
applied
sciences

Article

Deep Convolutional Neural Networks Object
Detector for Real-Time Waste Identification

Daniel Octavian Melinte *, Ana-Maria Travediu and Dan N. Dumitriu

Institute of Solid Mechanics of the Romanian Academy, 010141 Bucharest, Romania;
ana.travediu@imsar.ro (A.-M.T.); dan.dumitriu@imsar.ro (D.N.D.)
* Correspondence: octavian.melinte@imsar.ro

Received: 4 September 2020; Accepted: 15 October 2020; Published: 19 October 2020
����������
�������

Abstract: This paper presents an extensive research carried out for enhancing the performances
of convolutional neural network (CNN) object detectors applied to municipal waste identification.
In order to obtain an accurate and fast CNN architecture, several types of Single Shot Detectors (SSD)
and Regional Proposal Networks (RPN) have been fine-tuned on the TrashNet database. The network
with the best performances is executed on one autonomous robot system, which is able to collect
detected waste from the ground based on the CNN feedback. For this type of application, a precise
identification of municipal waste objects is very important. In order to develop a straightforward
pipeline for waste detection, the paper focuses on boosting the performance of pre-trained CNN Object
Detectors, in terms of precision, generalization, and detection speed, using different loss optimization
methods, database augmentation, and asynchronous threading at inference time. The pipeline
consists of data augmentation at the training time followed by CNN feature extraction and box
predictor modules for localization and classification at different feature map sizes. The trained model
is generated for inference afterwards. The experiments revealed better performances than all other
Object Detectors trained on TrashNet or other garbage datasets with a precision of 97.63% accuracy
for SSD and 95.76% accuracy for Faster R-CNN, respectively. In order to find the optimal higher and
lower bounds of our learning rate where the network is actually learning, we trained our model for
several epochs, updating the learning rate after each epoch, starting from 1 × 10−10 and decreasing it
until reaching 1 × 10−1.

Keywords: artificial intelligence; deep learning; real-time object detector; image classification;
computer vision; convolutional neural networks; waste sorting; advanced intelligent control

1. Introduction

Municipal waste sorting is becoming an important matter in cities across the European Union (EU)
and beyond. The most recent data showed that in the EU, 786 million tones of waste, excluding major
mineral waste, were generated in 2016, equivalent to 35 % of the total waste generated. This means
that in relation to population size, the EU generated, on average, 1.8 tones per inhabitant of waste,
excluding major mineral waste, in 2016 [1]. Roughly half of the waste (52.6 %) went through different
recovery operations: recycling (36.7 % of the total recovered waste), backfilling (10.1 %), or energy
recovery (5.8 %). The remaining 47.4 % was landfilled, incinerated without energy recovery, or disposed.

By 2020, the recycling of waste materials such paper, metal, plastic, and glass from households
and possibly from other origins was forecasted to a minimum of overall 50% by weight. By 2035,
the target is increased to 65% [2]. The latest EU report, from 2016, shows that the average amount of
municipal waste that has been recycled was 45%.

One method to maximize recycling is to use autonomous systems which must accurately sort the
waste in a short amount of time. One type of autonomous system is the mobile robot used for collecting

Appl. Sci. 2020, 10, 7301; doi:10.3390/app10207301 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/10/20/7301?type=check_update&version=1
http://dx.doi.org/10.3390/app10207301
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 7301 2 of 18

waste from the ground, which has been developed by our team in collaboration with mechatronic
and computer science researchers [3]. The objects that make up the trash are detected using a camera
mounted on top of the robotic system and are processed for identification using computer vision and
deep neural network models.

The convolutional neural network (CNN) model with the best performance will be embedded on
an autonomous mobile robot equipped with an x–y–z robotic manipulator (Festo planar x–y surface
gantry plus a vertical electrical slide on z axis), supplied only by DC 24 V for increased autonomy,
the end-effector being a Festo electric parallel gripper. The gripper is intended to collect waste objects from
the ground and to manipulate them to a box container placed into the mobile robot. In order to identify
the municipal waste objects to be collected, an image acquisition and processing system is needed.
The image acquisition can be performed using various cameras; in our case, two different designs are
tested in parallel: a Festo specialized camera type SBPA-R2-C-U3-2E2A-CS with a CECC-X-M1-MV
camera controller and an Omni Vision OV5647 camera with a Raspberry Pi 3+ controller, with a
dual-core processor of 1 GHz frequency and 1 GB RAM. In order to reduce the inference time, a USB
neural processing device (Neural Compute Stick v2) is added to the second design of the image
processing system. There are some other research works that focus on developing robotic systems for
autonomous collection and classification of trash [4] or for identification of construction waste such as
nails and screws [5]. The implementation of a neural network model on the mobile robot and other
aspects of this autonomous sorting framework is not the scope of the paper.

In order to obtain an efficient deep neural network model, the research focuses on boosting the
performance of pre-trained Convolutional Neural Network Object Detectors, in terms of precision,
generalization, and detection speed, using loss optimization methods, data augmentation, or asynchronous
threading at inference time. The model with the best performance will be embedded in a robotic
application for waste sorting and collecting from the ground.

The images in the dataset are pre-processed at the training time in order to improve generalization
and to extend the dataset. After pre-processing, the images are transferred to the object detectors
feature extractor CNN. The proposals of the feature extractors will be the input for the box predictor
modules, which will be responsible for localization and classification at different feature map
sizes. The performance of the object detector CNN depends on several parameters such as data
augmentation, the CNN model, number of images in training/testing dataset, loss optimization,
hyper-parameters adjusting, evaluation metrics, transfer learning, fine-tuning, etc. Thus, in order
to develop an accurate and real-time architecture, a complex set of actions needs to be carried out.
In addition to enhancing the capabilities of object detectors for waste identification and sorting in
terms of precision and inference time, the paper presents an in-depth study on the performance of
several artificial intelligence methods applied to trash classification.

This paper focuses on object identification based on municipal waste images, more precisely the
AI techniques used for localization and classification. The goal is to obtain a real-time and accurate CNN
object detector which will be able to correctly classify and locate municipal waste, in order to be identified
and picked up by the autonomous mobile robot system. A preliminary study in the area of waste
sorting using deep learning has been performed by our team in a previous paper [6]. More precisely,
pre-trained CNN architectures have been evaluated on a custom trash test dataset, created in under
laboratory conditions, with a high degree of variance (high degree of transparency, uncommon positions,
lower resolution, cropped or blocked images), in order to test the real generalization of the models
outside the training and testing dataset. This previous research has shown that the most accurate
model at inference time in terms of the confidence score obtained on the custom dataset is the
Single Shot Detectors (SSD) architecture with MobileNetV2 base network pre-trained on the COCO
(Common Objects in COntext) dataset and fine-tuned on the PASCAL Visual Object Classes (VOC)
dataset. Based on these first results, this current research continues the study by training the best models
on the TrashNet dataset using transfer learning and fine-tuning, data augmentation, regularization,
and finding the optimum limits of the learning rate.

Appl. Sci. 2020, 10, 7301 3 of 18

In the literature, there are several research works developed in the area of waste sorting using
deep learning. The first important results in waste sorting using deep learning were obtained in [7].
The authors developed a database for municipal waste, called TrashNet and used it to train two
classifiers: one support vector machine (SVM) and a CNN very similar to the AlexNet model with
the Softmax classifier. SVM performed better with an accuracy of 63%, while CNN did not learn
well due to hyper-parameter setup. Following the results of this research, a better mean average
precision of 68.3% has been obtained [8] using Faster R-CNN and augmentation of the dataset. In [9],
a VGG-16 CNN has been used for training and a validation accuracy of 88.42% has been obtained,
overfitting the CNN, where some adjustments of the hyper-parameters, architecture, or classification
on the fully connected layers have been performed. Newer research on the TrashNet dataset has
provided better results. For example, in [10], a Faster R-CNN object detector based on Inception V2 and
pre-trained on the COCO dataset has been tested. The results showed a precision of 84.2% and a recall
of 87.8%. Using DenseNet121 and Inception-ResNetV2, a test accuracy of 95% and 87%, respectively,
has been obtained. In the same paper, the new model, RecycleNet, had shown 81% test accuracy [11].
In [12], the results showed a test accuracy of 93% using a pre-trained VGG-16 network. O. Adedeji
and Zenghui Wang used a ResNet50 network with an SVM classifier and obtained 87% accuracy [13].
In [14], the automation of Waste Sorting with Deep Learning has achieved 86%, but the best results,
so far, are obtained by [15] using MobileNetV2 for feature extraction and an SVM classifier, with an
accuracy of 98.7%. However, this paper has not been peer-reviewed yet. There are some other research
works that used different garbage datasets, e.g., in [16], a custom model has been developed and a
lightweight neural network based on the AlexNet-SSD model has been used for Garbage Detection,
while in [17], a custom dataset has been used for training a multilayer hybrid deep learning model for
waste classification and recycling. Most of these methods output only the presence and classification of
the object in the picture. In terms of CNN used for object recognition by applying image segmentation,
the research in [18] deals with the detecting aluminum profiles within images, using hierarchical
representations such as those based on deep learning methods.

