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Abstract: Low-Energy Adaptive Clustering Hierarchy (LEACH) is a typical routing protocol that
effectively reduces transmission energy consumption by forming a hierarchical structure between
nodes. LEACH on Wireless Sensor Network (WSN) has been widely studied in the recent decade as
one key technique for the Internet of Things (IoT). The main aims of the autonomous things, and one
of advanced of IoT, is that it creates a flexible environment that enables movement and communication
between objects anytime, anywhere, by saving computing power and utilizing efficient wireless
communication capability. However, the existing LEACH method is only based on the model with a
static topology, but a case for a disposable sensor is included in an autonomous thing’s environment.
With the increase of interest in disposable sensors which constantly change their locations during
the operation, dynamic topology changes should be considered in LEACH. This study suggests
the probing model for randomly moving nodes, implementing a change in the position of a node
depending on the environment, such as strong winds. In addition, as a method to quickly adapt to
the change in node location and construct a new topology, we propose Q-learning LEACH based on
Q-table reinforcement learning and Fuzzy-LEACH based on Fuzzifier method. Then, we compared
the results of the dynamic and static topology model with existing LEACH on the aspects of energy
loss, number of alive nodes, and throughput. By comparison, all types of LEACH showed sensitivity
results on the dynamic location of each node, while Q-LEACH shows best performance of all.

Keywords: wireless sensor networks; disposable IoT; reinforcement learning; Q-learning; artificial
intelligence; LEACH; fuzzy clustering

1. Introduction

The most potent and influential technology of 21st century is Wireless Sensor Network (WSN).
This is a key technology in the ubiquitous network, and is becoming more important as sensors can
connect everything to the Internet and process important information. It also collects information about
the surrounding environment (temperature, humidity, etc.) with a specific purpose and transmits it
to the base station through various processes. With the advancements of WSN disposable sensors
shows enhanced performance on the fields where the user cannot access or include large area, such as
forest or deep sea [1]. In addition, the size of the sensor node should be small as it includes batteries,
making it impossible to charge or replace, and often forming a wireless network by deploying a large
number of sensors. And because it uses a battery, it cannot be charged or replaced. In addition, the size
of the sensor node must be small as a large number of sensors are placed to form a wireless network.
In addition, the price should be low, so there is a limit to the ability to process data and the amount of
power that can be supplied to the nodes [2].
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In general, in a wireless network environment, disposable sensor nodes that make up the network
must perform routing and sensing roles together, so each sensor node always has an energy burden [3].
Due to these characteristics of disposable sensor network, the efficient use of limited power is of
paramount importance in WSN design. Thus, various studies are currently being conducted to
maximize energy consumption efficiency and to increase the overall life span.

Since routing protocols in WSN are very important to efficiently transmit detected data to the Base
Station (BS), clustering-based routing is preferred to obtain the advantage of efficient communication.
As a common low-energy cluster-based protocol, Low-Energy Adaptive Clustering Hierarchy (LEACH)
was proposed [4]. This is a technique that utilizes random rotation of BS to distribute network sensors
and energy loads evenly. Only Cluster Heads (CH) interact with BS, which saves energy and increases
network lifetime [5]. Thus, the idea of clustering-based routing is aimed at saving energy on sensor
nodes by using CH’s information aggregation mechanism to reduce the amount of data transmission
and energy. Thus, in the case of LEACH, the advantage of ensuring even energy use is achieved by
using the probability function, but all nodes should take part in the CH election process every round,
and, if a few CHs are elected, the number of nodes to be managed increases, resulting in high network
traffic and increased energy consumption. Therefore, various LEACHs were developed to compensate
for these problems in the preceding studies.

In recent years, extensive research has been conducted on WSN’s various systems of artificial
intelligence approaches, called Reinforcement Learning (RL), to improve network performance,
and there is much interest in applying them [6]. A Q-learning-based cooperative sensing plan is proposed
to enhance the performance of spectrum in a wireless network environment [7]. In Autonomous Things
environment, the interests on disposable sensors with characteristics that can be easily sprayed and
moved is emerging. Therefore, efficient energy management is required considering these topology
changes, in real life.

As limits exist for applying multiple LEACH algorithm with fixed topology state in previous
studies, the development of a new dynamic topology model is required. In addition, as opposed to
traditional LEACH and D-LEACH, which performs LEACH in its jurisdiction by dividing the zones,
D-LEACH is efficient in the static topology simulation; however, in dynamic topology simulation,
with higher uncertainty, the advantage of D-LEACH is not expected. The F-LEACH we developed
for testing to secure dynamic uncertainty consists of two processes: first, it performs flexible
clustering, centering nodes toward the cluster center by upper/lower membership values which
compensate uncertainty and sensitivity, while producing optimized fuzzifier constant by histogram.
Then, LEACH method is performed on the clustered node location. Q-LEACH the LEACH method
using Q-learning (reinforced learning) rewards the success of the agent progress from multi nodes
to the cluster head, and it derives this success in the form of a performance probability. From the
results of energy loss, number of alive nodes, and throughput between LEACH, D-LEACH, F-LEACH,
and Q-LEACH, finally, we invented the topology model, which updates the changes of sensor location
in a dynamic or static autonomous things environment and definitize Q-LEACH, which increases the
efficiency of sensor energy consumption, extending sensor life.

2. Materials and Methods

2.1. Wireless Sensor Network (WSN)

In simple terms of a wireless sensor network, it means that sensors operating wirelessly form a
network to transmit data. As shown in Figure 1, when an event occurs in a sensor node in each cluster,
event status information and location information are transmitted to the head of the cluster. And then
the head of the cluster is configured to immediately send all information to BS or Sink.
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The latest WSN technology enables two-way communication to control sensor activity. The 
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that deal with monitoring [9–11]. This is not only for medical use, but WSN is the same in civil areas, 
such as health monitoring and smart agriculture, as well as enemy tracking and military areas. 
Remote sensing execution is greatly simplified to be useful in inexpensive sensors and essential 
software packages. Therefore, the user can monitor and control the basic environment from a remote 
location, and it will be used in various ways besides safety accident and prevention training [12,13]. 

