c ≥ p, p ≥ 1; (3) as → λ, s ≥ 1. According to the priority relation added

Appl. Sci. 2020, 10, 7011 14 of 26

with the systems, (1) > (2) > (3)—i.e., the application of the rules will depend on this relation.
Another distinctive feature of this model is that it can have multiple output neurons. Furthermore,
this model has been used to solve the DHP (directed Hamilton path) problem and the algorithm
based on this model is capable of automatically scanning all possible paths and then filtering out the
DHP in linear time. Time-free spiking neural P systems are another variant of SNPS with traditional
spiking and forgetting rules. These models were inspired from the biological phenomenon that
different biochemical processes in living organisms take different time due to external factors. It was
introduced in [62] by Pan, Zheng and Zhang and has been used to solve the SAT problem and give
uniform solution to integer factorization and SUBSET − SUM problem in [60] and [54], respectively.
In this model, an execution time is associated with each rule using the time mapping. Some of the
timed SNPS are independent of the time mapping and can generate the same computational results.
These models are known as time-free SNPS. A family of uniform time-free SNPS was used to solve
integer factorization problem [60] by Liu, et al. in 2015. In [64], a neural-like probabilistic P system was
proposed by Xue and Jevanos where a priority level and probability were associated with each rule.
This model was used to solve the MIS (maximal independent set) problem. Some of the distinctive
features of this model is that (1) the overall size is not required by the individual processors present
in the paper (2) the processors communicate with each other using one-bit message. Additionally,
the experiments performed in [64] show that NPP systems can solve distributed computational
problems very efficiently.

It is well-known that it is difficult to obtain an analytic solution for NP-complete and NP-hard
problems. So many researchers tried to explore the avenues when it is very difficult to obtain
an analytic solution, some algorithms can approximate the solutions of these problems. In [18],
a new variant of SNPS was introduced by Zhang et al. in 2014 in order to solve a well-known
NP-complete problem—i.e., Knapsack problem. These models comprise optimization spiking neural P
systems (OSNPS). In this model, a novel way to obtain approximate solutions of computationally hard
combinatorial optimization problems instead of using the concepts of MIEAs (membrane inspired
evolutionary algorithms) was proposed. Furthermore, an extended spiking neural P system was
constructed by incorporating the concept of probabilistic selection of evolution rule and multi-neurons
output. Note that the ENPS constructed in this paper is fundamentally different from the extended
spiking neural P system discussed earlier. The family of ENPS is also called OSNPS where the
concept of a guider was introduced in order to adjust the probabilities associated with the rules
adaptively. Moreover, this model was used to solve combinatorial optimization problems such as
knapsack problems. Additionally, the experimental results infer that, with respect to other optimization
algorithms, the optimization performance of the OSNPS is better. It is important to note that one
of the main advantages of this model is that it is performed by neural systems—i.e., a computing
device instead of humans. The study of OSNPS was further extended in 2018 by Qi and Liu where this
model was used to solve a well-known NP-hard problem—i.e., TSP (travelling salesman problem) [61].
The major difference of this model with the model introduced in [18] is that, in this model, the task of
adjusting the probability associated with the rules is performed by GA algorithm—i.e., it works as a
guider algorithm. This model is also effective for problems of smaller scale. Whenever the scale of the
problem becomes larger in comparison with standard GA, the OSNPS model needs more time to solve
the problem. Recently, a new variant of OSNPS is introduced by Zhu et al. and this model is called
as AOSNPS (Adaptive Optimization Spiking Neural P System) [78]. This model is different from the
previous OSNPS models. In this model, in order to control the moving operators, a dynamic guider
algorithm is introduced. This guider algorithm has adaptive learning and delivery based adaption
capability. Furthermore, the numerical results presented in [78] show that the proposed method can
effectively solve 0/1 knapsack problem effectively and has better performance while solving the same
class of problems having large number of elements.

We give a summary of the SNPS models and the corresponding computationally hard problems
which can be solved by these models in Figure 5.

Appl. Sci. 2020, 10, 7011 15 of 26

MODELS PROPERTIES PROBLEM SOLVED

1. TFSNPS Integer factorization1. Πe = (O, σ1, . . . , σm, syn, iin, iout, e) (TSNPS)

2. Rules: E/ac → ap, c ≥ 1, c ≥ p ≥ 0

3. Time mapping: e : R→ N,R = R1 ∪ . . . ∪Rm

(i.e., execution time associated with each rule)

4. TFSNPS (TSNPS generating same result

2. SNPSPCR QSAT, Q3SAT, SAT, SUBSET SUM1. Π = (O, σ1, . . . , σn, syn, in, out)

2. E/ac → ap; d, c ≥ p, p ≥ 0, c ≥ 1

3. Arbitrary large inactive neurons is activated

(in exponential number) in polynomial time

without time mapping)

1. Π = (O, σ1, . . . , σn, syn, iout)

2. σi = (Qi, si,0, wi,0, Ri),

Qi (finite set of possible states of σi)

si,0 (initial state of σi)

wi,0 ∈ O∗ (initial multiset object in σi)

Ri : sw →p s
′
xygozout, 0 ≤ p ≤ 1,

(p probability of the applied rule)

Maximal Independent Set Selection

4. IMSNPS 1. Π = (O, σ1, . . . , σn, syn, in, out)

2. E/ac → ap, E 6= ac, c ≥ 1, d ≥ 0, p ≥ 1

3. ac → ap; d(c ≥ 1, d ≥ 0, p ≥ 1)

4. as → λ

5. Priority: (2) > (3) > (4)

6. Multiple output neurons

Directed HPP

1. Π = (O,Σ, H, syn,R, in, out)

2. Σ = {σ1, . . . , σm} (initial neurons)

3. H (labels of neurons)

4. Budding rule: x[]i → y[]i, x ∈ {(k, i), (i, k), λ},
y ∈ {(i, j), (j, i), λ}, i, j, k ∈ H, i 6= k, i 6= j.

5. Spiking rule: [E/ac → ap; d]i, i ∈ H

SAT

SUBSET SUM

SAT

1. Π = (O,H, syn, n1, . . . , nm, R, in, out)

2. H(labels), ni (initial number of spikes in σi)

3. Spiking: [E/ac → ap; d]i, i ∈ H
c ≥ 1, p ≥ 0, d ≥ 0, c ≥ p
4. Neuron division: [E]i → []j ||[]k; i, j, k ∈ H
5. Budding rule: [E]i → []i/[]j , i, j ∈ H

7. SNPSSP

SUBSET SUM

1. Π = (O, σi, . . . , σm, syn, out)

2. Spiking rule: E/ac → a, c ≥ 1

3. Plasticity rule: E/ac → αk(i,N), c ≥ 1, α ∈ {+,−,±,∓}
k ≥ 1, N ⊆ {1, 2, . . . ,m} \ {i}

8. OSNPS 1. Π = (O, σ1, . . . , σm+2, syn, I0) (ESNPS)

2. σi = (1, Ri, Pi), Ri = {r1i , r2i }, r1i = {a→ a}, r2i = {a→ λ}
3. σm+1 = σm+2 = (1, {a→ a})
4. syn = {(i, j)|i = m+ 2 ∧ 1 ≤ j ≤ m+ 1) ∨ (i = m+ 1 ∧ j = m+ 2)}

(combination of

H ESNPS)

Knapsack problem

TSP

3. NLPPS

5. SNPSBR

6. SNPSNDB

Figure 5. List of SNPS models solving computationally hard problems.

