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Abstract: The stochastic inequality constrained optimization problems (SICOPs) consider the problems
of optimizing an objective function involving stochastic inequality constraints. The SICOPs belong to
a category of NP-hard problems in terms of computational complexity. The ordinal optimization (OO)
method offers an efficient framework for solving NP-hard problems. Even though the OO method
is helpful to solve NP-hard problems, the stochastic inequality constraints will drastically reduce
the efficiency and competitiveness. In this paper, a heuristic method coupling elephant herding
optimization (EHO) with ordinal optimization (OO), abbreviated as EHOO, is presented to solve
the SICOPs with large solution space. The EHOO approach has three parts, which are metamodel
construction, diversification and intensification. First, the regularized minimal-energy tensor-product
splines is adopted as a metamodel to approximately evaluate fitness of a solution. Next, an improved
elephant herding optimization is developed to find N significant solutions from the entire solution
space. Finally, an accelerated optimal computing budget allocation is utilized to select a superb
solution from the N significant solutions. The EHOO approach is tested on a one-period multi-skill call
center for minimizing the staffing cost, which is formulated as a SICOP. Simulation results obtained
by the EHOO are compared with three optimization methods. Experimental results demonstrate that
the EHOO approach obtains a superb solution of higher quality as well as a higher computational
efficiency than three optimization methods.

Keywords: stochastic inequality constraints; ordinal optimization; elephant herding optimization;
tensor product spline; optimal computing budget allocation; multi-skill call center; service level

1. Introduction

The stochastic inequality constrained optimization problems (SICOPs) consider the problems of
optimizing an objective function with respect to some variables in the presence of stochastic inequality
constraints on those variables. The object value of SICOPs is evaluated using simulations, which is a
way of modeling of a complex system in the real-world [1]. The target of SICOPs is to search for the
optimal settings of a complex system whose objective function that needs to be optimized subject to
the stochastic inequality constraints. The SICOPs belong to a category of NP-hard problems [2], which
are a type of optimization problem for which most likely no polynomial algorithm can be devised.
Furthermore, the large solution space causes the SICOPs to be more difficult to determine the optimal
settings by traditional optimization methods within a reasonable time.

Various approaches are utilized to resolve the SICOPs, such as the stochastic gradient descent
(stochastic approximation) methods [3], metaheuristic methods [4] and bio-inspired artificial
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intelligence [5]. However, the convergence of the stochastic gradient descent methods generally
requires complicated assumptions on the cost function and the constraint set [3]. The metaheuristic
approaches [4], such as the simulated annealing, tabu search and evolutionary algorithms (EA) [6],
are adopted to search for the global optimum. Nevertheless, the metaheuristic approaches are highly
dependent on the control parameters involved and require massively parallel implementations to yield
results within an acceptable time. Bio-inspired artificial intelligence [5] discusses the collective behavior
emerging within self-organizing societies of agents. Some instances of novel swarm intelligence (SI)
approaches are: Brain storm optimization, whale optimization algorithm, sooty tern optimization,
fireworks algorithm and elephant herding optimization (EHO) [7,8]. Despite the success of applying
these SI techniques [9], several limitations and barriers have been identified [10].

To reduce the computing time of SICOPs, a heuristic method coupling elephant herding
optimization (EHO) with ordinal optimization (OO) [11], abbreviated as EHOO, is presented to
find a superb solution in an acceptable time frame. The EHOO method consists essentially of three
parts, which are metamodel construction, diversification and intensification. First, a metamodel based
on the regularized minimal-energy tensor-product splines (RMTS) [12] is adopted to approximately
evaluate fitness of a solution. Next, we proceed with an improved elephant herding optimization
(IEHO) to determine N significant solutions from entire solution space. Finally, an accelerated optimal
computing budget allocation (AOCBA) is utilized to choose a superb solution from the N significant
solutions. These three parts significantly reduce the computational effort required to solve SICOPs.
Subsequently, the problem of staffing optimization in a one-period multi-skill call center is formulated
as a SICOP that contains a large solution space. Finally, the EHOO method is employed to solve the
problem of staffing optimization in a one-period multi-skill call center. The goal of staffing optimization
in a one-period multi-skill call center is to decide an optimal number of agents for minimizing the
operating cost while satisfying the service level constraints.