Taking into account that municipal waste usually contains a clutter of different waste types, it is
necessary to identify as many objects as possible in the image. Moreover, for collecting and sorting
waste using a mobile robot, object localization in the image is needed. In order to obtain the localization,
object detectors such as Single Shot Detectors, regional proposals (Faster R-CNN), or Mask networks
(Mask R-CNN) can be used. In this paper, SSD and Faster R-CNN architectures have been chosen for
object detection. Compared to Image Classifiers, which assign a class label to an image, Object Detectors
are more challenging as they add the localization of the objects in an image by drawing a bounding
box around them. Therefore, the TrashNet dataset has been annotated taking into account class labels
and object location in the images, in order to train the SSD and Faster R-CNN Object Detectors.

In terms of model optimization for robotic applications, the studies reveal different approaches such as
developing advanced control systems for the upper and lower limb [19,20], applying Dezert–Smarandache
Theory (DSmT) for decision-making algorithms [21], Extenics control [22], and fuzzy dynamic modelling [23].

The paper is further divided into four sections. In the Methods and Dataset section, the CNN
architectures, the transfer learning/fine-tuning methodology, and the dataset used for training the
models are presented. In addition, the determination of an appropriate learning rate for training our
CNN models is described. Next comes the Results section, where the models are evaluated in terms of
generalization, precision, and recall using Pascal VOC metrics. Hyper-parameter setup is detailed here.
In the Discussion section, the paper evaluates the models that performed the best in comparison with
other state-of-the-art networks. In the final section, the conclusions and future work are presented.

2. Methods and Dataset

The performance of the CNN object detector is determined, among others, by data augmentation,
CNN model, number of images in training/testing dataset, loss optimization, hyper-parameters adjusting,
evaluation metrics, transfer learning, fine-tuning, etc. In order to develop an accurate and real-time

Appl. Sci. 2020, 10, 7301 4 of 18

architecture, a complex set of actions have been carried out in this direction throughout this study.
Therefore, since there are a limited number of images in the dataset, data augmentation has been
applied in order to achieve better generalization and regularization in the fully connected layers using a
dropout of 0.5, which has been added to randomly switch the neurons that are trained at each iteration.

Selecting or designing the CNN model for object detection is one of the most important and
crucial steps in order to achieve better results. Based on the performances obtained so far in this
field, there were two types of object detectors that were took into account: Single Shot Detectors and
Regional Proposal Network (Faster R-CNN). Due to the fact that there are multiple actions which can
be conducted and many parameters that need to be adjusted, the results may vary depending on the
application. SSD networks are fast and able to detect large objects, while Faster R-CNNs are very good
at identifying small objects, but their architecture is more complex and the inference time increases.

In order to improve the performances of state-of-the-art studies, the research focuses on implementing
loss optimization, transfer learning, fine-tuning, hyper-parameter setup, and determination of the
appropriate learning rate, into three types of SSD (two MobileNet and one Inception V2-based
networks) and one Faster R-CNN architecture (Inception-ResNet-based network) and finding the
appropriate model for waste detection applications. Transfer learning and fine-tuning has been applied
to the pre-trained SSD and Faster R-CNN models in order to use their weights as a warm-up for
training the models on the TrashNet dataset.

In addition, the SSD models trained on the TrashNet dataset were fine-tuned by freezing the
weights of the bottom layers and unfreezing the layers where specific features are learned, allowing the
gradient to back-propagate through these convolutional layers but with a very small learning rate in
order to enable small adjustments to the weights.

Learning rate is a key parameter and in order to determine its appropriate value, the models
have been trained for several epochs, at first, updating the learning rate after each batch starting from
1 × 10−10 and increasing it until reaching 1 × 10−1. We noticed that the model learned between 1 × 10−1

and 1 × 10−6, with a good rate between 1 × 10−2 and 1 × 10−5.
After determining the appropriate learning rate, other hyper-parameters have also been set up

(e.g., feature extractor depth multiplier, feature extractor minimum depth, weight of the l2 regularizer,
x/y and height/width scale of the box coder, scales and aspect rations of the SSD anchor generators, etc.,
but our research focused on fine-tuning as the most important of them e.g., batch size, learning rate,
decay, decay steps, optimizer, dropout, etc.) before training the CNN. Transfer learning, fine-tuning,
and hyper-parameters adjusting involves a long process of many trainings with tens of epochs and
evaluations for each set-up until achieving the desired model.

2.1. Dataset

TrashNet dataset developed by Thung G. et al. [24] has been used in this paper and in our study.
The dataset is made of six classes: glass, paper, cardboard, plastic, metal, and daily garbage pictures.
There are 2527 images that make up the dataset and are divided as follows: 501 glass, 594 paper,
403 cardboard, 482 plastic, 410 metal, and 137 daily trash. Some of the samples from the dataset are
presented in Figure 1. Because the research focused on waste classification and localization, the daily
trash class was dropped when training and evaluating our model. In addition to the work carried out
by Thung G. et al., we annotated the images from each class with bounding boxes in the PASCAL VOC
format (Xmin—top left; Ymin—top left; Xmax—bottom right; Ymax—bottom right). The images were
split into training and testing/validation sets, meaning 496 images. The training dataset was made
of 75% of the images, while the testing/validation set was 25%. Taking into account that the dataset
was not very big, augmentation of training set has been performed at training time. This enabled the
extension of training dataset.

Appl. Sci. 2020, 10, 7301 5 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 18

25%. Taking into account that the dataset was not very big, augmentation of training set has been

performed at training time. This enabled the extension of training dataset.

Figure 1. Images from training dataset.

2.2. Dataset Augmentation

In order to avoid overfitting, dataset augmentation of the training set has been used, by

applying random crop, random vertical flip, random 90 degrees rotation, and random image scaling

at the learning time. For a better generalization, we also added regularization in the fully connected

layers of the localization and classification, by using a dropout of 0.5 before Softmax [25].

2.3. Methods

2.3.1. SSD Networks

SSD architectures divide the output space of bounding boxes into a set of default boxes over

different aspect ratios and scales per feature map location. At the prediction time, the network

generates confidence scores for the presence of every object class in each default bounding box,

followed by a non‐maximum suppression function in order to drop the incorrect results and output

the final detections. In addition, the network merges predictions from multiple layers with different

sizes in order to detect objects of several sizes [26]. The first layers are based on a standard

architecture model, MobileNet and Inception V2 in our case, and output the feature maps used by

the SSD layers at the end of the network. The auxiliary layers decrease the size of the base feature

maps and allow prediction at different scales.

MobileNetV2

MobileNet uses depth‐wise separable convolutions, made of one point‐wise (1 × 1) and one

depth‐wise convolution (3 × 3), to build lightweight deep neural networks. In addition to its first

version, the MobileNetV2 uses two point‐wise convolutions, the first one to expand the number of

channels with a given factor and the other one to reduce the number of the channels. In between

these two convolutions, there is a 3 × 3 depth‐wise convolution used for lightweight filtering. [27].

Figure 1. Images from training dataset.