Remark 2. (1) The application of SNPS and their variants in solving computationally hard problems has been
very limited. So, it will be more interesting to observe how other variants of SNPS models, where the properties
of neuroscience have been incorporated, can be useful in solving these problems;

(2) Construction of other approximation algorithms based on different variants of SNPS can be a future
direction of research;

(3) It is important to note that, while solving these problems, only the time and space resources are taken
into account. However, no investigation has been done towards the number of neurons used to solve these

Appl. Sci. 2020, 10, 7011 16 of 26

problems—i.e., investigation into the description of complexity measures. Constructing new methods to solve
computationally hard problems with optimal number of neurons is worth investigating in future.

In the next section, we discuss the use of SNPS models and their variants in performing
arithmetic operations and logical operations. We also explore the use of these models in hardware
implementations.

3.3. Performing Arithmetic and Logical Operations and Hardware Implementation

One of the major motivations for studying arithmetic and logical operations using SNPS has been
the designing of the arithmetic logic unit of CPU under the framework of SNPS which can be useful in
constructing novel digital circuits/chips. Along with the advancement of technologies, it has become
imperative to construct efficient hardware which can perform complex tasks. SNPS models have some
very useful features, such as parallel and distributive architecture, non-determinism, etc., and these
features help the models to perform millions of computations very efficiently with minimum time and
space resources. These models also can perform basic arithmetic and logic operations which make
SNPS an important candidate for designing of CPU.

SNPS models are powerful and are Turing complete and can perform many tasks efficiently.
So, these models are suitable in performing arithmetic and logic operations. In 2009, Gutiérrez-Naranjo
and A. Leporati introduced a method which can perform basic arithmetic operations, such as addition,
subtraction, comparison and multiplication by a fixed facto,r and it was performed by SNPS where the
inputs to the model are integers represented in the form of binary strings [45]. Finally, these strings
are encoded in the form of appropriate sequence of spikes. The output neurons also can give output
in binary form—i.e., in 0 and 1 depending on the non-spiking and spiking of the output neuron.
Subsequently, Zhang et al. introduced a method based on SNPS to perform the multiplication of
two arbitrary natural numbers in [80]. Furthermore, they introduced a method of addition of n
natural numbers using only one input neuron and given the length of binary bits, a family of spiking
neural P systems was constructed such that the multiplication of two arbitrary natural numbers can
be performed by each system. In [36], signed integer arithmetic operations were performed using
SNPS and similarly as before the input and output are encoded in the form of sequence of spikes.
Many variants of SNPS have also been used for performing logical and arithmetic operations. In [37],
a method based on the SNPS with anti-spikes were introduced by Peng et al. to perform balanced
ternary logic (AND, OR and NOT) and arithmetic operations (addition, subtraction) where balanced
ternary digits are encoded by the anti-spikes. In [81], SNPS with asynchronous parallelism were
used to perform logical operations, such as NOT, OR, AND and EX-OR. In SNPS models, the rules
are applied in a maximal parallel manner. However, asynchronous parallelism is different from
maximal parallelism and in this case all the applicable firing rules are applied in one computation step.
Additionally, the steps of computations can be divided into sequential and parallel steps. The logical
operations can be performed using constant number of sequential and parallel steps and using a
constant number of neurons. Furthermore, the addition of k binary numbers of m bits can be performed
using either O(km) sequential steps or O(m) parallel steps where the number of neurons required is
O(m). Similarly, the multiplication of two m bit binary numbers can be performed using O(m2) number
of neurons in O(m2) sequential steps or O(m) parallel steps. Another variant of SNPS was introduced
in 2014 by Luan et al., which can perform the logical operations and it is called SNPC (spiking neural P
systems with chain structures) [38]. In this model, the concepts of discrete Morse theory are integrated
into the SNPS model where a chain structure is introduced in SNPS by discrete gradient vector path
and this model is simple and has stronger parallelism than the SNPS. It also avoids the random
selection of membranes present in the computation process of SNPS models, which further improves
the operational efficiency of these models. SNPC were also used to perform the logical operations
AND, OR and NOT. One of the main features of SNPS has been the encoding of the information
in the form of interval of two spikes. In [47], another well-known variant of SNPS—i.e., time-free

Appl. Sci. 2020, 10, 7011 17 of 26

SNPS—were introduced by Liu et al. in 2015 to perform arithmetic operations, such as addition,
subtraction, multiplication and division. In time-free SNPS, using a time mapping an execution
time is associated with each rule of the system and if the computational results of these systems are
independent of the execution times in the rules, then these systems are called time-free SNPS. One of
the major advantages of using time-free SNPS is that the arithmetic operations can be performed
with a lower number of neurons. Another variant of SNPS—i.e., extended SNPS—have excitatory
and inhibitory astrocytes (ESNPSEIA) where the concepts of astrocytes and excitatory/inhibitory
properties in between the neurons are incorporated into SNPS model [39]. Moreover, NAND-gates
and discrete amplifiers were constructed using a restricted variant of this model.

In the previous models, the encoding to binary digits is done in a similar manner as in the digital
circuits. However, in [46], Zeng et al. introduced a method in 2012 where the input to the systems is
actually the time difference between the two spikes received by the input neuron and similarly the
output of the system is considered as the time difference between the spiking of the output neuron.
Note that the spiking rules present in this model are rules without delays. Moreover, this model was
used to perform basic arithmetic operations, such as addition, subtraction, multiplication and division.

Recently, an arithmetic calculator based on the SNPS model was proposed by Zhang et al. in [82].
Furthermore, the implementation of the information fusion was studied where a framework combining
the SNPS models and Dempster-Shafer evidence theory was constructed in order to obtain BPA (basic
probability of assignment) of an event.