There are three contributions of this work. The first one is to develop an EHOO method to find
a superb solution in an acceptable time for a SICOP which is lack of structural information. Both of
IEHO and AOCBA are novel approaches to improve the performance of the original EHO and OCBA,
respectively. The proposed IEHO has a faster convergence rate than the original EHO. The AOCBA
saves more computing effort than the typical OCBA. The second one is to formulate the problem of
the staffing optimization in a one-period multi-skill call center as a SICOP. The third one is to apply
the EHOO method for solving the SICOPs in the staffing optimization of a one-period multi-skill
call center.

The rest of the paper is organized as follows. Section 2 describes the mathematical formulation
of SICOPs. Section 3 contains the solution method to find a superb solution of SICOPs. Section 4
introduces the staffing optimization in a one-period multi-skill call center, which is formulated as
a SICOP. Then, the proposed solution method is employed to solve this SICOP. Section 5 discusses
the simulation results and compares with three optimization approaches. Finally, Section 6 makes
a conclusion.

2. Stochastic Inequality Constrained Optimization Problems

2.1. Mathematical Formulation

A typical SICOP can be stated formally as shown below [1].

min f (x) (1)

subject to
E[g j(x)] ≥ b j, j = 1, . . . , J (2)

V ≤ x ≤ U (3)
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where x = [x1, . . . , xK] is a K-dimensional solution vector, f (x) denotes the objective function, b j
is a service level, E[g j(x)] is the expected value of the jth constrained function, J is the number of
constraints, V = [V1, . . . , VK] is the lower bound of a solution vector, and U = [U1, . . . , UK] denotes the
upper bound of a solution vector. Sufficient simulation replications should be carried out to assure a
precise estimate of E[g j(x)]. Let L denote the number of simulation replications and g`j(x) represent
the measure of the `th simulation replication. A straightforward approach to estimate E[g j(x)] is the
sample mean that is computed as follows.

g j(x) =
1
L

L∑
`=1

g`j(x) (4)

When the value of L increases, g j(x) obtains a better estimate of E[g j(x)]. There are two important
issues that have been concerned in efficiency of stochastic simulation optimization. (i) L must be large
if a sound estimate of E[g j(x)] is required, which has a decisive influence on the optimum that an
optimization technique can find. (ii) g j(x) must be evaluated for various solutions to determine the
best solution.

Since the stochastic inequality constraints are soft, the constrained problem (1)–(2) can be converted
to an unconstrained one by addition of a quadratic penalty function [13].

min F(x) = η× f (x) + (1− η) ×
J∑

j=1

PF j(x) (5)

where η ∈ (0, 1) denotes an integrated factor, F(x) represents an integrated objective function, and
PF j(x) is a steep penalty function. The integrated objective function of (5) comprises two terms, the
objective function (1) and the violated constraint functions in (2).

PF j(x) =

 0, i f g j(x) ≥ b j(
g j(x) − b j

)2
× 104, else

(6)

The penalty function is developed with a steep jump to ensure that the sample mean satisfies the
service level. Since the objective function is penalized by addition of a penalty function, a large value
of amplification 104 for violated service level constraints is to guarantee an obvious discontinuity of
the quadratic penalty function. Let La indicate the large value of L, and the accurate evaluation of (4) is
referred to as L = La. An accurate evaluation is defined as an evaluation that is tolerant of a small
noise and modeling error. For simplicity, let Fa(x) represent the integrated objective value of a x using
accurate evaluation.

As pointed out by the OO method [11], order of a solution is likely kept even it is evaluated using
a metamodel. To choose N significant solutions from solution space within an acceptable computation
time, we should construct a metamodel to approximate the integrated objective function of a solution
more rapidly and adopt an efficient search method assisted by this metamodel. The metamodel is
based on the RMTSs [12], and the search method is the IEHO.