2.2. Disposable IoT Sensors 

Currently, various technologies have been fused and evolved into IoT technologies. Existing IoT 
sensors have limitations in price, size, and weight, so it is difficult to precisely monitor a wide range 
of physical spaces. To solve these problems, technology of disposable IoT that has reduced size, price, 
and weight and has been constantly studied and developed. In the late 1990s, The University of 
California developed a very small sensor with a size of 1–2 mm called “Smart Dust” [14]. It has a 
technology that can detect and manage surrounding physical information (temperature, humidity, 
acceleration, etc.) through a wireless network through disposable IoT sensors (micro sensors). 
Therefore, it is possible to accurately sense the entire space by using a low-cost micro sensor 
compared to the existing sensor. In smart dust system using disposable sensors, LEACH is one of the 
key technologies for effective data collecting. In addition, disposable sensors broadcast collected data 
without polling process in order to reduce energy consumption and the size of send/receive payloads 
are relatively small. Disposable IoT sensor can be applied to a wide range of fields, such as weather, 
national defense, safety of risks, and detection of forest fire, as it can judge parts that are difficult for 
user to access [15]. 

With the advancements of wireless sensor networks, it is anticipated that real time forest fire 
detection systems can be developed for high precision and accuracy using wireless sensors data. 
Thousands of disposable sensors can be densely scattered over a disaster-prone area to form a 
wireless sensor network in a forest [16]. 

For monitoring the environment, disposable sensors are distributed in large areas by aerial 
dispersion using airplanes or dispersion in water stream. Distributed disposable sensors can be 
dislocated from original point by environmental condition, such as winds or movement of animals, 
since its size is only a maximum of 1 cm2, as shown Figure 2. 
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The latest WSN technology enables two-way communication to control sensor activity. The types of
WSN can be roughly divided into homogenous [6,7] and heterogeneous network [8,9]. Previous studies
using wireless sensor networks have limited energy because sensor nodes operate with batteries.
Therefore, for efficient use of the battery, a clustering technique was developed that considers network
overlapping prevention [8]. People who use the technique could cite several tasks that deal with
monitoring [9–11]. This is not only for medical use, but WSN is the same in civil areas, such as health
monitoring and smart agriculture, as well as enemy tracking and military areas. Remote sensing
execution is greatly simplified to be useful in inexpensive sensors and essential software packages.
Therefore, the user can monitor and control the basic environment from a remote location, and it will
be used in various ways besides safety accident and prevention training [12,13].

2.2. Disposable IoT Sensors

Currently, various technologies have been fused and evolved into IoT technologies. Existing IoT
sensors have limitations in price, size, and weight, so it is difficult to precisely monitor a wide range
of physical spaces. To solve these problems, technology of disposable IoT that has reduced size,
price, and weight and has been constantly studied and developed. In the late 1990s, The University
of California developed a very small sensor with a size of 1–2 mm called “Smart Dust” [14]. It has a
technology that can detect and manage surrounding physical information (temperature, humidity,
acceleration, etc.) through a wireless network through disposable IoT sensors (micro sensors).
Therefore, it is possible to accurately sense the entire space by using a low-cost micro sensor compared
to the existing sensor. In smart dust system using disposable sensors, LEACH is one of the key
technologies for effective data collecting. In addition, disposable sensors broadcast collected data
without polling process in order to reduce energy consumption and the size of send/receive payloads
are relatively small. Disposable IoT sensor can be applied to a wide range of fields, such as weather,
national defense, safety of risks, and detection of forest fire, as it can judge parts that are difficult for
user to access [15].

With the advancements of wireless sensor networks, it is anticipated that real time forest fire
detection systems can be developed for high precision and accuracy using wireless sensors data.
Thousands of disposable sensors can be densely scattered over a disaster-prone area to form a wireless
sensor network in a forest [16].

For monitoring the environment, disposable sensors are distributed in large areas by aerial
dispersion using airplanes or dispersion in water stream. Distributed disposable sensors can be
dislocated from original point by environmental condition, such as winds or movement of animals,
since its size is only a maximum of 1 cm2, as shown Figure 2.
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2.3. LEACH (Low-Energy Adaptive Clustering Hierarchy)

The structure of a network can be classified according to node uniformity, in Flat Networks
Routing Protocols (FNRP) and Hierarchical Networks Routing Protocol (HNRP) [17].

LEACH is one of HNRP in sensor networks proposed by Wendi Heizehan [18]. This is a typical
routing protocol that effectively reduces transmission energy consumption by forming a hierarchical
structure between nodes. As shown in Figure 3, LEACH is a method in which the cluster head collects
and processes data from the member nodes of the cluster and delivers it directly to the BS. If this is
used, the cluster head is selected by the ratio of all sensor nodes, and the cluster head is determined by
calculation inside the sensor node, so it is a distributed system.
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(Low-Energy Adaptive Clustering Hierarchy (LEACH)).

The operation of LEACH is divided into rounds, and each round begins with a setup phase
when the cluster is formed, and consists of a steady state phase when data is transmitted to the base
station. In order to minimize overhead, the steady state phase is longer than the set phase, as shown
in Equation (1) [19]. In Equation (1), the setup is: each node decides to depend on CH of the current
round. This decision is based on choosing a random number between 0 and 1 if the number is less than
the threshold T(n), and the node becomes the cluster head of the current round. The threshold is set as
follows. If the cluster head is selected, the state is reported using the Carrier Sense Multiple Access
(CSMA) Medium Access Control (MAC) protocol. The remained nodes make decisions about the
current round’s cluster head according to the received signal strength of the advertisement message.
The Time Division Multiple Access (TDMA) scheduling is applied to all members of the cluster group
to send a message to the CH and then from the cluster head to the base station. As soon as a cluster
head is selected for a region, the steady state phase begins. Steady: the cluster is created when the
TDMA scheduling is fixed and data transfer can begin. If the node always has the data to send, it sends
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it to the cluster head for the allotted transmission time. Each head node can be turned off until the
node allocates the transmission time, thus minimizing energy loss in these nodes [20].

T(n) =


ρ

1−ρ(r mod( 1
ρ ))

, if n ∈ G

0, otherwise
(1)

T(n) = Threshold;
r = current round;

G = The set of nodes that have not been CH;
ρ = the percentage of cluster− heads.