Following the developments in constructing novel and efficient SNPS models for performing
arithmetic and logical operations, investigating the hardware implementation of these models became
an interesting branch of research. In 2016, Song et al. introduced a framework using the SNPS with
astrocyte-like control to simulate the AND, OR, NOT, NOR, XOR and NAND gate operations in
Boolean logic gates [43]. The most distinctive feature of this framework is that only one type of neuron
with a spiking rule of the form a∗/a → a was used. This study is important because more complex
boolean circuits can also be constructed from these logic gates. Moreover these gates can be used
in constructing finite transducers. In 2016, hardware implementation of an unary SNN multiplier
with dendritic delays was investigated by Díaz et al. in [40]. More specifically, an SNP multiplier
with dendritic growth, delay and feedback was introduced and also implemented in a customized
neuromorphic hardware—i.e., FPGA solutions based neuromorphic circuits. Additionally, one of the
advantages of this multiplier is that it eliminates complex rules and the processing speed is higher
compared to the multipliers based on SNNs. Additionally, in 2016, a decoder design in the framework
of SNPS was proposed by Li, Huang and Xu [44]. Decoders are composed of logical circuits and
logical and arithmetical operations are an integral part of logical circuits. In [44], a single input-output
n− 2n, n ≥ 2 decoder was constructed in the framework of SNPS . Moreover, the MeCosim platform
was used in order to obtain the result of decoding of n-bit binary sequence. Additionally, simulations
of 3–8 decoders on the MeCosim platform were observed and the results infer that the decoders
based on the SNPS are efficient. In 2017, a parallel multiplier was constructed using the SNPS with
dendritic delays by Díaz, et al. [41]. It is important to note that the models discussed above have one
common drawback—i.e., the processing of the inputs is sequential, which increases the processing
time. The parallel multiplier discussed in [41] can multiply any two natural numbers with long digits
in parallel. Moreover, the parallel multiplier has optimized sequential processors which can process
multiple units in parallel and then the implementation of the parallel multiplier circuit in FPGA
devices, such as spiking neural-network architecture for versatile applications (SNAVA) and field
programmable gate array prototypes, also were investigated.

Until now, the main discussion was regarding the construction of CPUs in the framework of SNPS,
which mainly deal with constructing theoretical arithmetic and logical circuits and can be integrated
into an ALU (arithmetic logic unit). Recently, many researchers also tried to use this framework
to construct MPUs (memory processing units) because of their ability to process the information
faster and the storage capability. In 2017, Duchen et al. initiated a study regarding the designing of

Appl. Sci. 2020, 10, 7011 18 of 26

MPUs (memory processing units) which was inspired from some features in neurons, such as neural
processing of soma, dendritic behaviours, such as delays, feedback connections, etc., and astrocyte-like
controls [42]. One of the main advantages of this model is that the addition and subtraction operations
required to construct MPUs can be performed in the same unit while the basic neural memory cells
remain unchanged.

In Figure 6, we presented a comparison of all SNPS models performing arithmetic and logical
operations and also their hardware implementation.

MODELS PROPERTIES ARITHMETIC, LOGICAL OPERATIONS &

HARDWARE IMPLEMENTATION

1.ASYNSNPS 1. NOT, OR, AND and EX-OR

2. Addition of k binary numbers of m bits

Multiplication of two binary numbers of m bits

1. Π = (O, σ1, . . . , σm, syn, in, out)

2. Spiking rule: E/ac → a (no delay)

3. Forgetting rule: as → λ

4. Rules are applicable sequentially

and maximal parallel manner

2. SNPC 1. Π = (O, σ0, σ1, . . . , σm, syn, in, out)

2. σ0 ≺ σ1 ≺ . . . ≺ σm;σ0 (skin membrane)

3. Spiking rule: E/ac → ap; d

4. Forgetting rule: E
′
/as → λ, s ≥ 1

E ∩ E′
= ∅

1. NOT, AND, OR

3. SNPS 1. Π = (O, σ1, . . . , σm, syn, in, out)

2. Spiking rule: E/ac → a; d

3. Forgetting rule: as → λ, s ≥ 1

1. Addition, Subtraction, Checking equality,

Multiplication, Two’s complement

4. SNPSAS

1. AND, OR, NOT

2. Addition, Subtraction

1. Π = (O, σ1, . . . , σm, syn, in, out)

2. O = {a, a}
3. E/bc → b

′
; b, b

′ ∈ {a, a}, c ≥ 1

4. bs → λ; b ∈ {a, a}

Parallel Multiplication (SNAVA FPGA prototype)

5. SNPSDD 1. SNPS + Dendrite feedback, delay

and growth

1. Serial multiplier (SNAVA FPGA prototype)

6. SNPSACL 1. Π = (O, σ1, . . . , σn, syn, in, out)

2. Spiking rule: E/ac → a; d

3. Forgetting rule: as → λ

4. Astrocyte: {ast1, . . . , astl},
asti = (synasti , ti), synasti ⊆ syn
(set of synapses controlled by asti

ti ≥ 0 (threshold of asti)

1. AND, OR, NOT, NOR, XOR, NAND

(Boolean circuits with cascade connections

of logic gates)

7. ESNPSEIA 1. Π = (m,n, S,R,U)

m (number of neurons)

n (number of astrocytes)

S (initial configuration)

2. Rules: (i, E/ak → P)

i ∈ [1 . . .m], P (set of productions

of the form (l, w), l ∈ [1 . . .m+ n], w ∈ N)

3. U (finite set of rules of the form

(r, p, q, h, h
′
, f, f

′
, f

′′
))

1. NAND-gates, discrete amplifiers

8. TFSNPS 1. Π = (O, σ1, . . . , σm, syn, in, out)

2. Spiking rules: E/ac → ap

c ≥ 1, c ≥ p ≥ 0

3. Time-mapping: e : R→ N

R = R1 ∪R2 ∪ . . . ∪Rm

1. Addition, Subtraction, Multiplication and Division

Figure 6. List of SNPS models performing arithmetic and logical operations and their
hardware implementation.

Appl. Sci. 2020, 10, 7011 19 of 26

Remark 3. (1) Constructing new SNPS models by incorporating features of neuroscience and performing
arithmetic and logical operations using these models can be interesting. Moreover, comparing their performances
and investigating the implementations of these models can be a research direction for the future .

(2) It was observed in [46] that the encoding of time is done by difference between the spiking of one
neuron. Finding new encoding techniques and their performance comparison, studying their advantages and
disadvantages can also be interesting.

In the next section, we discuss the use of SNPS in solving problems in pattern recognition.

3.4. Pattern Recognition

The process of extracting skeletons from a digital binary picture is known as Skeletonizing
and the pre-process in pattern recognition algorithms is known as Skeletonization. In 2013,
Díaz-Pernil et al. introduced a method to solve the skeletonization problem in the framework of
SNPS [83]. More specifically, it is possible to implement classical parallel algorithms, such as Guo
and Hall in the framework of SNPS. Moreover, a parallel software was created based on the SNPS
device and was implemented in GPU [83]. Some of the advantages of the proposed method are that
knowledge can be simply represented and parallelism, which are helpful while dealing with the digital
images. This model also has some drawbacks, such as the fact that it is not realistic from the biological
point of view because the spike flows between two neurons always take same amount of time because
no delay is associated with the rules and also the cost of synchronization in this model is very high.
Another parallel image skeletonizing method [32] was introduced by Song et al. in 2019. It is based on
a different variant of SNPS than the previous models—i.e., SNPS with weights. In this model of SNPS,
a weight is associated with the synapses. SNPS with weights were used to construct the Zhang–Suen
algorithm where the skeletonizing of the images is done in a parallel manner. Some of the advantages
of this method are: (1) The running time of the Zhang–Suen algorithm, improved from O(n3) to O(n),
while the disadvantage of this method is that the space complexity is changed to O(n3) from O(n2)

where n = max{p, q}, and the skeletonizing algorithm is applied to a binary image of size p× q pixels;
(2) Higher efficiency in data reduction; (3) After performing skeletonizing in hand-written words the
obtained skeletons are much simpler and have less noise spurs.