2.2. Difficulty of the Problem

Solving the SICOPs is more difficult because of (i) time-consuming fitness evaluation, (ii) a large
solution space, and (iii) satisfaction of all stochastic inequality constraints. To resolve issues (i) to (iii)
simultaneously, the OO method [11] is an attempt to circumvent these difficulties at least for the initial
parts of optimization search. OO is adopted to supplement existing search approaches, but is not
itself a search method. OO method can greatly reduce the computational complexity by emphasizing
order rather than value while acquiring a good enough solution at a very high probability. The OO
method has three basic steps. Firstly, a sampling subset is created by using a crude estimate to assess
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all solutions. A crude estimate provides a computationally fast evaluation of the performance for
each solution. OO method specifies that order of solutions can be preserved even when evaluating
by a crude estimate [11]. Secondly, a promising subset is selected from the sampling subset. Finally,
candidate solutions in the promising subset are assessed using a precise estimate. A precise estimate
can provide an accurate evaluation of a solution’s performance. The candidate solution with the
optimal performance in the promising subset is the required good enough solution. There are already
several successful applications of OO method to solve the expensive computing optimization problems,
such as flow line production system [14], pull-type production system [15], and assemble-to-order
systems [16].

OO method has emerged as an effective approach to simulation and optimization, but the
stochastic inequality constraints dramatically reduce the computational efficiency in the SICOPs. Due
to the tight computing budget, optimality in the SICOPs is usually traded off by a superb solution
that can be obtained in real-time. In fact, using limited computing time to solve for a superb solution
of SICOPs is the goal of this work. The key idea is to narrow the solution space stage by stage or
gradually restrict the search range through iterative use of the OO method. The goal softening in the
OO method is to relax the optimization goal from searching the best solution to seeking for a superb
solution with high probability, which can ease the computational burden of finding the optimum.
However, when the solution space is huge, the brute force evaluation using a crude estimate in the
conventional OO method is not acceptable. To overcome this drawback, we need to use metamodels
to ease the computational burden in the search process. Additionally, to explore more of the large
solution space, a moderate population size should be kept in the optimization approach. According to
the OO method, a metamodel is effective in separating good solutions from the bad. Therefore, we
can use a metamodel-assisted optimization approach to find a small set of significant solutions from a
large ranged solution space. In addition, if a precise estimate is applied to evaluate all the candidate
solutions, it will be computational time-consuming. Therefore, to enhance efficiency, we can use a
refined selection technique to replace the use of precise estimate for evaluating each candidate solution
in the promising subset.

3. Solution Method

The solution method comprises of three parts, which are metamodel construction, diversification
and intensification. The metamodel construction builds an RMTS metamodel to identify a set of likely
solutions, the size of which can be a fraction of the size of the population. In the diversification part,
the IEHO assisted by an off-line trained RMTS is utilized to search for N significant solutions within
the large solution space. It has been shown in [12] that RMTS is competent in modeling complicated,
nonlinear input–output relationships of discrete event simulated systems. In the intensification part,
the AOCBA technique is used to identify the best solution among the N significant solutions found
in diversification part. The AOCBA is aimed at obtaining an effective allocation rule such that the
probability of correctly selecting the best alternative from a finite number of solutions can be maximized
under a limited computing budget constraint.