2.2. Dataset Augmentation

In order to avoid overfitting, dataset augmentation of the training set has been used, by applying
random crop, random vertical flip, random 90 degrees rotation, and random image scaling at the
learning time. For a better generalization, we also added regularization in the fully connected layers of
the localization and classification, by using a dropout of 0.5 before Softmax [25].

2.3. Methods

2.3.1. SSD Networks

SSD architectures divide the output space of bounding boxes into a set of default boxes over
different aspect ratios and scales per feature map location. At the prediction time, the network generates
confidence scores for the presence of every object class in each default bounding box, followed by
a non-maximum suppression function in order to drop the incorrect results and output the final
detections. In addition, the network merges predictions from multiple layers with different sizes in
order to detect objects of several sizes [26]. The first layers are based on a standard architecture model,
MobileNet and Inception V2 in our case, and output the feature maps used by the SSD layers at the end
of the network. The auxiliary layers decrease the size of the base feature maps and allow prediction at
different scales.

MobileNetV2

MobileNet uses depth-wise separable convolutions, made of one point-wise (1 × 1) and one
depth-wise convolution (3 × 3), to build lightweight deep neural networks. In addition to its first
version, the MobileNetV2 uses two point-wise convolutions, the first one to expand the number of
channels with a given factor and the other one to reduce the number of the channels. In between these
two convolutions, there is a 3 × 3 depth-wise convolution used for lightweight filtering. [27].

This type of network was used as the base model for the SSD framework. All layers were followed
by a batch norm and ReLU6 nonlinearity with the exception of the final fully connected layer, which fed
into a Softmax layer for classification.

Appl. Sci. 2020, 10, 7301 6 of 18

There were two types of MobileNetV2 used in this research, one which was pre-trained on the
COCO dataset and another one pre-trained on the Open Image Dataset (OID). The weights of the
pre-trained models were first used as a warm-up for fine-tuning on the TrashNet dataset but we further
observed that freezing the weights of the bottom layers and unfreezing the layers where specific
features were learned led to an increase in performances with 2–3%.

Inception V2

The Inception models have been designed to solve high variation in the image information
and are effective as a back-bone network for SSD and RPN architectures. There are several types
of kernels with different sizes (7 × 7; 5 × 5; 3 × 3) used in the convolutional layers. Large filters
can look for the information which is sparse across the receptive field, as the smaller ones search in
the information that is not distributed globally [28]. Inception V2 added batch normalization (BN)
to the first version [29], in order to deal with covariance shift. This method reduces the vanishing
or exploding gradient and helps the loss to escape local minima. Applying BN leads to using high
learning rates, easier initialization, and lower amounts of Dropout.

The Inception V2 architecture used in this research was pre-trained on the COCO dataset. As well
as MobileNetV2, the weights of the pre-trained model were first used as a warm-up for fine-tuning on
the TrashNet dataset and then, we froze the weights of the bottom layers and unfroze the layers where
specific features were learned.

2.3.2. Regional Proposal Networks Using Faster R-CNN Inception-ResNet

The Faster R-CNN architecture uses a regional proposal network to predict the class and localize
the objects. The network is made up of two modules: the Regional Proposal Network (RPN) and
the detection network. In order to generate a set of bounding boxes proposals with a confidence
score, the RPN is similar to a convolutional neural network with anchors of several dimensions and
ratios, and multiple region proposals at each anchor location. The detection network is a Fast R-CNN
network which utilizes the region proposals from RPN to look for objects in those regions of interest.
The RPN and the detection network share a common set of convolutional layers in order to share the
computation [30].

For our object detection, a Faster R-CNN with Inception+ResNetV2 [31] as the shared base
network for RPN and detection has been used. This model was previously trained on Open Image
Dataset (OID) V4 [32] and transfer learning and fine-tuning were used to train the entire model.

2.3.3. Determining the Appropriate Learning Rate for Training our CNN Model

Learning rate is a key hyper-parameter for training neural networks. Finding the appropriate
value for each application is very important in order to achieve high accuracy without overfitting the
model. The weights are updated in relation to the learning rate after each batch in the direction of the
minimum loss. In order to find the optimal higher and lower bounds of our learning rate, where the
network is actually learning, we trained our model for several epochs, updating the learning rate after
each batch starting from 1 × 10−10 and increasing it until reaching 1 × 10−1. We noticed that between
1 × 10−10 and 1 × 10−7, the loss is around the value of 40 and does not change too much, thus the
learning rate is too small for the network to learn. Starting at approximately 1 × 10−6, the loss starts to
decrease. This value is the smallest learning rate where our model can actually learn. By the time we
hit 1 × 10−5, the loss drops rapidly, meaning that the network is learning at a fast pace and continues
in the same way until the learning rate is 1 − 10−1. After this threshold, the loss starts to converge
until the training stops. One way of setting the appropriate learning rate is to use the cyclic learning
rate [33]. Cyclical Learning Rates enable our learning rate to oscillate back and forth between a lower
and upper bound. Thus, the network is able to come out from either saddle points or local minima,
while low learning rates may not be sufficient to break out and descend into areas with lower losses.
Furthermore, the model and optimizer may be very sensitive to the initial learning rate.

Appl. Sci. 2020, 10, 7301 7 of 18

In our case, it turned out that the model was learning between 1 × 10−1 and 1 × 10−6, with a good
rate between 1 × 10−2 and 1 × 10−5. Taking this into consideration, an exponential learning rate has
been used, with the initial learning rate of 1 × 10−2. Moreover, a stepping learning rate has been added
to boost the training.

lr = lr(0) · k
t/tk , (1)

where the initial learning rate, lr(0), is 1 × 10−2, the decay, k, is 0.95, and the decay steps, tk, is 10,000.
The training stops when the global step, t, reaches 300 k or 500 k depending on the model.

Loss optimization can be obtained by applying adaptive learning rate using several methods,
such as Adaptive Moment Optimization (Adam) Adamax [34], Root Mean Square Propagation
(RMSprop) [35], Adaptive gradient algorithm (Adagrad) [36], Adadelta [37], or Nesterov Adaptive
Moment Optimization (Nadam) [38]. In our approach, finding the optimal learning rate limits has
been carried out using RMSProp. This optimization was further used in the paper when training the
object detector as well. Weights computation using the learning rate and RMSProp is presented in the
equations below:

vt = βvt−1 + (1− β)g2
t , (2)

wt = wt−1 − lr
gt

√
vt + ε

(3)

where vt is the moving average of the squared gradient, g2
t is the gradient of the cost function with

respect to the weight, wt is the weight, and β is the moving average parameter (the value is usually 0.9).

3. Results

The experiments in this paper have been performed using Tensorflow Object Detection API.
The training was performed on a Local Deep Learning Server with a GPU RTX 2080 Ti, 11 GB GDDR6
352-bit RAM, 1.6 GHz processor, and 4352 CUDA cores, while the evaluation took place on the server’s
CPU equipped with i7 Core 8th gen, 4.6 GHz, 6 cores, and 12 threads. This allowed us to train our
SSD models with an average step speed of 0.3 s, meaning that training one network for 300 k steps
took around 25 h. As for the Faster R-CNN, the average step speed was 0.7 s, meaning that training
one network for 300 k took around 58 h. After training the model, the resulted graph was frozen and
transformed into an inference model. Our inference model was run on a Raspberry Pi3+ processor
with an USB extension for Neural Network Processing, which led to speeds of 9 frames per second
(FPS) for SSD architecture and to 4FPS for Faster R-CNN.

In order to obtain the mean average precision and recall of the model, Pascal VOC metrics have
been used for evaluation. In addition, Pascal VOC metrics were used in order to evaluate the results
per class.

PASCAL VOC is a popular dataset and an evaluation tool for object detection and classification [39].
The PASCAL VOC evaluation metric implies that a prediction is positive if IoU ≥ 0.5. Intersection
over Union (IoU) is defined as the area of the intersection of a predicted bounding box (B) and a
ground-truth box (Bgt) divided by the area of their union.