2.3.1. Enhancements of LEACH

There are several drawbacks with LEACH. The setup phase is non-deterministic due to randomness.
It may be unstable during setup phase that depending on the density of sensor nodes. It is not
applicable on large networks as it uses single hop for communication. CH, which is located far from BS,
will consume huge amount of energy. It does not guarantee the good CH distribution and it involves
assumption of uniform energy consumption of CH during setup phase. And also, the main problems
with LEACH lie in the random selection of CH. Various studies have been conducted to improve the
LEACH protocol to improve network lifetime, energy savings, and performance and stability [21–28].
LEACH-Centralized (LEACH-C) method was developed for improving the lifetime of the network in
the setting stage and also each node transmits information related to the location and energy level to
the BS. The BS determines the cluster, as well as the CH and each cluster node. Through this, it was
possible to extend the life of the network and improve energy savings [21]. In addition, in S-LEACH,
solar power is used to improve WSN life. Typically, the remained energy is maximized to select a node
with redundant power, and the node transmits the solar state to the BS along with its energy level. As a
mechanism, nodes with higher energy are selected as CH, and the higher the number of recognition
nodes, the better the performance of the sensor network. According to a Simulation results, S-LEACH
significantly extends the lifetime of WSNs [23]. In addition, in the case of a LEACH, a new node
concept that reduces and provides a uniform distribution of dissipated energy by dividing routing
work and data aggregation, and supports CH in multi-hop routing is introduced. Energy-efficient
multi-hop pathways are established for nodes to reach the BS to extend the life of the entire network
and minimize energy dissipation [28]. As a method for saving energy, H-LEACH was developed with
various algorithms that consider the concept of minimizing the distance between data [21]. It adds a CH
of LEACH to act as the Master Cluster Head (MCH) to pass the data to the BS. In addition, it is proposed
I-LEACH to save energy, while communicating within the network. In order to increase the stability
of the network, we proposed Optimized-LEACH(O-LEACH), which optimizes CH selection [29].
This means that the selected CH is based only on the remaining dynamic energy. If the energy of the
node is greater than 10% of the minimum residual energy, the node is selected as CH, otherwise the
existing CH is maintained. In order to deal with situations in which the diameter of the network
increases beyond certain limits, D-LEACH randomly places nodes with a high probability of being
located close to each other, called twin nodes. It is necessary to keep one node asleep until the energy
of another node depletes. Therefore, D-LEACH has uniform distribution of CH so that it does not run
out of energy when longer distance transmission takes place [21]. The D-LEACH method ensures that
the selected cluster heads are distributed to the network. Therefore, it is unlikely that all cluster heads
will be concentrated in one part of the network [25].

2.3.2. Clustering in LEACH

Clustering means defining a data group by considering the characteristics of given data and
finding a representative point that can be represented. In LEACH, the sensor detects the events and
then sends the collected data to a faraway BS. Because the cost of information transmission is higher
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than the calculation, nodes are clustered into groups to save energy. It allows data to be communicated
only to the CH, then the CH routes the aggregated data to the BS. The CH, which is periodically elected
using a clustering algorithm, aggregates the data collected from cluster members and sends it back to
the BS, which can be used by the end user. To transmit data over long distances in this way, only a few
nodes are required, and most nodes need to complete short distance transmissions. So, more energy
is saved, and the WSN life is extended. The main idea of a hierarchical routing protocol is to divide
the entire network into two or more hierarchical levels, each of which performs different tasks [20].
In order to create these hierarchical levels, the clustering functions as a critical role in LEACH.

2.4. Interval Type-2 Possibilistic Fuzzy C-Means (IT2-PFCM)

It is known that the synthesis of Fuzzy C-Means (FCM) and T2FS gives more room to handle the
uncertainties of belongingness caused by noisy environment. In addition, a Possibilistic C-Means (PCM)
clustering algorithm was presented, which allocates typicality using an absolute distance between one
pattern and one central value. However, the PCM algorithm also has a problem that clustering results
respond to the initial parameter values sensitively. To address this sensitivity problem, PFCM algorithm
combining FCM and PCM by weighted sum was proposed. However, the PFCM method also has
the uncertainty problem of determining the value of the purge constant. It is an important issue
to control the uncertainty of the fuzzy constant value because the fuzzy constant value plays a
decisive role in obtaining the membership function. To control the uncertainty of these fuzzy constants,
hybrid algorithms are suggested, which includes the general type-2 FCM [30–32], Interval Type-2
FCM (IT2-FCM) [33], kernelized IT2-FCM [34], interval type-2 fuzzy c-regression clustering [35],
interval type-2 possibilistic c-means clustering [36,37], interval type-2 relative entropy FCM [38],
particle swarm optimization based IT2-FCM [39], interval-valued fuzzy set-based collaborative fuzzy
clustering [40], and others. These T2FS based algorithms have been successfully applied to areas
like image processing, time series prediction and others. Interval Type-2 FCM (IT2-FCM): In fuzzy
clustering algorithms, like FCM, the fuzzification coefficient m plays an important role in determining
the uncertainty of partition matrix. However, the value of m is usually hard to be decided upon
in advance. IT2-FCM considers the fuzzification coefficient as an interval (m1, m2) and solves two
optimization problems [41].

Fuzzifier Value

IT2 PFCM is expressed as the sum of the weights of FCM and PCM method. Therefore, it is
clustered in the direction of minimizing PFCM objective function, as follows in Equation (2).

In Equation (3), uik represents a membership value where the input pattern k belongs to cluster

Jm,η(U, T, V; X) =
n∑

k=1

c∑
i=1

(au
ik

m+btik
η) × ‖xk − vi‖

2 +
c∑

i=1

γi

n∑
k=1

((1− tik)
η), (2)

c∑
i=1

uik= 1, 0 ≤ uik, tik ≤ 1, m = > 1, η > 1,γi > 0. (3)

i. xi is the k-th input pattern, and vi is the center value of the i-th cluster. m is a constant
representing the degree of fuzziness and satisfies the condition of m ∈ (1,∞). tik represents typicality
that the input pattern k belongs to cluster i, which is a feature of PFCM method using absolute distance.
γi is a scale defining point, where typicality of the i-th cluster is 0.5, and the value is an arbitrary number.

For PFCM cluster method, in above Equation (5) the objective function should be minimized with
respect to the membership function uik. Membership that is obtained by Equation (2). To draw m,
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you must create the lowest and highest membership functions using the primary membership function.
The highest and lowest membership functions of PFCM according to m are as follows.

uik = (
1∑1

j=1

(
dik
di j

) 2
m1−1

), (4)

uik = (
1∑1

j−1

(
dik
di j

) 2
m2−1

), (5)

As shown in Equation (6), the lowest and highest membership values where m1 and m2 are
representing objective function, the value γi also changes according to the lowest and highest
membership functions. Using γi, the lowest and highest typicality is,

γ =

log
(

1
u j

)
− log

1 +
∑C

k=2

(
di j
dik

) 2
mold
−1


log

(
di j
dik

) (6)

m jnew = 1 +
2
γ

(7)

For updating the center value, as shown in Equation (7), the type reduction process of changing
type-2 fuzzy takes up type-1 using the K-means algorithm that it is performed, and the center value of
each cluster is updated.

m1 =

 N∑
i=1

m1i

/N, m2 =

 N∑
i=1

m2i

/N (8)

Table 1 shows the symbol and original values of IT2-PFCM.