Fingerprint recognition is a challenging problem in pattern recognition. In 2017, Ma et al.
introduced a framework based on SNPS to solve this problem [34]. More specifically, a double-layer
self-organized SNPS with anti-spikes model was introduced to perform this task and the working
of this model different from the working of other models mentioned in this section. It is capable of
adaptively creating and deleting neurons present in the different layers. Moreover, the fingerprint
recognition task is performed by the spike trains emitting from the output neurons and the results of
the experiments infer that this model can have comparable performance.

In [33], a new variant of SNPS was introduced to solve another well-known pattern recognition
problem—i.e., recognition of English letters by Song et al. The SNPS model used to solve this problem
is called SNPS with Hebbian learning function. It is well-known that, in neural networks, weights
are associated with the synapses and the weights are updated using machine learning algorithms.
Moreover, this idea has been used to solve many problems. In this case, the SNPS models construct a
network where the weights on the synapses are updated using Hebbian learning rulse and this model
was used to recognize English letters. Furthermore, the performance of this algorithm was compared
with other well-known neural networks, such as back propagation neural networks and probabilistic
neural networks and, from the experiments it is clear that the proposed method in the test case without
noise attains an average accuracy rate of 98.76 % while it outperforms other networks in test case with
low, medium and high level of noise.

In Figure 7, we list all the SNPS models solving pattern recognition problems and also study the
comparison of these models.

Appl. Sci. 2020, 10, 7011 20 of 26

MODEL PROPERTIES PROBLEM SOLVED ADVANTAGES AND

DISADVANTAGES

1. SNPS 1. Π = (O, σ1, . . . , σm, syn, in)

2. Spiking rule: E/ac → ad, c ≥ d ≥ 1

ab/ac → ad, b ≥ c
3. Forgetting rule: ab/ac → λ, b ≥ c ≥ 1

1. Image skeletonizing

2. WSNPS 1. Π = (O, σ1, . . . , σm, syn, in, out)

2. Spiking rule: E/ac → ap; d, d ≥ 0,

c ≥ p ≥ 0

3. Forgetting rule: as → λ, s ≥ 1,

as /∈ L(E)

4. syn = {(i, j, w)|i, j ∈ {1, 2, . . . ,m},
w ∈ N

1. Image skeletonizing

3. SNPSLF 1. Π = (O, σ1, . . . , σm, syno, f, Iin, Iout)

2. Spiking rule: E/ac → a; d

3. Forgetting rule: as → λ; as /∈ L(E),

s ≥ 1

4. syn = {(i, j, wij |wij ∈ Z+}
5. f (learning function; rebuild, strengthen

or weaken connections)

1. Recognize english letters

1. Knowledge (can be simply

represented) and parallelism

the biological point of view;

1. Running time of the algorithm

improved from O(n3) to O(n);

space complexity changed from

O(n2) to O(n3); Higher efficiency

in data reduction; 2. After

performing skeletonizing in hand-written

simpler and have less noise spurs

words the obtained skeletons are much

1. Weights on the synapses are updated

using Hebbian learning rule

2. In test case without noise attains

average accuracy rate of 98.76 %

;outperforms other networks in test case

with low, medium and high level of noise;

; 2. Not realistic from

Figure 7. List of SNPS solving problems in pattern recognition.

Remark 4. (1) The application of SNPS models and its variants in solving pattern recognition problems has
been very limited. So, construction of new SNPS models inspired from the properties of neuroscience and their
use in solving these problems can be a research topic for the future.

(2) The model introduced in [33] was trained using the Hebbian learning algorithm. It remains to be
investigated whether Hebbian learning strategies can improve the performance of this algorithm in the framework
of SNPS. Moreover the investigations regarding the use of the SNPS models along with the Hebbian learning
strategy in solving other problems in pattern recognition can be interesting.

Different variants of SNPS have also been used to solve problems in many other areas
of application than the areas mentioned above. In the next section we give a summary of
such applications.

3.5. Other Applications

The SNPS models also have been used to solve many problems, such as the identification of
nuclear export signal [35], computing morphisms [65,66], intrusion detection [84], solving deadlock
resolution problems [85], programmable stage controller stage programming [68] and µ-fluidic biochip
design [67]. In this section, we briefly discuss the use of SNPS in solving these problems.

(1) Identifying NES (nuclear export signal) is a very challenging problem in computational biology.
In [35], SNPS with Hebbian learning strategy were introduced by Chen et al. to solve this
problem and the experimental results infer that this model is very promising while identifying
nuclear export signals, since it has very good precision rate. The system can be divided into two
modules—i.e., input module and predict module. The topology of the input module remains
unchanged but the topology of the predict module changes over time, where for each passing
unit of time the weights on the synapses change.

(2) SNPS models also can be used to compute morphisms [65] and k-block morphisms [66].
It is well-known that SNPS models can be considered as transducers and this idea was
used to compute 2-block morphisms in [65] by Păun, Pérez-Jímenez and Rozenberg.
However, non-erasing and non-length preserving morphisms cannot be computed using these

Appl. Sci. 2020, 10, 7011 21 of 26

models. This work was further extended in [66] by Nishida in 2011 where SNPS were used to
compute k-block morphisms where k ≥ 2.

(3) We have already discussed the use of tFRSNPS (trapezoidal fuzzy reasoning spiking neural
P systems) models in fault diagnoses of power systems. These models can also be used very
effectively in intrusion detection [84]. In 2014 , Idowu, Chandren and Othman introduced a
network intrusion prediction model using tFRSNPS [84]. The experiments performed with this
model on the KDD Cup benchmark dataset infer that this model has very high detection rates
and, at the same time, has very low false alarm rate while performing BFA (Brute force attack).

(4) SNPS models have also been used to solve problems in operating and database systems. In [85],
Pang et al. proposed a method based on SNPS for solving the Deadlock resolution problem
in 2019. In [85], SNPS were used for the revocation of the deadlock processes. Moreover, in
comparison with exhaustive method and time cost method, (i.e., traditional deadlock methods)
the method proposed in [85] has significantly improved the time complexity while performing
the deadlock revocation process. Additionally, this method improves the deadlock resolution
efficiency. It is also important to note that the variant of SNPS used to solve this problem is called
SNPS for deadlock release (DRSNPS). The structure of this model is different from the tradition
SNPS models.

(5) Along with the above models, the scope of the application of the membrane computing models
has been expanded by many researchers in recent years with applications in areas such as µ-fluidic
biochip design [67] and programming for PLC (programmable logic controller) [68]. The first
one is an attempt in hardware implementation of the SNPS models while the second one is an
attempt to write programming based on the SNPS models.

4. Conclusions and Future Research Lines

In this paper, we provided an updated and comprehensive survey on applications of spiking
neural P systems. We also provided a comparative study of these models and studied their advantages
and disadvantages. Moreover, we studied some implementation of these models in hardware and
software. Finally, we discussed some possible extensions of these models which can be investigated
further. Next, we discuss some more ideas which can expand the scope of applications of these models.