IoU =
Area

(
B∩ Bgt

)
Area

(
B∪ Bgt

) (4)

A detection is considered true positive (TP) only if it satisfies three conditions: confidence score is
greater than confidence threshold (0.5 in our case); the predicted class matches the class of a ground
truth; the IoU of the predicted bounding box is greater than a IoU threshold (0.5 in our case) with the
ground-truth. If the last two criteria are not satisfied, the detection is false positive (FP). In addition,
PASCAL VOC challenge includes some additional rules to define true/false positives. In case multiple
predictions correspond to the same ground-truth, only the one with the highest confidence score counts
as a true positive, while the others count as false positives. When the confidence score of a detection

Appl. Sci. 2020, 10, 7301 8 of 18

that is supposed to detect a ground-truth is lower than the confidence threshold, the detection counts
as a false negative (FN). Based on these assumptions, the equations for precision, recall, and F1-score
are as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 = 2·
Precision·Recall

Precision + Recall
(7)

Precision is defined as the number of true positives divided by the sum of true positives and false
positives. Recall measures the ratio of true object detections to the total number of objects in the dataset.
The F1 score measures the accuracy of the model based on the precision and recall harmonic mean:

In order to evaluate the performances of the object detectors, average precision (AP) has been
used, instead of precision and recall, for example. The AP is a numerical tool that can be used for
comparison instead of intersecting curves from precision–recall. For our dataset, the calculation of
average precision involves a prediction over five classes. Therefore, the mean average precision (mAP)
is defined as the mean of AP across all five classes:

mAP =
k∑

i=1

APi
k

. (8)

3.1. Hyper-Parameters Tuning

At this phase, transfer learning and fine-tuning are used for all the models taken into account.
At first, the networks are fine-tuned without freezing bottleneck layers. In this manner, the models
pre-trained on different datasets work as a warm-up for our fine-tuned parameters, allowing the
gradient to propagate through the network. After completing this task, transfer learning will be used by
freezing the bottleneck layers where high-level representations are learned. Thus, the gradient is able to
back-propagate through these convolutional layers but with a very small learning rate in order to enable
small adjustments to the weights. The fine-tuning of the hyper-parameters is introduced hereunder.
CNN Object Detectors training depends on multiple hyper-parameters, e.g., feature extractor depth
multiplier, feature extractor minimum depth, weight of the l2 regularizer, x/y and height/width scale of
the box coder, scales and aspect rations of the SSD anchor generators, etc., but our research focused on
fine-tuning the most important of them e.g., batch size, learning rate, decay, decay steps, optimizer,
dropout, etc.

For SSD architecture, the hyper-parameters tuning is:

• Batch size = 24 images;
• Learning rate using momentum RMSprop optimizer;
• Initial learning rate: 1 × 10−2;
• Decay: 0.95;
• Decay steps: 10,000;
• Momentum optimizer: 0.9;
• Final learning rate: 1 × 10−5.

For the Faster R-CNN architecture detector, the hyper-parameters tuning is:

• Batch size = 3 images;
• Learning rate using momentum RMSprop optimizer;
• Initial learning rate: 1 × 10−2;
• Decay: 0.95;
• Decay steps: 10,000;

Appl. Sci. 2020, 10, 7301 9 of 18

• Momentum optimizer: 0.9;
• Final learning rate: 1 × 10−5.

Faster R-CNN parameters for RPN:

• IoU = 0.7;
• Proposed maps: 100;
• Crop size: 17.

3.2. Object Detector Evaluation

In Figure 2, the mean accuracy precision of all trained models using Pascal VOC metrics is
presented. One can notice that the highest mAP is obtained for the SSD MobileNetV2 model pre-trained
on the OID dataset. The SSD MobileNetV2 trained on the COCO database [40] is less accurate,
although the architecture is similar to the one with best results and the parameter tuning is the same.
This might happen because unlike the SSD MobileNetV2 model pre-trained on OID, the weights of
the pre-trained model on COCO are frozen at the bottom layers, while the weights at the top layers,
where the representative features are learned, are unfrozen in order to be updated according to the
TrashNet dataset. The Inception-based SSD and Faster R-CNN model obtained mAP scores over 91%.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 18

● Batch size = 3 images;
● Learning rate using momentum RMSprop optimizer;
● Initial learning rate: 1 × 10−2;
● Decay: 0.95;
● Decay steps: 10,000;
● Momentum optimizer: 0.9;
● Final learning rate: 1 × 10−5.

Faster R‐CNN parameters for RPN:

● IoU = 0.7;
● Proposed maps: 100;
● Crop size: 17.

3.2. Object Detector Evaluation

In Figure 2, the mean accuracy precision of all trained models using Pascal VOC metrics is

presented. One can notice that the highest mAP is obtained for the SSD MobileNetV2 model

pre‐trained on the OID dataset. The SSD MobileNetV2 trained on the COCO database [40] is less

accurate, although the architecture is similar to the one with best results and the parameter tuning is

the same. This might happen because unlike the SSD MobileNetV2 model pre‐trained on OID, the

weights of the pre‐trained model on COCO are frozen at the bottom layers, while the weights at the

top layers, where the representative features are learned, are unfrozen in order to be updated

according to the TrashNet dataset. The Inception‐based SSD and Faster R‐CNN model obtained

mAP scores over 91%.

Figure 2. Mean average precision using Pascal VOC metrics.

In Figure 3, the recall of all trained models is evaluated. As in the case of mAP, the model with

the best results in terms of recall is the SSD MobileNetV2 pre‐trained on the COCO dataset, followed

by Faster R‐CNN and Inception V2.

Figure 2. Mean average precision using Pascal VOC metrics.

In Figure 3, the recall of all trained models is evaluated. As in the case of mAP, the model with the
best results in terms of recall is the SSD MobileNetV2 pre-trained on the COCO dataset, followed by
Faster R-CNN and Inception V2.

In order to check the models against overfitting, the training and evaluation losses during the
entire training have been taken into account. In Figure 4, the classification loss of the most accurate
model, the SSD MobileNetV2 network pre-trained on OID V4, is presented during training and
evaluation. One can observe that the validation and training losses converge on the same graph,
meaning that the CNN manages to generalize well and the images in the training set are accurately
detected. The evaluation loss converges to a minimal value around 0.75 after 200 k steps. Due to
the fact that the learning rate has been adjusted manually at some checkpoints, there are some sharp
increases in the evaluation loss but returns to the prior variation when the changes are undone and
meta-parameters are better adjusted. The training and evaluation errors decrease fast during the first
part of training (50 k steps). After 50 k steps, the losses decrease on a smoother slope until 150 k steps.
From that point on, the classification loss starts to converge until 220 k, when the model begins to
overfit (the training loss fluctuates around 0.4, while the validation loss increases). The same evolution
has been observed for other models. In order to avoid overfitting, the inference graph of the model has

Appl. Sci. 2020, 10, 7301 10 of 18

been generated from the checkpoint created at the 203 k step, when the network starts to lose its ability
to generalize.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18

Figure 3. Recall of the trained models using Pascal VOC metrics.

In order to check the models against overfitting, the training and evaluation losses during the

entire training have been taken into account. In Figure 4, the classification loss of the most accurate

model, the SSD MobileNetV2 network pre‐trained on OID V4, is presented during training and

evaluation. One can observe that the validation and training losses converge on the same graph,

meaning that the CNN manages to generalize well and the images in the training set are accurately

detected. The evaluation loss converges to a minimal value around 0.75 after 200 k steps. Due to the

fact that the learning rate has been adjusted manually at some checkpoints, there are some sharp

increases in the evaluation loss but returns to the prior variation when the changes are undone and

meta‐parameters are better adjusted. The training and evaluation errors decrease fast during the first

part of training (50 k steps). After 50 k steps, the losses decrease on a smoother slope until 150 k

steps. From that point on, the classification loss starts to converge until 220 k, when the model begins

to overfit (the training loss fluctuates around 0.4, while the validation loss increases). The same

evolution has been observed for other models. In order to avoid overfitting, the inference graph of

the model has been generated from the checkpoint created at the 203 k step, when the network starts

to lose its ability to generalize.