Table 1. Explanation of symbols.

Symbol Explanation

C Bulky cluster
v Cluster center

vi,V Cluster prototype
m Fuzzifier value
u Membership function
U Partition matric

dik/dij Euclidean distance value
δ Threshold of fuzzifier constant
Ã Secondary membership degree
J PFCM objective function
x Input pattern
tik Represents typicality, the input pattern k belongs to cluster i
γi Scale defining point where typicality of the i-th cluster is 0.5
Xi Input space

Φ
(
X j

)
Kernel property space

K Input space for kernel
S Number of kernels

Figure 4 shows that histograms and Footprint of Uncertainty (FOU) examples are determined by
class and dimension. Upper membership function (UMF) histogram and lower membership function
(LMF) histogram are obtained according to class and dimension. A new membership function from
the Gaussian Curve Fitting (GF-F) method can be applied to calculate the adaptive fuzzifier value.
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2.5. Reinforcement Learning (RL)

RL is one of the unsupervised learning methods which tries to find out some policies from
interaction with the environment. It is the problem faced by an agent that has to learn behavior through
trial and error interactions with vigorous environments. And it was applied successfully in many
agent systems [42–44]. The aim of reinforcement learning is to find out a useful behavior by evaluating
the reward. Q learning is a RL method adequately appropriate for learning from interaction, where the
learning is performed through a reward mechanism. This method was applied to WSN optimization
problems [45]. Research into applying intelligent and machine learning methods for power management
was considered in Reference [46], with Reference [47] being among those specially targeting the area
of dynamic power management for energy harvesting embedded systems. A learner interacted
with the environment and autonomously determined required actions [47]. An RL-based Sleep
Scheduling for Coverage (RLSSC) algorithm is for sustainable time-slotted operation in rechargeable
sensor networks [48]. Then, the learner was rewarded by the reward function to respond to different
environmental states. RL can be applied to both single and multi-agent systems [49]. In previous
studies, the efficiency of RL was improved by developing RL applications in WSN [50]. An independent
RL approach for resource management in WSN is proposed [51]. WSN tasks through random selection
can provide better performance in terms of cumulative compensation over time and residual energy of
the network [52].

Q-Learning

The most well-known reinforcement learning technique is Q-learning. Q-learning is a representative
algorithm of RL prosed by Watkins [53]. As shown in Figure 5, data is collected directly by the agent
acting in a given environment. In other words, the agent takes an action (a) in the current state (s) and
gets a reward (r) for it.

In Equation (9), after Q-learning Q( st, at ) is initialized to an arbitrary value, it is repeatedly
updated with the following formula value according to learning progresses. Rt+1 is the reward that
gets it from current state(st) to next state (st+1). γ is a discount factor, which is the largest value among
the action value function values that can be obtained in the next state (st+1) [54].

Q( st, at )= Rt+1+ γ maxa+1Q. (9)
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2.6. Proposed Modification in LEACH

Figure 6 shows the workflow of this study, first, we define the deployment of sensor node
in the matrix then, choose the model according to sensor movement, if the movement of sensor
topology is not considered as traditional LEACH modeling, static topology model is chosen;
otherwise, the dynamic topology model is applied to imply the disposable sensor movement. In the
chosen model, LEACH protocol algorism is applied, and each LEACH protocol selects Cluster Head
(CH) in its own way, while the calculation is repeated until the system is terminated as the node dying.
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2.6.1. Dynamic Topology Modeling

The simulation of the dynamic topology model is signed with the changing node location on
the field during operation. This reflects the phenomenon that the micro-sensors exposed to the real
environment show movements. As round (r) in Equation (10) increase, the position of the node (Xr, Yr),

Xr = Xr+1 + RrandomYr = Yr+1 + Rrandom−mrandom ≤ Rrandom ≤ mrandom (10)

every node updates its location as (Xr+1, Yr+1), while Rrandom is a random number between −mrandom
and +mrandom. In the proposed method, one step is inserted before the network moves to the steady
state step. After cluster formation is complete, the cluster topology is improved using the various
methods (Q-LEACH: reinforcement learning, F-LEACH: IT2 PFCM). The aim of the improvement
is to still maintain network connectivity with minimal energy loss in the network. All sensors set
the transmit power to the minimum level but keep the received signal power of CH above the Eb/Io

(Threshold) value so that the sensor transmits with an acceptable error rate.
In order to improve the topology of the cluster, the simulation is set up as follows in Equation (11).

Et is the total energy consumed in the network, Etx,i is the energy of the sensor i transmitting

Et = min(
N∑

i=1

Etx,i +
n∑

k=1

ECH,k) (11)

data to the CH, and k is the energy of the CH receiving data from the sensor.
In Equation (12), Signal Interference Noise Rate (SINR) is the received signal-to-noise-noise ratio,

where P is the transmit power of the sensor to CH to transmit synchro data, I is the interference power,
and N is the noise density. As the distance between nodes gets closer, I and P values increase, and, as the
distance between nodes increases, I and P values decrease. The energy the sensor consumes to send
data to the cluster head depends on the distance between the sensor and the CH. If the distance is less
than d0, the energy depends on the free space. However, if the distance is greater than d0, the energy is
dependent on multipath fading. In addition to the transmission energy, the sensor consumes energy to
process data inside the hardware (Eelec) in Equation (13).

SINR =
P

I + N
, (12)

Etx =

{
LEelec + LEEFSd2

,

LEelec + LEEMPd4
,

d ≤ d0

d > d0
, (13)

ECH=L(ERX+Eelec+EDA )+LEMPd2 . (14)

The CH receives L-bit data from the sensor with the energy ERX, processes the data inside the
hardware with the energy Eelec, aggregates the data with the energy EDA, and transmits the data to the
sink with the energy EMP in Equation (14).