1. In this work we discussed different variants of FRSNPS models and their applications in fault
diagnosis. It is important to note that these models work efficiently for small scale networks.
Along with the implementation of the FRSNPS models in fault diagnoses in large scale power
networks, it is imperative to investigate whether these models are effective, accurate and
reliable while solving the fault diagnosis problem in micro and smart grids. Additionally,
the resources—i.e., time and space required by these model—also need to be investigated. We also
have discussed the use of learning mechanisms in solving the problems in fault diagnosis.
Until now, only few models have been introduced with the features of machine learning.
This area can be further extended by constructing new SNPS models and incorporating learning
mechanisms in these models and then using these models for the identification of faults in power
systems. Moreover, one could then study their speed and accuracy while performing this task.
Additionally, a natural extension of these works will be the construction of fault diagnosis models
combining SNPS and metaheuristic algorithms.

Another important aspect which is not properly investigated in the literature is the descriptional
complexity measures of the models used for fault diagnosis. The optimized use of the neurons is
a topic of future research directions.

2. We have already discussed the use of unsupervised machine learning algorithms in the framework
of SNPS to solve pattern recognition problems. Construction of new machine learning algorithms
is a very new and interesting research area. However, until now no known progress has been
made towards the construction of supervised learning algorithms in the framework of SNPS for

Appl. Sci. 2020, 10, 7011 22 of 26

solving pattern recognition problems. This can be an important direction to expand the scope of
machine learning algorithms in SNPS and also applications of membrane computing models.

3. We have discussed the OSNPS model and its variants in solving knapsack problems, TSP and their
use in fault diagnosis. The use of this model in solving other computationally hard combinatorial
optimization problems, as well as their use in solving problems in real-life applications, can be a
direction of future research.

Author Contributions: Conceptualization of this research was done by G.Z. and P.P.; Investigations were done by
P.P., S.F., T.W. and H.R.; Writing and preparation of the draft version were done by P.P. and G.Z.; Writing and
editing and providing suggestions for improving the contents were done by G.Z., P.P., S.F., T.W. and H.R. Final
submission version was prepared with the involvement of all the authors. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the project of State Grid Corporation of China
(No. 521997180016), by the National Natural Science Foundation of China (61972324, 61672437, 61702428), by New
Generation Artificial Intelligence Science and Technology Major Project of Sichuan Province (2018GZDZX0043),
Beijing Advanced Innovation Center for Intelligent Robots and Systems (2019IRS14) and Artificial Intelligence
Key Laboratory of Sichuan Province (2019RYJ06).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moore, G.E. Cramming more components onto integrated circuits. Electronics 1965, 38, 114. [CrossRef]
2. Adleman, L.M. Molecular Computation of Solutions to Combinatorial Problems. Science 1994, 266, 1021–1024.

[CrossRef] [PubMed]
3. Head, T. Formal language theory and DNA: An analysis of the generative capacity of specific recombinant

behaviours. Bull. Math. Biol. 1987, 49, 737–759. [CrossRef]
4. Păun, G.; Rozenberg, G.; Salomaa, A. DNA Computing: New Computing Paradigms (Texts in Theoretical Computer

Science. An EATCS Series); Springer: Berlin/Heidelberg, Germany, 2006.
5. Păun, G. Computing with Membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [CrossRef]
6. Ionescu, M.; Păun, G.; Yokomori, T. Spiking neural P systems. Fundam. Informaticae 2006, 71, 279–308.
7. Mozafari, M.; Ganjtabesh, M.; Nowzari-Dalini, A.; Masquelier, T. SpykeTorch: Efficient Simulation of

Convolutional Spiking Neural Networks With at Most One Spike per Neuron. Front. Neurosci. 2019, 13.
[CrossRef]

8. Cavaliere, M.; Egecioglu, O.; Ibarra, O.H.; Woodworth, S.; Ionescu, M.; Păun, G. Asynchronous Spiking Neural
P Systems: Decidability and Undecidability; Garzon, M.H., Yan, H., Eds.; Springer: Berlin, Germany, 2008,
pp. 246–255.

9. Pan, L.; Wang, J.; Hoogeboom, H. Spiking neural P systems with astrocytes. Neural Comput. 2012, 24, 805-825.
[CrossRef]

10. Su, Y.; Wu, T.; Xu, F.; Păun, A. Spiking Neural P Systems with Rules on Synapses Working in Sum Spikes
Consumption Strategy. Fundam. Informaticae 2017, 156, 187–208. [CrossRef]

11. Pan, L.; Păun, G.; Zhang, G.; Neri, F. Spiking neural P systems with communication on request.
Int. J. Neural Syst. 2017, 27, 1750042. [CrossRef]

12. Song, T.; Pan, L. Spiking neural P systems with request rules. Neurocomputing 2016, 193, 193–200. [CrossRef]
13. Cabarle, F.G.C.; Adorna, H.N.; Jiang, M.; Zeng, X. Spiking Neural P Systems With Scheduled Synapses.

IEEE Trans. Nanobiosci. 2017, 16, 792–801. [CrossRef] [PubMed]
14. Cabarle, F.G.C.; Adorna, H.N.; Pérez-Jiménez, M.J.; Song, T. Spiking neural P systems with structural

plasticity. Neural Comput. Appl. 2015, 26, 1905–1917. [CrossRef]
15. Pan, L.; Zeng, X.; Zhang, X.; Jiang, Y. Spiking Neural P Systems with Weighted Synapses. Neural Process. Lett.

2012, 35, 13–27. [CrossRef]
16. Song, T.; Wang, X. Homogenous Spiking Neural P Systems with Inhibitory Synapses. Neural Process. Lett.

2015, 42, 199–214. [CrossRef]
17. Pan, L.; Păun, G. Spiking neural P systems with anti-spikes. Int. J. Comput. Commun. Control. 2009, 4, 273–282.

[CrossRef]

http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1126/science.7973651
http://www.ncbi.nlm.nih.gov/pubmed/7973651
http://dx.doi.org/10.1016/S0092-8240(87)90018-8
http://dx.doi.org/10.1006/jcss.1999.1693
http://dx.doi.org/10.3389/fnins.2019.00625
http://dx.doi.org/10.1162/NECO_a_00238
http://dx.doi.org/10.3233/FI-2017-1604
http://dx.doi.org/10.1142/S0129065717500423
http://dx.doi.org/10.1016/j.neucom.2016.02.023
http://dx.doi.org/10.1109/TNB.2017.2762580
http://www.ncbi.nlm.nih.gov/pubmed/29035221
http://dx.doi.org/10.1007/s00521-015-1857-4
http://dx.doi.org/10.1007/s11063-011-9201-1
http://dx.doi.org/10.1007/s11063-014-9352-y
http://dx.doi.org/10.15837/ijccc.2009.3.2435

Appl. Sci. 2020, 10, 7011 23 of 26

18. Zhang, G.; Rong, H.; Neri, F.; Pérez-Jiménez, M.J. An optimization spiking neural P system for approximately
solving combinatorial optimization problems. Int. J. Neural Syst. 2014, 24, 1440006. [CrossRef]

19. Wang, T.; Zhang, G.; Zhao, J.; He, Z.; Wang, J.; Pérez- Jiménez, M.J. Fault diagnosis of electric power systems
based on fuzzy reasoning spiking neural P systems. IEEE Trans. Power Syst. 2015, 30, 1182–1194. [CrossRef]

20. Peng, H.; Wang, J.; Peŕez-Jimeńez, M.J.; Wang, H.; Shao, J.; Wang, T. Fuzzy reasoning spiking neural P system
for fault diagnosis. Inf. Sci. 2013, 235, 106–116. [CrossRef]

21. Xiong, G.; Shi, D.; Zhu, L.; Duan, X. A new approach to fault diagnosis of power systems using fuzzy
reasoning spiking neural P systems. Math. Probl. Eng. 2013, 2013, 13. [CrossRef]

22. Tu, M.; Wang, J.; Peng, H.; Shi, P. Application of adaptive fuzzy spiking neural P systems in fault diagnosis
of power systems, Chin. J. Electron. 2014, 23, 87–92.