Figure 4. Classification loss training vs. validation MobileNetV2 pre‐trained on OID.

In Figure 5, the localization loss of the SSD MobileNetV2 network pre‐trained on OID V4 over

time is presented. The validation and training losses follow the same pattern and the error converges

after 100 k steps to an average value of 0.04 mm. Just like the classification loss, the same evolution

can be observed for other models. The localization loss for training and validation is very small, thus

it is not taken into account when evaluating the ability to generalize of the model.

Figure 3. Recall of the trained models using Pascal VOC metrics.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18

Figure 3. Recall of the trained models using Pascal VOC metrics.

In order to check the models against overfitting, the training and evaluation losses during the

entire training have been taken into account. In Figure 4, the classification loss of the most accurate

model, the SSD MobileNetV2 network pre‐trained on OID V4, is presented during training and

evaluation. One can observe that the validation and training losses converge on the same graph,

meaning that the CNN manages to generalize well and the images in the training set are accurately

detected. The evaluation loss converges to a minimal value around 0.75 after 200 k steps. Due to the

fact that the learning rate has been adjusted manually at some checkpoints, there are some sharp

increases in the evaluation loss but returns to the prior variation when the changes are undone and

meta‐parameters are better adjusted. The training and evaluation errors decrease fast during the first

part of training (50 k steps). After 50 k steps, the losses decrease on a smoother slope until 150 k

steps. From that point on, the classification loss starts to converge until 220 k, when the model begins

to overfit (the training loss fluctuates around 0.4, while the validation loss increases). The same

evolution has been observed for other models. In order to avoid overfitting, the inference graph of

the model has been generated from the checkpoint created at the 203 k step, when the network starts

to lose its ability to generalize.

Figure 4. Classification loss training vs. validation MobileNetV2 pre‐trained on OID.

In Figure 5, the localization loss of the SSD MobileNetV2 network pre‐trained on OID V4 over

time is presented. The validation and training losses follow the same pattern and the error converges

after 100 k steps to an average value of 0.04 mm. Just like the classification loss, the same evolution

can be observed for other models. The localization loss for training and validation is very small, thus

it is not taken into account when evaluating the ability to generalize of the model.

Figure 4. Classification loss training vs. validation MobileNetV2 pre-trained on OID.

In Figure 5, the localization loss of the SSD MobileNetV2 network pre-trained on OID V4 over
time is presented. The validation and training losses follow the same pattern and the error converges
after 100 k steps to an average value of 0.04 mm. Just like the classification loss, the same evolution can
be observed for other models. The localization loss for training and validation is very small, thus it is
not taken into account when evaluating the ability to generalize of the model.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18

Figure 5. Localization loss training vs. validation MobileNetV2 pre‐trained on OID.

In Figure 6, the learning rates during training are presented. For two of the models, the training

starts with a value of 0.004 and decreases until reaching 0.00001 (1 × 10−5), switching from an

exponential to a step decrease. The other two models start from a lower value of 0.0004 until

reaching 1 × 10−5.

Figure 6. Learning rates of the convolutional neural network (CNN) models.

In Figure 7, the classification losses of the architectures used in this research are presented. The

lowest classification loss comes from the Faster R‐CNN network, while the highest is from the SSD

Inception V2 model.

Figure 7. Classification losses for the object detectors.

Figure 5. Localization loss training vs. validation MobileNetV2 pre-trained on OID.

Appl. Sci. 2020, 10, 7301 11 of 18

In Figure 6, the learning rates during training are presented. For two of the models, the training
starts with a value of 0.004 and decreases until reaching 0.00001 (1 × 10−5), switching from an
exponential to a step decrease. The other two models start from a lower value of 0.0004 until reaching
1 × 10−5.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18

Figure 5. Localization loss training vs. validation MobileNetV2 pre‐trained on OID.

In Figure 6, the learning rates during training are presented. For two of the models, the training

starts with a value of 0.004 and decreases until reaching 0.00001 (1 × 10−5), switching from an

exponential to a step decrease. The other two models start from a lower value of 0.0004 until

reaching 1 × 10−5.

Figure 6. Learning rates of the convolutional neural network (CNN) models.

In Figure 7, the classification losses of the architectures used in this research are presented. The

lowest classification loss comes from the Faster R‐CNN network, while the highest is from the SSD

Inception V2 model.

Figure 7. Classification losses for the object detectors.

Figure 6. Learning rates of the convolutional neural network (CNN) models.

In Figure 7, the classification losses of the architectures used in this research are presented.
The lowest classification loss comes from the Faster R-CNN network, while the highest is from the SSD
Inception V2 model.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18

Figure 5. Localization loss training vs. validation MobileNetV2 pre‐trained on OID.

In Figure 6, the learning rates during training are presented. For two of the models, the training

starts with a value of 0.004 and decreases until reaching 0.00001 (1 × 10−5), switching from an

exponential to a step decrease. The other two models start from a lower value of 0.0004 until

reaching 1 × 10−5.

Figure 6. Learning rates of the convolutional neural network (CNN) models.

In Figure 7, the classification losses of the architectures used in this research are presented. The

lowest classification loss comes from the Faster R‐CNN network, while the highest is from the SSD

Inception V2 model.

Figure 7. Classification losses for the object detectors.

Figure 7. Classification losses for the object detectors.

3.3. Confusion Matrix

In order to follow the distribution of the true positive, false positive, true negative, and false
negative detections per each class, the confusion matrix has been generated. Although the evaluation
of the confusion matrix is a little bit different from the COCO and PASCAL VOC metrics, the results
are useful to determine the confusion between classes. The confusion matrix for SSD-MobileNetV2
and Faster R-CNN–Inception-ResNet, respectively, are presented in Tables 1 and 2. The network with
the best performances, according to the confusion matrix, is the SSD-MobileNetV2, followed by Faster
R-CNN–Inception-ResNet. The classes with the highest average score for our models were “glass” and
“paper”. There are two important aspects that allowed such a good prediction: low variance and large
dataset, with the first being the most important. The training dataset plays an important role when
learning high-level attributes, but the variance was essential when it came to emphasizing key features.
This can be observed as the “glass” class is not the biggest in the training dataset, being outclassed
by “paper”. The “paper” class did not manage to generalize as well as “glass” for some networks,

Appl. Sci. 2020, 10, 7301 12 of 18

although it has the largest share of the dataset. Another thing to notice from the confusion matrices
is that metal and plastic are most mistaken with glass. In addition, plastic is confused with metal,
while cardboard is mistaken for paper by an average of 8%. This is not uncommon for object detectors
because these classes share many similar characteristics (shape, dimensions, color, etc.)

Table 1. SSD-MobileNetV2 Confusion matrix.

Glass Metal Plastic Paper Cardboard No Detection

Glass 96.23 1.89 0.00 1.89 0.00 0.00

Metal 4.71 90.59 1.18 1.18 0.00 2.35

Plastic 3.03 3.03 92.93 1.01 0.00 0.00

Paper 0.00 1.61 0.00 96.77 0.00 1.61

Cardboard 1.25 1.25 0.00 6.25 87.50 3.75

Table 2. Faster R-CNN–Inception-ResNet Confusion matrix.

Glass Metal Plastic Paper Cardboard No Detection

Glass 97.17 2.83 0.00 0.00 0.00 0.00

Metal 8.24 89.41 2.35 0.00 0.00 0.00

Plastic 6.06 2.02 91.92 0.00 0.00 0.00

Paper 0.00 1.61 1.61 93.55 0.00 3.23

Cardboard 0.00 3.75 0.00 10.00 83.75 2.50

4. Discussion

From Table 3, it results that the model which achieved the highest accuracy and recall using the
PASCAL VOC metrics was SSD+MobileNetV2 pre-trained on OID version 4. There is room for further
improvement for this network by using different optimizers like Adam, Adadelta, or Nadam. It is
interesting to notice that all the trained object detectors had a precision and F1 score over 95% with our
hyper-parameter setting.

Table 3. Evaluation of fine-tuning object detectors on Pascal VOC metrics.