2.6.2. F-LEACH

The disadvantage of the existing D-LEACH is that the distribution method is too simple as 1/N.
Therefore, the proposed F-LEACH in this paper provides more effective distributed clustering compared
to the D-LEACH protocol. To do this, dispersion proceeds through the introduction of Interval Type-2
FCM (IT2-FCM). The entire sensor field is divided into sub-areas by fuzzifier centroid. Fuzzifiers (m1i, m2i)
for each data point calculation. (function of upper and lower membership) As the effect of the fuzzifier
value on the cluster center position, it is clustered by automatic calculation of the fuzzifier value at the
cluster center position, as shown in the following the algorithm (Algorithm 1) of the F-LEACH protocol.
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Algorithm 1. F-LEACH

1: node (x, y): initial position input to csv (or generate random position)
2: N; number of alive nodes
3: numClust: number of CH
4: CHpl: packet size of CH
5: NonCHpl: packet size of node (not CH)
6: for round r = 1: R
7: Set the initial any value of fuzzifier (m1, m2)
8: (m1, m2) in interval type-2 PFCM and calculate membership of each data point.
9: select histogram for upper and lower membership.
10: Generate a histogram for individual clusters.
11: Use curve fitting over these histograms to obtain upper and lower memberships.
12: Normalization (mupper, mlower) = (1,0)
13: Take mean of (m1i, m2i) and update (m1, m2)
14: if there is negligible change in the resulting fuzzifier values

or
terminating criteria is met,
Stop simulation end

15: Save node Location, CH Location on Coordinate basis
<< Calculate Energy of nodes>>

16: D = distance from CH(x,y)-node(x,y)
17: E(CH) = E(CH)–(((Etrans+Eagg) * CHpl) + (Efs * CHpl * (D.ˆ2))+(NonCHpl * Erec * d(N/numClust)));
18: E(~CH&~Dead) =

19: E(~CH&~Dead)–((NonCHpl * Etrans) + (Efs * CHpl * (Dˆ2)) + ((Erec+Eagg) * CHpl));
20: E(Dead) = 0;
21: if R: N < 5% Stop simulation end
22: end

2.6.3. Q-LEACH

Q-LEACH is based on Q-table. As a reward, SINR is considered, while states are selected using
ε-greedy.

Reward

The proposed algorithm sets SINR as state and chooses to use transmit power as action. In order
to evaluate efficient SINR and transmission power, when the SINR is less than the threshold(T) and it
is greater than the threshold(T), it is divided into two independent elements. After that, calculate the
compensation function rt+1. ω is the weighting factor, amax is the maximum transmission power factor
of node i, and at is the power for node i at the present time. The reward value can have a positive or
negative value, depending on T in Equation (15).

rt+1,i =

ω1SINR +ω2(a max−at), SINR ≤ T

ω1(T − SINR) +ω2(a max−at), SINR > T
. (15)

Action Selection

Performed operations in all states are selected using the ε-greedy method in Equation (16).

a =

random action(a), with probability ε

maxQ(s, a), with probability 1− ε
. (16)

ε is the exploration factor [0,1]. With probability ε, the sensor starts an exploration in which the
task is chosen at random and performs a random action(a) to figure out how the environment reacts to
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other available tasks. Otherwise, the system enters the exploitation and selects the action with the
maximum Q value.

One of the reinforcement models, Temporal Difference (TD), is used to estimate the Q-value in
Equation (9). The Q-value is updated as follows in Equation (17).

Qt+1= Qt(s t, at) + β(r t+1+γ max(Q t(s t+1 , a)) −Qt(s t, at)). (17)

β is a learning factor that determines how fast learning occurs (usually set to value between
0 and 1) and γ is a discount factor. The Q-value function is calculated using the existing estimate,
not the final return. The Q value of the t+1 state is the value of the current state Q(st,at) multiplied
by the discount factor that controls the importance of the future value by selecting the max value
among the action values in the t+1 state. (st, at) is subtracted. It can be obtained by adding
the value obtained by multiplying the value by the learning factor to the value obtained by
adding the compensation function value rt+1. The closer the discount factor is to 1, the higher
the importance for future value, and the closer to 0. This Q-LEACH (Algorithm 2) is as follows.

Algorithm 2. Q-LEACH

1: Save node Location, CH Location on Coordinate basis
2: Source (x, y) -> target (x, y) initial position input to csv (or generate random position)

# q table generation (Update one space of Q each time)
3: Make a map to unit dimension
4: Initialize Q table
5: Set the γ value multiplied by max Q (state max, action max)
6: discount rate = 0.99, maximum iteration number before regrouping (episodes i = 2000)
7: Repeat (for each episode i):
8: state reset (reset environment to a new, random state)
9: Initialize reward value
10: Initialize While flag done = false
11: while not done:
12: ε = 1./((i//100) + 1)
13: Create a probability value for ε-Greedy (Set to Decay as step passes)
14: if Random action when ε < 1 (small probability)
15: else Action to the side where max state aggregate is present end
16: return new (state, reward, done) from action

<<Q table update>>

# Update Q-Table with new knowledge using learning rate
17: Q table = Max value of reward + (discount * new state)
18: Upon arrival from Node to CH, Reward +1
19: Save reward value, update state
20: reward value appends in array
21: Move node to higher reward in Q table
22: if node = CH end
23: if duplicate nodes exist or move to another location end
24: Explore other dimensions
25: While complete the solution in total field (1000 × 1000)

Declaring target matrix from the original topology is preceded as shown in Figure 7. Before applying
Q-table, total field is divided into several unit dimension (which is the same method as D-LEACH)
and Q-table is calculated in each unit dimension in the space of target matrix, in this study, defined as
15 × 15. Q-probability, drawn out in four directions at node position on target matrix, gives the direction
of node (toward direction with the highest probability). In the developed Q-table, state demonstrates
the Q-probability that of approach (4 direction: up, down, left, right) of node toward CH, as the hole
and other nodes in the dimension can act as the causes of lowing the probability. 1 step action occurs
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according to the state-direction with the biggest probability. Eventually, the system earns 1 reward when
node arrives to CH.Appl. Sci. 2020, 12, x FOR PEER REVIEW 13 of 19 
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Figure 7. Q-LEACH: Target matrix from original topology and Q-table probability.

The detailed parameters were chosen according to previous studies that analyzed WSN parameters
in order to select the optimal value for the experiment [52–55]. Proposing LEACH protocol simulation
parameters are shown in Table 2.

Table 2. Simulation parameters of the proposed LEACH protocol.