23. Wang, J.; Pérez-Jiménez, J.M.; Peng, H.; Shi, P.; Tu, M. A fault diagnosis method of power systems based
on an improved adaptive fuzzy spiking neural P systems and PSO algorithms. Chin. J. Electron. 2016,
25, 320–327. [CrossRef]

24. Wang, T.; Zhang, G.; Pérez-Jiménez, J.M.; Cheng, J. Weighted fuzzy reasoning spiking neural P
systems: Application to fault diagnosis in traction power supply systems of high-speed railways.
J. Comput. Theor. Nanosci. 2015, 12, 1103–1114. [CrossRef]

25. He, Y.; Wang, T.; Huang, K.; Zhang, G.; Pérez-Jiménez, M.J. Fault diagnosis of metro traction power systems
using a modified fuzzy reasoning spiking neural P system. Rom. J. Inf. Sci. Technol. 2015, 18, 256–272.

26. Wang, T.; Zeng, S.; Zhang, G.; Pérez-Jiménez, M.J.; Wang, J. Fault Section Estimation of Power Systems with
Optimization Spiking Neural P Systems. Rom. J. Inf. Sci. Technol. 2015, 18, 240–255.

27. Tao, C.; Yu, W.; Wang, J.; Peng, H.; Chen, K.; Ming, J. Fault diagnosis of power systems based on triangular
fuzzy spiking neural P systems. Bio-Inspired Comput. Theor. Appl. 2017, 618, 385–398.

28. Rong, H.; Yi, K.; Zhang, G.; Dong, J.; Paul, P.; Huang, Z. Automatic implementation of fuzzy reasoning
spiking neural P systems for diagnosing faults in complex power systems. Complexity 2019, 2019, 1–16.
[CrossRef]

29. Liu, W.; Wang, T.; Zang, T.; Huang, Z.; Wang, J.; Huang, T.; Wei, X.; Li, C. A Fault Diagnosis Method for
Power Transmission Networks Based on Spiking Neural P Systems with Self-Updating Rules considering
Biological Apoptosis Mechanism. Complexity 2020, 2020. [CrossRef]

30. Sun, Z.; Wang, Q.; Wei, Z. Fault location of distribution network with distributed generations using electrical
synaptic transmission-based spiking neural P systems. Int. J. Parallel Emergent Distrib. Syst. 2019. [CrossRef]

31. Yahya, Y.; Qian, A.; Yahya, A. Power Transformer Fault Diagnosis Using Fuzzy Reasoning Spiking Neural P
Systems. J. Intell. Learn. Syst. Appl. 2016, 8, 77–91. [CrossRef]

32. Song, T.; Pang, S.; Hao, S.; Rodríguez-Paton, A.; Zheng, P. A Parallel Image Skeletonizing Method Using
Spiking Neural P Systems with Weights. Neural Process. Lett. 2019, 50, 1485–1502. [CrossRef]

33. Song, T.; Pan, L.; Wu, T.; Zheng, P.; Wong, M.L.D.; Rodríguez-Patón, A. Spiking Neural P Systems With
Learning Functions. IEEE Trans. Nanobiosci. 2019, 18, 176–190. [CrossRef] [PubMed]

34. Ma, T.; Hao, S.; Wang, X.; Rodríguez-Patón, A.; Wang, S.; Song, T. Double Layers Self-Organized Spiking
Neural P Systems with Anti-spikes for Fingerprint Recognition. IEEE Access 2017, 7, 177562–177570.
[CrossRef]

35. Chen, Z.; Zhang, P.; Wang, X.; Shi, X.; Wu, T.; Zheng, P. A computational approach for nuclear export signals
identification using spiking neural P systems. Neural Comput. Appl. 2018, 29, 695–705. [CrossRef]

36. Gao, X.; Chen, H.Z. Signed Integer Arithmetic on Spiking Neural P System. Appl. Mech. Mater. 2010, 20–23,
779–784. [CrossRef]

37. Peng, X.W.; Fan, X.P.; Liu, J.X. Performing Balanced Ternary Logic and Arithmetic Operations with Spiking
Neural P Systems with Anti- Spikes. Adv. Mater. Res. 2012, 505, 378–385. [CrossRef]

38. Luan, J.; Liu, X.Y. Logic Operation in Spiking Neural P System with Chain Structure, Frontier and Future
Development of Information Technology. In Medicine and Education, Lecture Notes in Electrical Engineering;
Springer: New York, NY, USA, 2014; p. 269.

39. Binder, A.; Freund, R.; Oswald, M.; Vock, L. Extended Spiking Neural P systems with Excitatory
and Inhibitory Astrocytes. In Proceedings of the Fifth Brainstorming Week on Membrane Computing,
Sevilla, Spain, 29 January–2 February 2007.

http://dx.doi.org/10.1142/S0129065714400061
http://dx.doi.org/10.1109/TPWRS.2014.2347699
http://dx.doi.org/10.1016/j.ins.2012.07.015
http://dx.doi.org/10.1155/2013/815352
http://dx.doi.org/10.1049/cje.2016.03.019
http://dx.doi.org/10.1166/jctn.2015.3857
http://dx.doi.org/10.1155/2019/2635714
http://dx.doi.org/10.1155/2020/2462647
http://dx.doi.org/10.1080/17445760.2019.1682145
http://dx.doi.org/10.4236/jilsa.2016.84007
http://dx.doi.org/10.1007/s11063-018-9947-9
http://dx.doi.org/10.1109/TNB.2019.2896981
http://www.ncbi.nlm.nih.gov/pubmed/30716044
http://dx.doi.org/10.1109/ACCESS.2019.2958895
http://dx.doi.org/10.1007/s00521-016-2489-z
http://dx.doi.org/10.4028/www.scientific.net/AMM.20-23.779
http://dx.doi.org/10.4028/www.scientific.net/AMR.505.378

Appl. Sci. 2020, 10, 7011 24 of 26

40. Díaz, C.; Sanchez, G.; Duchen, G.; Nakano, M.; Perez, H. An efficient hardware implementation of a novel
unary Spiking Neural Network multiplier with variable dendritic delays. Neurocomputing 2016, 189, 130–134.
[CrossRef]