CNN Model Precision [%] Recall [%] Steps F1 Score [%]

SSD + MobileNetV2 + COCO 96.09 95.76 500 k 95.92
SSD + Inception V2 + COCO 96.69 94.79 500 k 95.73

SSD + MobileNetV2 + OID V4 97.63 94.39 300 k 95.98
Faster R-CNN + Inception V4 + OID V4 95.76 94.41 300 k 95.08

For SSD MobileNetV2 pre-trained on OID V4, the mean average precision for each class is
evaluated. The highest accuracy is achieved for the glass and metal objects (Table 4).

Table 4. Best model evaluation for our TrashNet classes.

Class Accuracy [%]

Cardboard 97.5
Glass 98.33
Metal 98.28
Paper 98.18
Plastic 95.95

Appl. Sci. 2020, 10, 7301 13 of 18

Furthermore, our best model performances are compared with the results obtained by other
CNNs trained on the TrashNet dataset. The comparative evaluation from Table 5 takes into account
the accuracy/mAP, optimizers, and whether the models share an object detector architecture or if the
networks have been fine-tuned. In terms of object detector, our best model has the highest precision,
recall, and F1 score by far and obtained better results than other CNN architectures. Although the
object detector architecture is more complex than an Image Classification CNN and the accuracy
is measured in a different manner, all the models used in this research obtained better results than
these classifiers.

Table 5. Evaluation with other trained or fine-tuned model on the TrashNet dataset.

CNN Model Accuracy/mAP [%] Object Detector Fine-Tuning Optimizer

SSD (MobileNetV2-OID V4) 97.63 Yes OID V4 RMSProp
MobileNetV2 88 No ImageNet

Faster R-CNN (Inception V2) [7] 81.6 Yes COCO
VGG-16 [6] 88.42 No ImageNet

ResNet50 [9] 87 No No
RecycleNetV4 [8] 81 No No Adam
DenseNet121 [8] 95 No ImageNet Adam, SGD

Inception-ResNetV2 [8] 87 No ImageNet Adam, SGD

It is worth mentioning that there are differences between the evaluation of Object Detectors (OD)
and image classifiers (IC). In our research, we considered that the precision or the F1-Score of OD are
tools of measuring the accuracy of the model, although the accuracy parameter of the IC is calculated
slightly different. This is why in Table 5 there is a value named “Accuracy/mAP”. Accuracy is used to
evaluate the IC and mAP for OD, but both provide insights on the performances of the models. In the
same table, in column four, it is mentioned which network is the Object Detector. The reason behind
choosing to measure two different types of CNN is because there is only one state-of-the-art paper that
used OD for waste detection, with performances well below our results. Moreover, the IC models
that have been trained on TrashNet only present the accuracy and loss, not mentioning the precision,
recall, or F1-score. Therefore, taking into account that all the models in Table 5, whether they are OD or
IC, are trained against the TrashNet dataset, the results provide useful insights on the performances
obtained by our network.

Furthermore, in order to evaluate the generalization of our models outside the TrashNet dataset
with real-time images, at the inference time, a custom small set of images has been created, consisting of
25 images of plastic and glass bottles which are completely different from the ones the model has
been trained with and tested/validated against. The same evaluation has been performed in our first
paper regarding municipal waste sorting using CNN [6]. Due to the fact that the detection of bottles
in municipal waste is a process that involves identification of objects that have different degrees of
deformation, shapes, position, and transparency, this small set of images has been taken into account for
testing at the inference time. While bottles are the most common object in municipal waste, our small
set consists of plastic and glass bottles.

Figure 8 presents the main case study detections successfully performed. The plastic and glass
bottles in the image are placed in different positions (including bottom up), are partially obstructed,
deformed, with different shapes, etc.

Appl. Sci. 2020, 10, 7301 14 of 18Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18

Figure 8. Custom dataset predictions for one object in image.

The evaluation at inference time has been made on our custom dataset, switching the resolution

from 300 × 300 to 500 × 500. The 500 × 500 resolution is needed in order to detect small size bottles

and cans. The average confidence reached 75.54%, but an object (one plastic bottle) has been

misclassified as a can, although the localization was accurate (Table 6). Another thing to note is that

the model with the highest average confidence, MobileNetV2 + SSD + COCO + VOC, does not

distinguish between recycling waste and only can detect bottles, whether plastic or glass.

Table 6. Evaluation on our waste test dataset at inference time.

Model. Average Confidence Custom Dataset

MobileNetV2 + SSD + OIDV4 + TrashNet 72.8

Faster R‐CNN 39.83

MobileNet 27.06

MobileNetV2 + SSD + COCO + VOC 78.13

MobileNetV2 + SSD + COCO 42.31

Inception V2 + SSD + COCO 59.1

This paper focuses on the detection of one waste per each image, but object identification for

different degrees of clustering has also been tested, obtaining promising results as well. Although

the clutter scenario was not the main focus in this research, the preliminary results will be used for

further enhancements of CNN models. For this scenario, the main types of objects encountered

during waste sorting have been considered, that is: plastic, glass, and metal. In Figure 9, waste

identification for a clutter scenario is presented, considering detections with a confidence score

higher than the 50% threshold defined at the inference time. As expected, there are objects that the

model has not been able to localize and classify, or the confidence score was lower than 50%. This is

quite common for CNN models trained with one object in an image (e.g., TrashNet), instead of

multiple objects. The model is biased towards recognizing fewer objects or detecting all the objects in

the images as part of the same class and bounding box. Another drawback in clutter scenarios for

CNN models trained on the TrashNet dataset is that there is a high aspect ratio between object size

and image size, with objects filling a large portion of the image. In order to deal with these outcomes

in the future, the TrashNet dataset will be further augmented with images that contain more objects

with different sizes of the same class.

Figure 8. Custom dataset predictions for one object in image.

The evaluation at inference time has been made on our custom dataset, switching the resolution
from 300 × 300 to 500 × 500. The 500 × 500 resolution is needed in order to detect small size bottles and
cans. The average confidence reached 75.54%, but an object (one plastic bottle) has been misclassified
as a can, although the localization was accurate (Table 6). Another thing to note is that the model with
the highest average confidence, MobileNetV2 + SSD + COCO + VOC, does not distinguish between
recycling waste and only can detect bottles, whether plastic or glass.

Table 6. Evaluation on our waste test dataset at inference time.

Model Average Confidence Custom Dataset

MobileNetV2 + SSD + OIDV4 + TrashNet 72.8
Faster R-CNN 39.83

MobileNet 27.06
MobileNetV2 + SSD + COCO + VOC 78.13

MobileNetV2 + SSD + COCO 42.31
Inception V2 + SSD + COCO 59.1

This paper focuses on the detection of one waste per each image, but object identification for
different degrees of clustering has also been tested, obtaining promising results as well. Although the
clutter scenario was not the main focus in this research, the preliminary results will be used for further
enhancements of CNN models. For this scenario, the main types of objects encountered during waste
sorting have been considered, that is: plastic, glass, and metal. In Figure 9, waste identification for
a clutter scenario is presented, considering detections with a confidence score higher than the 50%
threshold defined at the inference time. As expected, there are objects that the model has not been able
to localize and classify, or the confidence score was lower than 50%. This is quite common for CNN
models trained with one object in an image (e.g., TrashNet), instead of multiple objects. The model
is biased towards recognizing fewer objects or detecting all the objects in the images as part of the
same class and bounding box. Another drawback in clutter scenarios for CNN models trained on the
TrashNet dataset is that there is a high aspect ratio between object size and image size, with objects
filling a large portion of the image. In order to deal with these outcomes in the future, the TrashNet
dataset will be further augmented with images that contain more objects with different sizes of the
same class.

Appl. Sci. 2020, 10, 7301 15 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 18

Figure 9. Inference detections for clutter scenario.

The small size of the TrashNet dataset affects the performances of the CNN models. In order to

overcome this drawback, data augmentation, transfer learning, and fine‐tuning have been used

among other techniques.