Parameter Value Unit

Field dimension 1000 × 100 m2

Number of sensor (N) 110 sensors
Initial Energy 0.1 Joule

EEFS 10−12 Joule
EEMP 0.0013 × 10−13 Joule
Eelec 50 × 10−9 Joule
EDA 50 × 10−9 Joule

Etrans 50 × 10−9 Joule
ERX 50 × 10−9 Joule

Message length (L) 4000 Bits
Round (r) 2000 -

α 0.1 -
β 0.2 -
γ 0.3 -
ε 0.99 -
a 1,2,3 . . . . . . 10 -

Threshold(T) 8 dB
mrandom 0.1 m

3. Results

As shown in Figure 8b, the node location in the static topology model is immovable, while it was
observed that nodes were constantly moving random distances in random directions in the dynamic
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topology model, as shown in Figure 8a. The original node location is marked in red, and, while round
is operated 3 times, the nodes move to each direction marked as a green arrow.
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AS shown in Figure 9, we calculate energy loss, number of alive nodes and data throughput as
evaluation index of LEACHs. D-LEACH, Q-LEACH and F-LEACH which sets CH in their own way,
perform better than LEACH, which is characterized as random setting of CH.
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Figure 9. LEACH results on energy loss, number of alive nodes, throughput. (a–c) is the result from
dynamic topology model and (d–f) is the result from static topology model.

In the static topology model, he performance of D-LEACH and F-LEACH were similar, but in the
case of moving nodes in the dynamic topology model, the performance of F-LEACH is significantly
lowered compared to D-LEACH. In particular, the significant reduction in the life time of the node in
F_LEACH at the beginning increases energy consumption and decreases throughput significantly.
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As a result of Q-LEACH & F-LEACH and existing LEACH (LEACH, D-LEACH) on the aspects
of energy loss, number of alive nodes and throughput, Q-LEACH showed the best performance
both when a node was immobile/mobile. Q-LEACH on the static node model shows constantly
better performance; on the other hand, at the beginning of operation, Q-LEACH and D-LEACH in
the dynamic node model shows a similar tendency; however, over time, it can be found that the
performance of Q-LEACH has been greatly improved by the reinforced learning effect.

Figure 10 shows the comparison of various LEACH protocols, and the percentage of the life time
of node each system compared to original LEACH is marked [56,57].
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As in this study, Q-table is applicable since the table is only 4,000,000 (1000 (x grid) × 1000 (y grid)
× 4 (up, down, left, right)) but in the most of application such as invade game the overall calculation
is determined by the number of pixels. As related studies on comparison of RL algorithms shows
that performance of RL algorithms are showing environment dependence [58]. The environment of
this study has the same structure as the OpenAI gym environment [59], and this allows developers
to easily and quickly implement the environment by sharing the environment. As can be seen in
the pseudocode of Q-LEACH, we tried to improve the performance optimized for the situation by
customizing the logic in the openAI environment. In addition, we presented as experimental results
that the Q-table showed better performance than other RL methods. The Q-network is applied to a
vast number of cases situation, and the Q-table is more suitable for this study because it shows better
results in finite situations. As mentioned above, performance improvement is observed in Q-LEACH
compared to other LEACH methods.

4. Discussion

Existing research presupposes static topology. However, in real-world environments where
LEACH is applied, nodes change dynamically over time. Thus, in this study, the efficiency of LEACH
within the dynamic topology was increased through Q-LEACH.

As the reinforcement learning is an alternative solution for optimizing the routing. It can achieve
low latency, high throughput, and adaptive routing [60]. Various type of reinforcement learning
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method are applied to routing [61]. Among these RL methods, Q-table was applied in this paper
to perform Q-learning in OpenAI environment. Existing research required extra effort to build its
own environment, but we can contribute to performance improvement by configuring an optimized
situation with an open source environment applying OpenAI’s gym environment.

In order to optimize routing in each network, it is necessary to develop this study by detailing
the specific tasks defined for existing networking problems. In addition, it is necessary to introduce a
number of recently developed reinforcement learning methods (Deep Deterministic Policy Gradient,
Advantage Actor Critic, etc.) into LEACH to be applied in real life.

In the static topology model, there is the need to consider LEACH with multi-hop, whereas, in the
dynamic topology model, a multi-hop system is not efficient in the aspect of energy consumption as
nodes composing the topology are constantly moving. It seems necessary to calculate LEACH through
more well-defined dynamic modeling by applying various variables that occur in actual situation.

5. Conclusions

Extending network lifetime is still an important issue in WSN of Autonomous Things Environment.
Our study aimed the extended the network lifetime even if there is node topology changes. To simulate
and evaluate, the basic LEACH protocol and implementation of the proposed algorithm are used in
the statistic and dynamic topology models. The rationality of the dynamic node modeling is shown in
the similarity on tendency of energy consumption of both models. The difference between the static
topology model and the dynamic topology model proved limitations of LEACH on fixed topology.
It is shown in Figure 9a against Figure 9d.

In detail, the dynamic node model, the initial life time of node significantly overall decreased as
the distance between nodes continuously increasing, and the effect of energy consumption, which is
calculated from the distance between node and CH, also increased. In other words, selecting cluster
heads efficiently is more important in the dynamic node model than that of the static model. As the
nodes move continuously, the location of all nodes tends to diverge. D-LEACH divides a given field
into a constant division, so the location of the node is not significantly affected by the divergence;
therefore, with both models, D-LEACH shows similar results, while F-LEACH is backward in the
dynamic model. In the diverging case with F-LEACH, the effect of uncertainty problem is emerged as
the CH is defined from the fuzzifier values and elimination of outliers. This is seen as the result of
uncertainty of fuzzy constant, which makes it difficult to select CH because the fuzzy constant plays a
decisive role in the membership function. While F-LEACH is a calculation of approaching to the CH,
Q-LEACH reflects the random location of a node by calculating the probability of all directions through
rewards of SINR. As a result, Q-LEACH eventually achieved the best throughput with the least energy.
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Wireless Sensor Networks. In ISCN’08; Boğaziçi University: Istanbul, Turkey, 2008; p. 84.

9. Shnayder, V.; Chen, B.-R.; Lorincz, K.; Fulford-Jones, T.R.; Welsh, M. Sensor Networks for Medical Care;
Technical Report; Harvard University: Cambridge, MA, USA, 2005.

10. Wood, A.; Virone, G.; Doan, T.; Cao, Q.; Selavo, L.; Wu, Y.; Stankovic, J. ALARM-NET: Wireless Sensor Networks
for Assisted-Living and Residential Monitoring; University of Virginia Computer Science Department Technical
Report; University of Virginia: Charlottesville, VA, USA, 2006; Volume 2, p. 17.

11. Mišić, J.; Mišić, V.B. Implementation of security policy for clinical information systems over wireless sensor
networks. Ad Hoc Netw. 2007, 5, 134–144. [CrossRef]

12. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw.
2002, 38, 393–422. [CrossRef]

13. Lee, C.-S.; Lee, K.-H. A contents-based anomaly detection scheme in WSNs. J. Inst. Electron. Eng. Korea CI
2011, 48, 99–106.