41. Díaz, C.; Frias, T.; Sanchez, G.; Perez, H.; Toscano, K.; Duchen, G. A novel parallel multiplier using spiking
neural P systems with dendritic delays. Neurocomputing 2017, 239, 113–121. [CrossRef]

42. Duchen, G.; Diaz, C.; Sanchez, G.; Perez, H. First steps toward memory processor unit architecture based on
SN P systems. Electron. Lett. 2017, 53, 384–385. [CrossRef]

43. Song, T.; Zheng, P.; Wong, M.L.D.; Wang, X. Design of logic gates using spiking neural P systems with
homogeneous neurons and astrocytes-like control. Inf. Sci. 2016, 372, 380–391. [CrossRef]

44. Li, J.; Huang, Y.; Xu, J. Decoder Design Based on SpikingNeural P Systems. IEEE Trans. Nanobiosci. 2016,
15, 639–644. [CrossRef]

45. Gutíerrez-Naranjo, M.A.; Leporati, A. Performing arithmetic operations with spiking neural P
systems. In Proceedings of the 7th Brainstorming Week Membrane Computing, Sevilla, Spain,
27 February–2 April 2009; pp. 181–198.

46. Zeng, X.; Song, T.; Zhang, X.; Pan, L. Performing four basic arithmetic operations with spiking neural P
systems. IEEE Trans. Nanobiosci. 2012, 11, 366–374. [CrossRef] [PubMed]

47. Liu, X.; Li, Z.; Liu, J.; Liu, L.; Zeng, X. Implementation of arithmetic operations with time-free spiking neural
P systems. IEEE Trans. Nanobiosci. 2015, 14, 617–624. [CrossRef] [PubMed]

48. Ishdorj, T.O.; Leporati, A.; Pan, L.; Zeng, X.; Zhang, X. Deterministic solutions to QSAT and Q3SAT by
spiking neural P systems with pre-computed resources. Theor. Comput. Sci. 2010, 411, 2345–2358. [CrossRef]

49. Chen, H.; Ionescu, M.; Ishdorj, T.-O. On the efficiency of spiking neural P systems. In Fourth Brainstorming
Week on Membrane Computing; Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núnez, A., Romero-Campero, F.J.,
Eds.; Sevilla University: Sevilla, Spain, 2006; pp. 195–206.

50. Ishdorj, T.-O.; Leporati, A. Uniform solutions to SAT and 3-SAT by spiking neural P systems with
pre-computed resources. Nat. Comput. 2008, 7, 519–534. [CrossRef]

51. Leporati, A.; Gutiérrez-Naranjo, M.A. Solving Subset Sum by spiking neural P systems with pre-computed
resources. Fundam. Informaticae 2008, 87, 61–77.

52. Leporati, A.; Mauri, G.; Zandron, C.; Păun, G.; Pérez-Jiménez, M.J. Uniform solutions to SAT and Subset
Sum by spiking neural P systems. Nat. Comput. 2009, 8, 681–702. [CrossRef]

53. Leporati, A.; Zandron, C.; Ferretti, C.; Mauri, G. Solving numerical NP-complete problem with spiking neural
P systems. In Membrane Computing, International Workshop, WMC8, Selected and Invited Papers; Eleftherakis, G.,
Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A., Eds.; Springer: New York, NY, USA, 2007; pp. 336–352.

54. Song, T.; Luo, L.; He, J.; Chen, Z.; Zhang, K. Solving Subset Sum Problems by Time-free Spiking Neural P
Systems. Appl. Math. Inf. Sci. 2014, 8, 327–332. [CrossRef]

55. Ishdorj, T.-O.; Leporati, A.; Pan, L.; Wang, J. Solving NP-Complete Problems by Spiking Neural P Systems with
Budding Rules; Păun, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 335–353.

56. Pan, L.; Păun, G.; Pérez-Jiménez, M.J. Spiking neural P systems with neuron division and budding. In Seventh
Brainstorming Week on Membrane Computing; RGNC Report 01/2009; Research Group on Natural Computing;
Gutiérrez-Escudero, R., Ed.; Sevilla University: Sevilla, Spain, 2009; pp. 151–167.

57. Pan, L.; Păun, G.; Pérez-Jiménez, M. Spiking neural P systems with neuron division and budding.
Sci. China Inf. Sci. 2011, 54, 1596–1607. [CrossRef]

58. Cabarle, F.G.C.; Hernandez, N.H.S.; Martínez-del-Amor, M.A. Spiking Neural P Systems with Structural
Plasticity: Attacking the Subset Sum Problem. In Membrane Computing; CMC 2015, LNCS 9504; Rozenberg, G.,
Salomaa, A., Sempere, J., Zandron, C., Eds.; Springer: New York, NY, USA, 2015.

59. Xue, J.; Liu, X. Solving Directed Hamilton Path Problem in Parallel by Improved SN P System. In ICPCA-SWS
2012, LNCS 7719; Zu, Q., Hu, B., Elçi, A., Eds.; Springer: New York, NY, USA, 2012; pp. 689–696.

60. Liu, X.; Li, Z.; Suo, J.; Liu, J.; Min, X. A uniform solution to integer factorization using time-free spiking
neural P system. Neural Comput. Appl. 2015, 26, 1241–1247. [CrossRef]

61. Qi, F.; Liu, M. Optimization Spiking Neural P System for Solving TSP, ICST Institute for Computer Sciences.
In Social Informatics and Telecommunications Engineering 2018 X; MLICOM 2017, Part II, LNICST 2018; Springer:
New York, NY, USA, 2018; Volume 227, pp. 668–676.

62. Pan, L.; Zeng, X.; Zhang, X. Time-free Spiking Neural P Systems. Neural Comput. 2011, 23, 1320–1342.
[CrossRef]

http://dx.doi.org/10.1016/j.neucom.2015.12.086
http://dx.doi.org/10.1016/j.neucom.2017.02.009
http://dx.doi.org/10.1049/el.2016.4148
http://dx.doi.org/10.1016/j.ins.2016.08.055
http://dx.doi.org/10.1109/TNB.2016.2584100
http://dx.doi.org/10.1109/TNB.2012.2211034
http://www.ncbi.nlm.nih.gov/pubmed/22893452
http://dx.doi.org/10.1109/TNB.2015.2438257
http://www.ncbi.nlm.nih.gov/pubmed/26335555
http://dx.doi.org/10.1016/j.tcs.2010.01.019
http://dx.doi.org/10.1007/s11047-008-9081-0
http://dx.doi.org/10.1007/s11047-008-9091-y
http://dx.doi.org/10.12785/amis/080140
http://dx.doi.org/10.1007/s11432-011-4303-y
http://dx.doi.org/10.1007/s00521-014-1799-2
http://dx.doi.org/10.1162/NECO_a_00115

Appl. Sci. 2020, 10, 7011 25 of 26

63. Zhang, G.; Pérez-Jiménez, M.J.; Gheorghe, M. Real-life Applications with Membrane Computing, Emergence,
Complexity and Computation Book Series (ECC); Springer: New York, NY, USA, 2017; Volume 25.