3.1. Metamodel Construction

Various techniques are available to approximate the relationships between the inputs and outputs
of a system. The purpose of metamodels is to approximate the predictions of the underlying model
as accurately as possible and to be interpretable at the same time. There have been a various
number of studies concerning distinct metamodels for particular applications, such as support vector
regression [17], multivariate adaptive regression splines [18], kriging [19], artificial neural network [20],
and RMTS [15]. Among them, RMTS adopts minimal energy and regularization to improve accuracy
for low-dimensional problems with large unstructured datasets. Energy minimization has been used
for specific applications such as extending a curve or surface with additional points. In RMTS, an
energy function is treated as a cost minimization to determine the coefficients of the multivariate spline.
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RMTS has been successfully applied to curve fitting, function approximation, prediction, forecasting
and classification [15]. The advantages of RMTS include fast prediction time, unsusceptible to training
failure and scalability to the variability in parameters. Thus, a metamodel based on the RMTS is utilized
to quickly estimate the fitness of a solution. The output variable of RMTS may be represented by a
linear combination of a set of basis functions, where the coefficients are precomputed during training.

The training data patterns are (xi, Fa(xi)), i = 1, . . . , M, where xi and Fa(xi) denote the solution
vector and objective value assessed using accurate evaluation, respectively. M represents the number of
training data patterns, which can be determined from the sample size formula with a finite population
correction factor. The framework of RMTS is displayed in Figure 1 [21] and the general model of RMTS
can be stated formally as below.

f (x|ω) =
P∑

i=1

ωiψi(x) (7)

where P denotes the number of basis functions, x denotes an input vector, ω = [ω1, . . . ,ωP]
T is the

vector of spline coefficients, ωi represents the coefficient of the multivariate spline, which provides a
connection between the predicted f (x|ω) and basis functionsψi(•). Two types of splines are commonly
used as the basis functions: B-splines and cubic Hermite splines. The B-splines function is expressed as

ψ(x) = QTBd(x) (8)

where Q is a vector of n coefficients and Bd(x) is a vector of n B-spline piecewise functions. The
piecewise functions in Bd(x) are dth degree polynomial pieces in the variable x. Typically, third- or
fourth-order degrees are used. The purpose of RMTS is to make each of its outputs f (x|ω) much closer
to the actual expected values Fa(x).
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RMTS solves an energy minimization function where the splines pass through the training points
to obtain the coefficients ωi of the splines. The energy minimization function (9) comprises three terms,
the second derivatives of the splines, regularization and approximation error related to the training
points [21].

min
ω

1
2

ωTHω+ δωTω+
1
ξ

P∑
i=1

(ψ(xi)ω− Fa(xi))
2

 (9)

where xi denotes the solution vector for the ith training data pattern, Fa(xi) represents the output
value of xi, H is the matrix containing the second derivatives, ψ(xi) = [ψ1(xi), . . . ,ψP(xi)] is the vector
mapping the spline coefficients to the ith training output, ω is the vector of spline coefficients, δ is
the weight of the term penalizing the norm of the spline coefficients, and ξ is the weight on gradient
training data.
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To reduce the on-line computation, the RMTS is trained off-line. After off-line training the RMTS,
the output of f (x|ω) is computed by simple arithmetic operations for any x.

3.2. Diversification

With the aid of the RMTS metamodel, the conventional EHO can be used to select N significant
solutions from the solution space. Since the EHO recursively improves the individuals in the elephant
population, it is more suited to meet the needs. EHO is a biological algorithm inspired by the herding
behavior of an elephant herd [7]. EHO is designed for solving and optimizing the optimizations
problems by considering two herding behaviors, clan updating and separating. Clan updating operator
is used to update the current positions of elephants and matriarch in each clan. Separating operator
is used to upgrade the population diversity in the search process. There are many advantages of
EHO, such as ease of implementation, simple control parameters and easy combination with other
algorithms. EHO has been successfully employed to solve the human emotion recognition problems [22],
energy-based localization problems [23] and multi-objective energy resource accommodation problem
for distribution systems [24].