The model with the best results has a high confidence score when detecting medium and large

waste at the inference time but the accuracy drops when handling small objects. When using Faster

R‐CNN, there is a slight improvement in detecting small objects, but the speed cost is three times

higher for a real‐time application. To solve this issue, the mobile robot system takes pictures at

different distances from the ground. We have noticed that by reducing the distance between objects

and camera with 5–10 cm, small waste can be detected.

Another important issue to note is that it is (more) difficult to detect waste that is placed in

uncommon positions (including bottom up), or is partially obstructed, deformed, with different

shapes, translucent, etc. The confidence score at the inference time in this scenario is much lower

than usual detections even lower than the 0.5 threshold. For example, the evaluation outside

TrashNet, on a small dataset of uncommon waste images, led to an average confidence of only

75.54%.

The detection at the inference time has been reduced from 0.5 to 9 FPS for SSD architecture and

from 0.2 to 4FPS for Faster R‐CNN on a Raspberry 3+ board. The improvement of the detection time

has been obtained using an extra USB neural network processor from Intel with asynchronous

threading. At inference time, the asynchronous API running on the Neural Network USB can

improve the overall frame rate of the application. While the accelerator is busy with the inference,

the application can continue doing things on the host rather than wait for the inference to complete.

5. Conclusions and Future Work

This paper presents an extensive and in‐depth study of convolutional neural network object

detectors applied to municipal waste identification. The main objective was to increase the

capabilities for some of these pre‐trained models. The performance of the CNN object detector is

determined, among others, by data augmentation, CNN model, number of images in

training/testing dataset, loss optimization, hyper‐parameters adjusting, evaluation metrics, transfer

learning, fine‐tuning, etc. Thus, in order to develop an accurate and real‐time architecture, a complex

set of actions has been carried out in this research.

The model which achieved the highest accuracy and recall was SSD + MobileNetV2 pre‐trained

on OID version 4. The performances of this network are compared with the results obtained by other

CNNs trained on the TrashNet dataset. In terms of object detectors, our fine‐tuned model obtained

the highest precision, recall, and F1 score and obtained better results than other CNN Image

Classifiers. Although the object detector architecture is more complex than a CNN for classification

and the accuracy is measured in a different manner, all the models used in this research obtained

better results. There is room for further improvement for this network by using different optimizers

like Adam, Adadelta, or Nadam. It is interesting to notice that all the trained object detectors have

shown accuracies over 90%, when using the proposed hyper‐parameter setting.

Figure 9. Inference detections for clutter scenario.

The small size of the TrashNet dataset affects the performances of the CNN models. In order to
overcome this drawback, data augmentation, transfer learning, and fine-tuning have been used among
other techniques.

The model with the best results has a high confidence score when detecting medium and large
waste at the inference time but the accuracy drops when handling small objects. When using Faster
R-CNN, there is a slight improvement in detecting small objects, but the speed cost is three times
higher for a real-time application. To solve this issue, the mobile robot system takes pictures at different
distances from the ground. We have noticed that by reducing the distance between objects and camera
with 5–10 cm, small waste can be detected.

Another important issue to note is that it is (more) difficult to detect waste that is placed in
uncommon positions (including bottom up), or is partially obstructed, deformed, with different shapes,
translucent, etc. The confidence score at the inference time in this scenario is much lower than usual
detections even lower than the 0.5 threshold. For example, the evaluation outside TrashNet, on a small
dataset of uncommon waste images, led to an average confidence of only 75.54%.

The detection at the inference time has been reduced from 0.5 to 9 FPS for SSD architecture and
from 0.2 to 4FPS for Faster R-CNN on a Raspberry 3+ board. The improvement of the detection time has
been obtained using an extra USB neural network processor from Intel with asynchronous threading.
At inference time, the asynchronous API running on the Neural Network USB can improve the overall
frame rate of the application. While the accelerator is busy with the inference, the application can
continue doing things on the host rather than wait for the inference to complete.

5. Conclusions and Future Work

This paper presents an extensive and in-depth study of convolutional neural network object
detectors applied to municipal waste identification. The main objective was to increase the capabilities
for some of these pre-trained models. The performance of the CNN object detector is determined,
among others, by data augmentation, CNN model, number of images in training/testing dataset,
loss optimization, hyper-parameters adjusting, evaluation metrics, transfer learning, fine-tuning, etc.
Thus, in order to develop an accurate and real-time architecture, a complex set of actions has been
carried out in this research.

The model which achieved the highest accuracy and recall was SSD + MobileNetV2 pre-trained
on OID version 4. The performances of this network are compared with the results obtained by
other CNNs trained on the TrashNet dataset. In terms of object detectors, our fine-tuned model
obtained the highest precision, recall, and F1 score and obtained better results than other CNN Image
Classifiers. Although the object detector architecture is more complex than a CNN for classification
and the accuracy is measured in a different manner, all the models used in this research obtained better
results. There is room for further improvement for this network by using different optimizers like
Adam, Adadelta, or Nadam. It is interesting to notice that all the trained object detectors have shown
accuracies over 90%, when using the proposed hyper-parameter setting.

Appl. Sci. 2020, 10, 7301 16 of 18

In addition to the current work on the TrashNet dataset, annotations for each class are added in
order to train the SSD and Faster R-CNN convolutional neural networks.

Most of the CNNs used, for waste sorting output, only the presence and classification of the trash
in the picture. Due to the fact that municipal waste usually contains different waste types, an object
detector has been used here in order to add localization to our detections.

In order to evaluate the generalization of our models at inference time, 25 images have been taken
in laboratory conditions and the average confidence is 10% higher than the results obtained by other
models. The paper focuses on the detection of one waste object per each image, but object identification
for different degrees of clustering has also been tested, obtaining promising results as well.

Another important thing to note is that detection at the inference time has been reduced to 9 FPS
for SSD architecture and to 4FPS for Faster R-CNN on a Raspberry 3 + board. The improvement of the
detection time has been obtained using asynchronous threading and one additional neural network
processor from Intel.

The model obtained during this research will be further developed so that to determine the
municipal waste size and camera–object distance. The practical interest and goal is to allow the mobile
robotic system to adjust the gripper stroke and position according to the detected objects. Finding the
most appropriate location of the camera on the mobile robotic system will also be a further issue.

Author Contributions: Conceptualization: D.O.M., D.N.D., A.-M.T.; methodology: D.O.M., D.N.D.; validation:
D.O.M., D.N.D., A.-M.T.; formal analysis: D.O.M., D.N.D., A.-M.T.; investigation: D.O.M., D.N.D., A.-M.T.;
resources: D.N.D.; data curation: A.-M.T.; writing—original draft preparation: D.O.M., D.N.D.; writing—review
and editing: D.N.D., A.-M.T.; visualization: D.O.M., D.N.D.; supervision: D.N.D.; project administration: D.O.M.,
D.N.D.; funding acquisition: D.N.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant of the Romanian Ministry of Research and Innovation,
CCCDI—EFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0086/contract no. 22 PCCDI /2018, within PNCDI III.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Waste Statistics, Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?
title=Waste_statistics (accessed on 4 July 2020).

2. The European Parliament; The Council of the European Union. Directive 2008/98/EC of the European
Parliament and of the Council on Waste and Repealing Certain Directives. Off. J. Eur. Union 2008, 312, 30–47.

3. Mărgăritescu, M.; Ancut,a, P.N.; Canale, E.V.; Stanciu, D.I.; Dumitriu, D.; Bris, an, C.M. Control of an
Autonomous Mobile Waste Collection Robot. In Lecture Notes in Networks and Systems, Proceedings of the
International Conference of Mechatronics and Cyber-MixMechatronics—ICOMECYME 2019, Bucharest, Romania,
5–6 September 2019; Gheorghe, G.I., Ed.; Springer: Cham, Switzerland, 2020; Volume 85, pp. 51–63.

4. Hossain, S.; Debnath, B.; Anika, A.; Hossain, J.A.; Biswas, S.; Shahnaz, C. Autonomous Trash Collector Based
on Object Detection Using Deep Neural Network. In Proceedings of the TENCON 2019—2019 IEEE Region
10 Conference (TENCON), Kochi, India, 17–20 October 2019; pp. 1406–1410.