64. Xu, L.; Jeavons, P. Simple Neural-Like P Systems for Maximal Independent Set Selection. Neural Comput.
2013, 25, 1642–1659. [CrossRef] [PubMed]

65. Păun, G.; Pérez-Jiménez, M.J.; Rozenberg, G. Computing morphisms by spiking neural P systems.
Int. J. Found. Comput. Sci. 2007, 18, 1371–1382. [CrossRef]

66. Nishida, T.Y. Computing k-block morphisms by spiking neural P systems. Fundam. Informaticae 2011,
111, 453–464. [CrossRef]

67. Ishdorj, T.-O.; Ochirbat, O.; Naimannaran, C. A µ-fluidic Biochip Design for Spiking Neural P Systems.
Int. J. Unconv. Comput. 2020, 15, 59–82.

68. Chen, K.; Wang, J.; Sun, Z.; Luo, J.; Liu, T. Programmable Logic Controller Stage Programming Using Spiking
Neural P Systems. J. Comput. Oretical Nanosci. 2015, 12, 1292–1299. [CrossRef]

69. Chen, H.; Ionescu, M.; Ishdorj, T.-O.; Păun, A.; Păun, G.; Pérez-Jiménez, M.J. Spiking neural P systems with
extended rules: Universality and languages. Nat. Comput. 2008, 7, 147–166. [CrossRef]

70. Peng, H.; Wang, J.; Ming, J.; Shi, P.; Pérez-Jiménez, M.J.; Yu, W.; Tao, C. Fault diagnosis of power systems
using intuitionistic fuzzy spiking neural P systems. IEEE Trans. Smart Grid 2018, 9, 4777–4784. [CrossRef]

71. Wang, J.; Peng, H.; Yu, W.; Ming, J.; Pérez-Jiménez, M.J.; Tao, C.; Huang, X. Interval-valued fuzzy spiking
neural P systems for fault diagnosis of power transmission networks. Eng. Appl. Artif. Intell. 2019,
82, 102–109. [CrossRef]

72. Yu, W.; Wang, J.; Peng, H. Fault diagnosis of power systems using fuzzy reasoning spiking neural P systems
with interval-valued fuzzy numbers. Rom. J. Inf. Sci. Technol. 2017, 1, 5–17.

73. Wang, T.; Zhang, G.; Rong, H.; Pérez-Jiménez, M.J. Application of Fuzzy Reasoning Spiking Neural P
Systems to Fault Diagnosis. Int. J. Comput. Commun. Control. 2014, 9, 786–799. [CrossRef]

74. Huang, K.; Wang, T.; He, Y.; Zhang, G.; Peŕez-Jiménez, M.J. Temporal fuzzy reasoning spiking neural P
systems with real numbers for power system fault diagnosis. J. Comput. Theor. Nanosci. 2016, 13, 3804–3814.
[CrossRef]

75. Wang, T.; Zhang, G.; Pérez-Jiménez, M.J. Fault Diagnosis Models for Electric Locomotive Systems Based on
Fuzzy Reasoning Spiking Neural P Systems. In Membrane Computing; CMC 2014. LNCS 8961; Gheorghe, M.,
Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C., Eds.; Springer: New York, NY, USA, 2014.

76. Rong, H.; Zhu, M.; Feng, Z.; Zhang, G.; Huang, K. A Novel Approach to Fault Classification of Power
Transmission Lines Using Singular Value Decomposition and Fuzzy Reasoning Spiking Neural P Systems.
Rom. J. Inf. Sci. Technol. 2017, 20, 18–31.

77. Rong, H.; Ge, M.; Zhang, G.; Zhu, M. An Approach for Detecting Fault Lines in a Small Current Grounding
System using Fuzzy Reasoning Spiking Neural P Systems, Int. J. Comput. Commun. Control. 2018, 13, 521–536.
[CrossRef]

78. Zhu, M.; Yang, Q.; Dong, J.; Zhang, G.; Gou, X.; Rong, H.; Paul, P.; Neri, F. An adaptive optimization spiking
neural P system for binary problems. Int. J. Neural Syst. 2020. [CrossRef]

79. Păun, G.; Rozenberg, G.; Salomaa, A. The Oxford Handbook of Membrane Computing; Oxford University Press:
London, UK, 2009.

80. Zhang, X.; Zeng, X.; Pan, L.; Luo, B. A spiking neural P system for performing multiplication of two arbitrary
natural numbers. Chin. J. Comput. 2009, 32, 2362–2372.

81. Hamabe, R.; Fujiwara, A. Asynchronous SN P systems for logical and arithmetic operations. In Proceedings
of the International Conference on Foundations of Computer Science, Las Vegas, NV, USA, 21–23 October
2012; pp. 58–64.

82. Zhang, G.; Rong, H.; Paul, P.; He, Y.; Neri, F.; Pérez-Jiménez, M.J. A Complete Arithmetic Calculator
Constructed from Spiking Neural P Systems and its Application to Information Fusion. Int. J. Neural Syst.
2020. [CrossRef]

83. Díaz-Pernil, D.; Peña-Cantillana, F.; Gutiérrez-Naranjo, M.A. A parallel algorithm for skeletonizing images
by using spiking neural P systems. Neurocomputing 2013, 115, 81–91. [CrossRef]

http://dx.doi.org/10.1162/NECO_a_00443
http://www.ncbi.nlm.nih.gov/pubmed/23517102
http://dx.doi.org/10.1142/S0129054107005418
http://dx.doi.org/10.3233/FI-2011-573
http://dx.doi.org/10.1166/jctn.2015.3889
http://dx.doi.org/10.1007/s11047-006-9024-6
http://dx.doi.org/10.1109/TSG.2017.2670602
http://dx.doi.org/10.1016/j.engappai.2019.03.014
http://dx.doi.org/10.15837/ijccc.2014.6.1485
http://dx.doi.org/10.1166/jctn.2016.5214
http://dx.doi.org/10.15837/ijccc.2018.4.3220
http://dx.doi.org/10.1142/S0129065720500549
http://dx.doi.org/10.1142/S0129065720500550
http://dx.doi.org/10.1016/j.neucom.2012.12.032

Appl. Sci. 2020, 10, 7011 26 of 26

84. Idowu, R.K.; Chandren, R.; Othman, Z.A. Advocating the use of fuzzy reasoning spiking neural P system
in intrusion detection. In Proceedings of the Asian Conference on Membrane Computing ACMC 2014,
Coimbatore, India, 18–19 September 2014.

85. Pang, S.; Chen, H.; Liu, H.; Yao, J.; Wang, M. A deadlock resolution strategy based on spiking neural P
systems. J. Ambient. Intell. Humaniz. Comput. 2019. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12652-019-01223-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Spiking Neural P Systems
	Applications of Sn P Systems
	Power Systems Fault Diagnosis
	Solving Computationally Hard Problems
	Performing Arithmetic and Logical Operations and Hardware Implementation
	Pattern Recognition
	Other Applications

	Conclusions and Future Research Lines
	References