However, there are some issues of the original EHO, such as the low ability to retain the diversity
during the search process and the cause of prematurity. Accordingly, the IEHO have been developed
to improve the convergence efficiency of the original EHO. The IEHO has two control parameters that
determine the influence of the matriarch and clans, which are scale factor for matriarch and scale factor
for clans. The global exploration and exploitation of the IEHO are primarily dominated by the scale
factor for matriarch. The IEHO adopts a large scale factor for the matriarch to increase diversification.
When the scale factor for the matriarch is increased, the IEHO trends to perform global search while the
probability of local search is decreased. In contrast, the IEHO utilizes a small scale factor for matriarch
to increase intensification. When the scale factor for matriarch is decreased, the IEHO trends to perform
local search around the optimum in a local region. The scale factor for clans defines the influence of
the position for the elite elephant in a clan. Low value will generate new positions far from the center
of a clan which induces a high level of exploration. Thus, a low value of scale factor for clans trends to
global search, while a large value guides to local search.

The following notations are used in the IEHO. I is the number of clans, ci is the number of elephants

in the ith clan, Φ =
I∑

i=1
ci denotes the total number of elephants, tmax is the number of required iterations.

The position of the jth elephant in the ith clan at iteration t is denoted by xi
j(t) = [xi

j,1(t), . . . , xi
j,K(t)].

The position of matriarch in the ith clan at iteration t is denoted by xi
bi
(t) = [xi

bi,1
(t), . . . , xi

bi,K
(t)]. αt is

a scale factor that determines the influence of matriarch at iteration t, αt
∈ [αmin,αmax], where αmin

and αmax express the minimum and maximum values, respectively. βt is a scale factor that determines
the influence of clans at iteration t, βt

∈ [βmin, βmax], where βmin and βmax denote the minimum and
maximum values, respectively.

IEHO (Algorithm 1) can be briefly summarized below.

Algorithm 1: The IEHO

Step 1: Configure parameters
Configure the values of I, K, ci, αmin, αmax, βmin, βmax, tmax, and set t = 0, where t expresses the iteration
counter.
Step 2: Initialize clan
(a) A population of I clans is initialized with positions xi

j(0).
For i = 1, . . . , I, do

For j = 1, . . . , ci, do
For k = 1, . . . , K, do

xi
j,k(0) = Vk + rand[0, 1] × (Uk −Vk + 1) (10)

where rand[0, 1] denotes a random value generated in the range between 0 and 1, Uk and Vk
denote the upper bound and lower bound of the solution variable, respectively.
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(b) Calculate the fitness F(xi
j(0)) of each elephant assisted by RMTS, i = 1, . . . , I, , j = 1, . . . , ci.

Step 3: Ranking
Rank the ci individuals in the ith clan based on their fitness from low to high, then determine
the elite elephant bi and the worst elephant wi in the ith clan.

Step 4: Clan updating
Generate positions of the elite elephant bi by (12), and the others by (11).
For i = 1, . . . , I, do

For j = 1, . . . , ci, do
For k = 1, . . . , K, do

If j , bi

xi
j,k(t + 1) = xi

j,k(t) + αt
×

(
xi

bi,k
(t) − xi

j,k(t)
)
× rand[0, 1] (11)

Else

xi
bi,k

(t + 1) = βt
×

1
ci
×

ci∑
j=1

xi
j,k(t) (12)

rand[0, 1] is a random value generated in the range between 0 and 1. If xi
j,k(t + 1) < Vk, set

xi
j,k(t + 1) = Vk, and if xi

j,k(t + 1) > Uk, set xi
j,k(t + 1) = Uk.

Step 5: Separating
Generate positions of the worst elephant wi.
For i = 1, . . . , I, do

For k = 1, . . . , K, do

xi
wi,k

(t + 1) = Vk + rand[0, 1] × (Uk −Vk + 1) (13)

Step 6: Update scale factors

αt+1 = αmin + (αmax − αmin) × exp
(
ln

(
αmin
αmax

)2
×

t + 1
tmax

)
(14)

βt+1 = βmin + (βmax − βmin) ×

(
1− exp

(
−
βmax

βmin
×

t + 1
tmax

))
(15)

Step 7: Elitism

(a) Calculate the fitness F(xi
j(t + 1)) assisted by RMTS. Rank the ci individuals in the ith clan based on their

fitness from low to high, then determine the worst elephant xi
wi
(t + 1).