14. Jain, S.K.; Kesswani, N. Smart judiciary system: A smart dust based IoT application. In International Conference
on Emerging Technologies in Computer Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 128–140.

15. Sathyan, S.; Pulari, S.R. A deeper insight on developments and real-time applications of smart dust particle
sensor technology. In Computational Vision and Bio Inspired Computing; Springer: Berlin/Heidelberg, Germany,
2018; pp. 193–204.

16. Mal-Sarkar, S.; Sikder, I.U.; Konangi, V.K. Application of wireless sensor networks in forest fire detection
under uncertainty. In Proceedings of the 2010 13th International Conference on Computer and Information
Technology (ICCIT), Dhaka, Bangladesh, 23–25 December 2010; IEEE: Piscataway, NJ, USA; pp. 193–197.

17. Patil, R.; Kohir, V.V. Energy efficient flat and hierarchical routing protocols in wireless sensor networks:
A survey. IOSR J. Electron. Commun. Eng. (IOSR–JECE) 2016, 11, 24–32.

18. Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless
microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System
Sciences, Maui, HI, USA, 4–7 January 2000; IEEE: Piscataway, NJ, USA; Volume 2, p. 10.

19. Singh, S.K.; Kumar, P.; Singh, J.P. A survey on successors of LEACH protocol. IEEE Access 2017,
5, 4298–4328. [CrossRef]

20. Renugadevi, G.; Sumithra, M. An analysis on LEACH-mobile protocol for mobile wireless sensor networks.
Int. J. Comput. Appl. 2013, 65, 38–42.

21. Tripathi, M.; Gaur, M.S.; Laxmi, V.; Battula, R. Energy efficient LEACH-C protocol for wireless sensor network.
In Proceedings of the Third International Conference on Computational Intelligence and Information
Technology (CIIT 2013), Mumbai, India, 18–19 October 2013.

22. Heinzelman, W.B. Application-Specific Protocol Architectures for Wireless Networks. Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, June 2000.

http://dx.doi.org/10.1016/j.trc.2015.03.014
http://dx.doi.org/10.1016/j.adhoc.2006.05.008
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1109/ACCESS.2017.2666082


Appl. Sci. 2020, 10, 9037 18 of 19

23. Voigt, T.; Dunkels, A.; Alonso, J.; Ritter, H.; Schiller, J. Solar-aware clustering in wireless sensor networks.
In Proceedings of the ISCC 2004. Ninth International Symposium on Computers and Communications (IEEE
Cat. No. 04TH8769), Alexandria, Egypt, 28–31 July 2004; IEEE: Piscataway, NJ, USA; Volume 1, pp. 238–243.

24. Biradar, R.V.; Sawant, S.; Mudholkar, R.; Patil, V. Multihop routing in self-organizing wireless sensor networks.
Int. J. Comput. Sci. Issues (IJCSI) 2011, 8, 155.

25. Kumar, N.; Kaur, J. Improved leach protocol for wireless sensor networks. In Proceedings of the 2011 7th
International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China,
23–25 September 2011; IEEE: Piscataway, NJ, USA; pp. 1–5.

26. Kumar, N.; Bhutani, P.; Mishra, P. U-LEACH: A novel routing protocol for heterogeneous Wireless Sensor
Networks. In Proceedings of the 2012 International Conference on Communication, Information & Computing
Technology (ICCICT), Mumbai, India, 19–20 October 2012; IEEE: Piscataway, NJ, USA; pp. 1–4.

27. Sindhwani, N.; Vaid, R. V LEACH: An energy efficient communication protocol for WSN. Mech. Confab 2013,
2, 79–84.

28. Kumar, S.V.; Pal, A. Assisted-leach (a-leach) energy efficient routing protocol for wireless sensor networks.
Int. J. Comput. Commun. Eng. 2013, 2, 420–424. [CrossRef]

29. Khediri, S.E.; Nasri, N.; Wei, A.; Kachouri, A. A new approach for clustering in wireless sensors networks
based on LEACH. Procedia Comput. Sci. 2014, 32, 1180–1185. [CrossRef]

30. Xu, R.; Wunsch, D. Clustering; John Wiley & Sons: Hoboken, NJ, USA, 2008.
31. Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression.

Neural Netw. 2004, 17, 113–126. [PubMed]
32. Linda, O.; Manic, M. General type-2 fuzzy c-means algorithm for uncertain fuzzy clustering. IEEE Trans.

Fuzzy Syst. 2012, 20, 883–897. [CrossRef]
33. Hwang, C.; Rhee, F.C.-H. Uncertain fuzzy clustering: Interval type-2 fuzzy approach to $ c $-means.

IEEE Trans. Fuzzy Syst. 2007, 15, 107–120. [CrossRef]
34. Kaur, P.; Lamba, I.; Gosain, A. Kernelized type-2 fuzzy c-means clustering algorithm in segmentation of noisy

medical images. In Proceedings of the 2011 IEEE Recent Advances in Intelligent Computational Systems,
Trivandrum, Kerala, India, 22–24 September 2011; IEEE: Piscataway, NJ, USA; pp. 493–498.

35. Zarandi, M.F.; Gamasaee, R.; Turksen, I. A type-2 fuzzy c-regression clustering algorithm for Takagi–Sugeno
system identification and its application in the steel industry. Inf. Sci. 2012, 187, 179–203. [CrossRef]

36. Raza, M.A.; Rhee, F.C.-H. Interval type-2 approach to kernel possibilistic c-means clustering. In Proceedings
of the 2012 IEEE International Conference on Fuzzy Systems, Brisbane, QLD, Australia, 10–15 June 2012;
IEEE: Piscataway, NJ, USA; pp. 1–7.

37. Rubio, E.; Castillo, O.; Valdez, F.; Melin, P.; Gonzalez, C.I.; Martinez, G. An extension of the fuzzy possibilistic
clustering algorithm using type-2 fuzzy logic techniques. Advances in Fuzzy Systems 2017, 2017, 1–23. [CrossRef]

38. Zarinbal, M.; Zarandi, M.F.; Turksen, I. Interval type-2 relative entropy fuzzy C-means clustering. Inf. Sci.
2014, 272, 49–72. [CrossRef]

39. Rubio, E.; Castillo, O. Optimization of the interval type-2 fuzzy C-means using particle swarm optimization.
In Proceedings of the 2013 World Congress on Nature and Biologically Inspired Computing, Fargo, ND, USA,
12–14 August 2013; IEEE: Piscataway, NJ, USA; pp. 10–15.