5. Wang, Z.; Li, H.; Zhang, X. Construction waste recycling robot for nails and screws: Computer vision
technology and neural network approach. Autom. Constr. 2019, 97, 220–228. [CrossRef]

6. Melinte, D.O.; Dumitriu, D.; Mărgăritescu, M.; Ancuţa, P.N. Deep learning computer vision for sorting
and size determination of municipal waste. In Lecture Notes in Networks and Systems, Proceedings of the
International Conference of Mechatronics and Cyber-MixMechatronics—ICOMECYME 2019, Bucharest, Romania,
5–6 September 2019; Gheorghe, G.I., Ed.; Springer: Cham, Switzerland, 2020; Volume 85, pp. 142–152.

7. Yang, M.; Thung, G. Classification of Trash for Recyclability Status; CS229 Project Report; Stanford University:
Stanford, CA, USA, 2016.

8. Awe, O.; Mengistu, R.; Sreedhar, V. Smart trash net: Waste localization and classification. arXiv 2017, preprint.
9. Kennedy, T. OscarNet: Using Transfer Learning to Classify Disposable Waste; CS230 Report: Deep Learning;

Stanford University: Stanford, CA, USA, 2018.
10. Kulkarni, H.N.; Raman, N.K.S. Waste Object Detection and Classification; CS230 Report: Deep Learning;

Stanford University: Stanford, CA, USA, 2018.

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics
http://dx.doi.org/10.1016/j.autcon.2018.11.009

Appl. Sci. 2020, 10, 7301 17 of 18

11. Bircanoglu, C.; Atay, M.; Beser, F.; Genc, O.; Kizrak, M.A. RecycleNet: Intelligent Waste Sorting Using Deep
Neural Networks. In Proceedings of the 2018 Innovations in Intelligent Systems and Applications (INISTA),
Thessaloniki, Greece, 3–5 July 2018.

12. Costa, B.S.; Bernardes, A.C.; Pereira, J.V.; Zampa, V.H.; Pereira, V.A.; Matos, G.F.; Soares, E.A.; Soares, C.L.;
Silva, A.F. Artificial intelligence in automated sorting in trash recycling. In Proceedings of the Anais do
XV Encontro Nacional de Inteligência Artificial e Computacional, São Paulo, Brazil, 22–25 October 2018;
pp. 198–205.

13. Adedeji, O.; Wang, Z. Intelligent Waste Classification System Using Deep Learning Convolutional Neural
Network. Procedia Manuf. 2019, 35, 607–612. [CrossRef]

14. Sousa, J.; Rebelo, A.; Cardoso, J.S. Automation of Waste Sorting with Deep Learning. In Proceedings of the
2019 XV Workshop de Visão Computacional (WVC), Sao Paulo, Brazil, 9–11 September 2019; pp. 43–48.

15. Xu, X.; Qi, X.; Diao, X. Reach on Waste Classification and Identification by Transfer Learning and Lightweight
Neural Network. Available online: https://www.preprints.org/manuscript/202002.0327/v1 (accessed on
23 February 2020).

16. Lee, S.-H.; Yeh, C.-H.; Hou, T.-W.; Yang, C.-S. A Lightweight Neural Network Based on AlexNet-SSD
Model for Garbage Detection. In Proceedings of the 2019 3rd High Performance Computing and Cluster
Technologies Conference on HPCCT 2019, Guangzhou, China, 22–24 June 2019; pp. 274–278.

17. Chu, Y.; Huang, C.; Xie, X.; Tan, B.; Kamal, S.; Xiong, X. Multilayer Hybrid Deep-Learning Method for Waste
Classification and Recycling. Comput. Intell. Neurosci. 2018, 2018. [CrossRef] [PubMed]

18. Mazzeo, P.L.; Argentieri, A.; De Luca, F.; Spagnolo, P.; Distante, C.; Leo, M.; Carcagni, P. Convolutional neural
networks for recognition and segmentation of aluminum profiles. Multimodal Sens. Technol. Appl. 2019.
[CrossRef]

19. Yan, H.; Wang, H.; Vladareanu, L.; Lin, M.; Vlădăreanu, V.; Li, Y. Detection of Participation and Training Task
Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots. Sensors 2019, 19, 4681. [CrossRef]
[PubMed]

20. Iliescu, M.; Vladareanu, L.; Frant, C.; Dugăeşescu, I.; Pandelea, M.; Marin, D. Research on Upper Limb
Biomechanical System. Period. Eng. Nat. Sci. Pen 2019, 7, 267–274. [CrossRef]

21. Gal, I.-A.; Bucur, D.; Vlădăreanu, L. DSmT Decision-Making Algorithms for Finding Grasping Configurations
of Robot Dexterous Hands. Symmetry 2018, 10, 198. [CrossRef]

22. Vladareanu, V.; Schiopu, P.; Vladareanu, L. Theory and application of extension hybrid force-position control
in robotics. UPB Sci. Bull. Ser. A 2014, 76, 43–54.

23. Vladareanu, L.; Tont, G.; Vladareanu, V.; Smarandache, F.; Capitanu, L. The navigation mobile robot systems
using Bayesian approach through the virtual projection method. In Proceedings of the 2012 International
Conference on Advanced Mechatronic Systems, Tokyo, Japan, 18–22 September 2012; pp. 498–503.

24. Thung, G. Trashnet. GitHub Repository. Available online: https://github.com/garythung/trashnet (accessed on
4 March 2020).

25. Bridle, J.S. Training stochastic model recognition algorithms as networks can lead to maximum mutual
information estimation of parameters. In Proceedings of the Advances in Neural Information Processing
Systems, Denver, CO, USA, 26–29 November 1990; pp. 211–217.

26. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector.
In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37.

27. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018.

28. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

29. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167.

30. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing Systems; Neural Information Processing Systems
Foundation Inc.: San Diego, CA, USA, 2015; pp. 91–99.

http://dx.doi.org/10.1016/j.promfg.2019.05.086
https://www.preprints.org/manuscript/202002.0327/v1
http://dx.doi.org/10.1155/2018/5060857
http://www.ncbi.nlm.nih.gov/pubmed/30515197
http://dx.doi.org/10.1117/12.2525687
http://dx.doi.org/10.3390/s19214681
http://www.ncbi.nlm.nih.gov/pubmed/31661870
http://dx.doi.org/10.21533/pen.v7i1.375
http://dx.doi.org/10.3390/sym10060198
https://github.com/garythung/trashnet

Appl. Sci. 2020, 10, 7301 18 of 18

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
26 June–1 July 2016; pp. 770–778.

32. Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.;
Kolesnikov, A.; et al. The Open Images Dataset V4. Int. J. Comput. Vis. 2020, 128, 1956–1981. [CrossRef]

33. Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017;
pp. 464–472.

34. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
35. Tieleman, T.; Hinton, G. Divide the gradient by a running average of its recent magnitude. Coursera Neural

Netw. Mach. Learn. 2012, 4, 26–31.
36. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization.

J. Mach. Learn. Res. 2011, 12, 2121–2159.
37. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
38. Dozat, T. Incorporating Nesterov Momentum into Adam. In Proceedings of the ICLR 2016 Workshop,

San Juan, Puerto Rico, 2–4 May 2016; Paper 107. Available online: https://openreview.net/pdf?id=

OM0jvwB8jIp57ZJjtNEZ (accessed on 7 June 2020).
39. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes

(VOC) Challenge. Int. J. Comput. Vis. 2009, 88, 303–338. [CrossRef]
40. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO:

Common Objects in Context. In Lecture Notes in Computer Science; Springer Science and Business Media LLC:
New York, NY, USA, 2014; pp. 740–755.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11263-020-01316-z
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
http://dx.doi.org/10.1007/s11263-009-0275-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods and Dataset
	Dataset
	Dataset Augmentation
	Methods
	SSD Networks
	Regional Proposal Networks Using Faster R-CNN Inception-ResNet
	Determining the Appropriate Learning Rate for Training our CNN Model

	Results
	Hyper-Parameters Tuning
	Object Detector Evaluation
	Confusion Matrix

	Discussion
	Conclusions and Future Work
	References