(b) Replace the worst elephant xi
wi
(t + 1) with the elite elephant xi

bi
(t).

Step 8: Termination
If t = tmax, stop; else, set t = t + 1 and go to Step 3.

The IEHO stops when the maximum number of iterations, tmax, has been reached. When the IEHO
has terminated, the final Φ individuals are sorted based on their fitness. Then, the top N individuals
are chosen as a candidate subset containing significant solutions.

3.3. Intensification

To enhance efficiency, an AOCBA method is developed as a more refined selection technique to
identify the best solution among the significant solutions found in diversification part. In the original
OCBA, it is necessary to perform all simulation replications repeatedly to calculate the statistics of
overall simulation replications. The AOCBA requires only a part of extra simulation replications to
determine the statistics of overall simulation replications. We proceed to determine a superb solution
by the AOCBA approach from the N significant solutions. The AOCBA approach is designed to adjust
the computational efforts dynamically for significant solutions. The key feature of the AOCBA is
spending more computing resource on few remarkable solutions and less on most mediocre solutions.
Focusing on few promising solutions does not only save computational time, but also reduces these
promising estimators’ variances.
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Through the statistics concerning objective value provided by the N significant solutions, the
number of extra simulation replications is computed to provide more computational resource for
promising solutions. Let Cb denote the permissible computing budget, and Li indicate the number
of simulation replications assigned to the ith solution. The initial number of simulation replications
assigned to the N significant solutions is L0. The extra computing budget is raised by a pre-defined
∆ at each iteration. The goal of the AOCBA is to properly allocate Cb to L1, L2, . . . , LN such that
L1 + L2 + · · ·+ LN = Cb and maximize the probability of obtaining the optimum. The permissible
computing budget Cb is obtained from Cb =

N×La
s , where La = 104 indicates the simulation replications

adopted in accurate evaluation and s is a time saving factor with respect to N that can be found in the
optimal computing budget allocation (OCBA) procedure [25].

The step-wise process of the AOCBA (Algorithm 2) method is given below.

Algorithm 2: The AOCBA

Step 0. Set the quantity of L0, l = 0, Ll
1 = L0, . . . , Ll

N = L0, where l expresses the iteration counter. Determine

the value of Cb = N×La
s .

Step 1: If
N∑

i=1
Ll

i ≥ Cb, stop and choose the optimum x∗ with the smallest objective value; else, go to Step 2.

Step 2: Raise an extra computing budget (∆) to
N∑

i=1
Ll

i, and update the simulation replications by

Ll+1
j = (

N∑
i=1

Ll
i + ∆) × θl

j/(θ
l
b +

N∑
i=1,i,b

θl
i) (16)

Ll+1
b =

θl
b

θl
j

× Ll+1
j (17)

Ll+1
i =

θl
i

θl
j

× Ll+1
j (18)

for all i , j , b, where
θl

i

θl
j
=

 δl
i×(F

l
b−F

l
j)

δl
j×(F

l
b−F

l
i)

2

, θl
b = δl

b

√
N∑

i=1,i,b
(
θl

i

δl
i
)

2
, F

l
i =

1
Ll

i

Ll
i∑

h=1
Fh(xi), δl

i =

√
1
Ll

i

Ll
i∑

h=1

(
Fh(xi) − F

l
i

)2
,

xi denotes the ith promising solution, Fh(xi) is the objective value of xi for the hth simulation replication, and

b = arg min
i

F
l
i.