40. Ngo, L.T.; Dang, T.H.; Pedrycz, W. Towards interval-valued fuzzy set-based collaborative fuzzy clustering
algorithms. Pattern Recognit. 2018, 81, 404–416. [CrossRef]

41. Yang, X.; Yu, F.; Pedrycz, W. Typical Characteristics-based Type-2 Fuzzy C-Means Algorithm. IEEE Trans.
Fuzzy Syst. 2020. [CrossRef]

42. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996,
4, 237–285. [CrossRef]

43. Hsu, R.C.; Liu, C.-T. A reinforcement learning agent for dynamic power management in embedded systems.
J. Internet Technol. 2008, 9, 347–353.

44. Chitsaz, M.; Woo, C.S. Software agent with reinforcement learning approach for medical image segmentation.
J. Comput. Sci. Technol. 2011, 26, 247–255. [CrossRef]

45. Prabuchandran, K.; Meena, S.K.; Bhatnagar, S. Q-learning based energy management policies for a single
sensor node with finite buffer. IEEE Wirel. Commun. Lett. 2012, 2, 82–85. [CrossRef]

46. Ernst, D.; Glavic, M.; Wehenkel, L. Power systems stability control: Reinforcement learning framework.
IEEE Trans. Power Syst. 2004, 19, 427–435.

http://dx.doi.org/10.7763/IJCCE.2013.V2.218
http://dx.doi.org/10.1016/j.procs.2014.05.551
http://www.ncbi.nlm.nih.gov/pubmed/14690712
http://dx.doi.org/10.1109/TFUZZ.2012.2187453
http://dx.doi.org/10.1109/TFUZZ.2006.889763
http://dx.doi.org/10.1016/j.ins.2011.10.015
http://dx.doi.org/10.1155/2017/7094046
http://dx.doi.org/10.1016/j.ins.2014.02.066
http://dx.doi.org/10.1016/j.patcog.2018.04.006
http://dx.doi.org/10.1109/TFUZZ.2020.2969907
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1007/s11390-011-9431-8
http://dx.doi.org/10.1109/WCL.2012.112012.120754


Appl. Sci. 2020, 10, 9037 19 of 19

47. Hsu, R.C.; Liu, C.-T.; Wang, H.-L. A reinforcement learning-based ToD provisioning dynamic power
management for sustainable operation of energy harvesting wireless sensor node. IEEE Trans. Emerg.
Top. Comput. 2014, 2, 181–191. [CrossRef]

48. Chen, H.; Li, X.; Zhao, F. A reinforcement learning-based sleep scheduling algorithm for desired area
coverage in solar-powered wireless sensor networks. IEEE Sens. J. 2016, 16, 2763–2774. [CrossRef]

49. Sharma, A.; Chauhan, S. A distributed reinforcement learning based sensor node scheduling algorithm for
coverage and connectivity maintenance in wireless sensor network. Wirel. Netw. 2020, 26, 4411–4429. [CrossRef]

50. Yau, K.-L.A.; Goh, H.G.; Chieng, D.; Kwong, K.H. Application of reinforcement learning to wireless sensor
networks: Models and algorithms. Computing 2015, 97, 1045–1075. [CrossRef]

51. Shah, K.; Kumar, M. Distributed independent reinforcement learning (DIRL) approach to resource
management in wireless sensor networks. In Proceedings of the 2007 IEEE International Conference
on Mobile Adhoc and Sensor Systems, Pisa, Italy, 8–11 October 2007; IEEE: Piscataway, NJ, USA; pp. 1–9.

52. Liu, T.; Martonosi, M. Impala: A middleware system for managing autonomic, parallel sensor systems.
In Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
San Diego, CA, USA, 11–13 June 2003; pp. 107–118.

53. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2011.
54. Solaris. Learning Deep Learning Using Tensorflow; Youngjin.com publisher: Seoul, Korea, 2019; pp. 322–324.
55. Dembla, D.; Shivam, H. Analysis and implementation of improved-LEACH protocol for Wireless Sensor

Network (I-LEACH). IJCSC IJ 2013, 4, 8–12.
56. Khan, F.A.; Ahmad, A.; Imran, M. Energy optimization of PR-LEACH routing scheme using distance

awareness in internet of things networks. Int. J. Parallel Program. 2020, 48, 244–263. [CrossRef]
57. Alnawafa, E.; Marghescu, I. IMHT: Improved MHT-LEACH protocol for wireless sensor networks.

In Proceedings of the 2017 8th International Conference on Information and Communication Systems
(ICICS), Irbid, Jordan, 4–6 April 2017; IEEE: Piscataway, NJ, USA; pp. 246–251.

58. Sharma, J.; Andersen, P.A.; Granmo, O.C.; Goodwin, M. Deep Q-Learning with Q-Matrix Transfer Learning
for Novel Fire Evacuation Environment. In IEEE Transactions on Systems, Man, and Cybernetics: Systems;
IEEE: Piscataway, NJ, USA, 2020.

59. Dutta, S. Reinforcement Learning with TensorFlow: A Beginner’s Guide to Designing Self-Learning Systems with
TensorFlow and OpenAI Gym; Packt Publishing Ltd: Birmingham, UK, 2018.

60. Sun, P.; Hu, Y.; Lan, J.; Tian, L.; Chen, M. TIDE: Time-relevant deep reinforcement learning for routing
optimization. Future Gener. Comput. Syst. 2019, 99, 401–409.

61. Yu, C.; Lan, J.; Guo, Z.; Hu, Y. DROM: Optimizing the routing in software-defined networks with deep
reinforcement learning. IEEE Access 2018, 6, 64533–64539. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TETC.2014.2316518
http://dx.doi.org/10.1109/JSEN.2016.2517084
http://dx.doi.org/10.1007/s11276-020-02350-y
http://dx.doi.org/10.1007/s00607-014-0438-1
http://dx.doi.org/10.1007/s10766-018-0586-6
http://dx.doi.org/10.1109/ACCESS.2018.2877686
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Wireless Sensor Network (WSN) 
	Disposable IoT Sensors 
	LEACH (Low-Energy Adaptive Clustering Hierarchy) 
	Enhancements of LEACH 
	Clustering in LEACH 

	Interval Type-2 Possibilistic Fuzzy C-Means (IT2-PFCM) 
	Reinforcement Learning (RL) 
	Proposed Modification in LEACH 
	Dynamic Topology Modeling 
	F-LEACH 
	Q-LEACH 


	Results 
	Discussion 
	Conclusions 
	References