Step 3: Execute extra simulation replications (i.e., max[0, Ll+1
i − Ll

i]) for the ith promising solution, then

calculate the mean (F̂l+1
i ) and standard deviation (δ̂l+1

i ) of these extra simulation replications using

F̂l+1
i =

1

(Ll+1
i − Ll

i)

Ll+1
i∑

h=Ll
i+1

Fh(xi) (19)

δ̂l+1
i =

√√√√√√√ 1

(Ll+1
i − Ll

i)

Ll+1
i∑

h=Ll
i+1

(
Fh(xi) − F̂l+1

i

)2
(20)

Step 4: Update the mean (F
l+1
i ) and standard deviation (δl+1

i ) of overall simulation replications for the ith
promising solution using

F
l+1
i =

1

Ll+1
i

(
Ll

i × F
l
i + (Ll+1

i − Ll
i) × F̂l+1

i

)
(21)

δl+1
i =

√
1

(Ll+1
i − 1)

×

(
Ll

i

(
F

l
i

)2
+ (Ll

i − 1)
(
δl

i

)2
+ (Ll+1

i − Ll
i)
(
F̂l+1

i

)2
+ (Ll+1

i − Ll
i − 1)

(
δ̂l+1

i

)2
− Ll+1

i

(
F̂l+1

i

)2
)

(22)

Let l = l + 1 and go to Step 1.
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3.4. The EHOO Approach

Figure 2 presents the flow diagram of the EHOO approach (Algorithm 3). The step-wise procedure
of the proposed EHOO is explained below.

Algorithm 3: The EHOO

Step 0: Configure the parameters of M, I, K, ci, αmin, αmax, βmin, βmax, tmax, N, La, L0 and ∆.
Step 1: Arbitrarily select M x’s from the solution space and evaluate Fa(x), then off-line train the RMTS using these

M training samples.
Step 2: Arbitrarily choose Φ x’s as the initial population and apply Algorithm 1 to these individuals assisted by

RMTS. After Algorithm 1 terminates, rank all the final Φ x’s based on their approximate fitness from low to
high and choose the prior N x’s to be the N significant solutions.

Step 3: Employ Algorithm 2 to the N significant solutions and find the optimum x∗, and this one is the superb
solution that we seek.
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4. Application to Staffing Optimization of a Multi-Skill Call Center

4.1. A One-Period Multi-Skill Call Center

Call centers experience a growing proportion of the world economy. A call center is a centralized
office used for delivering a large volume of enquiries by telephone, e-mail, chat and text [26,27]. Call
centers offer very labor-intensive tasks, employing over millions of people around the world. Call
centers play an important role in managing communications in several fields such as the banks, care
hotlines, insurance companies, telemarketing, information centers, help-desks and emergency centers.
Call centers usually handle various types of calls discriminated by the necessary skills to deliver a service.
However, it is impossible or cost effective to train all agents to handle every type of call. Each agent
group has a specified number of skills. In a multi-skill call center, agents can handle different call-types
multiple types of calls. The types of calls are classified based on the type of service requested, such as the
spoken language and the perceived value of customers. Agents in a multi-skill call center may not be
able to handle all the different types of calls that are served by the call center. A feasible alternative is to
employ agents that can handle a subset of the call-types that are offered to the call center.

There are three challenges faced by call center managers according to forecasts of call volumes:
(i) Decide the number of agents for each type at different time periods of a day, (ii) arrange working
schedules of available agents, and (iii) determine the call routing rules. Decisions are made in the face of
some degree of uncertainty. For example, calls arrive randomly according to a stochastic process, waiting
call possibly renegades after a random time, call durations are stochastic, and few agents may fail to
work. The target of decision is usually to supply the required quality of service under least staffing cost.
The common metrics for measuring quality of service is the service level. A service level is the fraction of
calls answered within a certain time limit, in the long run, exceeds a given threshold. The recent literature
on call center operations management has focused on the following concerns: quality of service, demand
forecasting, call routing, capacity planning, staffing optimization and agents scheduling.

Multi-skill call centers are complex systems which need to optimize the trade-off between the cost
for the personnel and the service level provided to the calls. The goal of multi-skill call centers is to
determine an optimal number of agents for minimizing the operating costs while satisfying the service
level constraints. The staffing optimization problem belongs to a computationally expensive simulation
optimization problem [28]. The discontinuity of the solution space is due to variables that must take
an integer value. The large solution space causes the staffing optimization problem very hard to yield
an optimal solution using the existing optimization approaches in a reasonable time. In addition, the
inequality constraint extremely decreases the efficiency in the search processes. Accordingly, we focus
specifically on two issues: (i) Transform the staffing optimization in a one-period multi-skill call center
to a SICOP, and (ii) adopt the proposed EHOO approach to find an optimal number of agents such that
the staffing cost is minimal and provide services at pre-specified levels.

4.2. Problem Statement

Consider a one-period multi-skill call center, where various types of calls reach randomly and
distinct groups of agents handle these calls. The calls arrive randomly following a stochastic process
which can be doubly stochastic or non-stationary. If an agent with the required skill is available, this
arriving call will be handled promptly; otherwise, it will wait in a queue. When the waiting time of a
call surpasses the given time limit, an abandonment occurs and this call is lost.

Agents in a same group can only serve the assigning call type. Every agent group has a specified
subset of skills. Any type of call requires a particular skill. For a given type of call, preferences may
happen to some agent groups due to either managers prefer to reserve some agent groups for other
call types, or certain agent groups are better than others to handle calls. Agents with more skills are
also more expensive, hence a compromise is made when choosing the skill groups.

The goal of considered problem is to minimize the staffing cost subject to the service level
constraints. The staffing cost is the total cost for all agents, where the cost of an agent relies on its skills.
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The service level is expressed as the fraction of calls served within a predefined time limit over a longer
period. The decision variable is the number agents for every skill group.

Figure 3 shows an example of a one-period multi-skill call center consisting of J call types and K
agent groups. The λ j indicates the arrival rate of the jth call types. The xk represents the number of
agents in the kth angent groups. The mean service rate of the jth call types in the kth agent groups
is µk, j, which depends jointly on the skill group and call type. At the beginning of the period, the
call center is assumed to operate in a steady state relative to the staffing levels. The scheme to assign
a newly-free agent for any queued call is that agent groups select call types according to increasing
sequence of call-type number. The policy for assigning calls to agent groups is that calls select agent
groups in order of increasing sequence of group number. Every agent group has its own prioritized list
of call types. For the static routing, it is assumed that each call type has an ordered list of agent groups,
used to select an available agent upon arrival. This ordered list is generally a strict subset of the agent
groups, because not all agent groups can deal with a specific call type. If every agent group in this list
is busy, then the call enters a queue with the same type calls. When an agent is available, this agent
serves the longest-waiting call from the first non-empty queue in the ordered list.
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4.3. Mathematical Formulation

Consider an inbound call center receiving calls of J types over a single period, say 10 am–11 am of
a typical Tuesday. Calls of type j arrive following a Poisson process with rate λ j, j = 1, . . . , J. There are
K agent groups in the call center. Agents are grouped based on the set of skills they possess. Working
cost of agents in group k is ck per unit time, k = 1, . . . , K. Service times of agents from group k for calls
of type j are lognormal distributed with mean µk, j and standard deviation σk, j. Customers of type j
have limited patience, and are willing to wait for a period of time that is exponentially distributed with
mean ρ j. If this time expires before they reach an agent, then they hang up without receiving service.
Customer service is measured in terms of the fraction of calls received in the period that reach an agent
within τ time units, and this fraction is computed for each call type.

Based on the terminologies presented in Section 2.1, the staffing optimization in a one-period
multi-skill call center is formulated as a SICOP.

min C xT (23)

subject to g j(x) ≥ b j, j = 0, . . . , J, (24)

V ≤ x ≤ U. (25)

where x = [x1, . . . , xK] is a K-dimensional solution vector, xk denotes the number of agents in group k,
C = [c1, . . . , cK] is a cost vector, ck denotes the working cost in group k, V = [V1, . . . , VK] is the lower
bound vector, U = [U1, . . . , UK] is the upper bound vector, b j denotes the threshold value of type j, and
g j(x) denotes the service level for calls of type j, which is defined as the ratio of expectations as below.
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g j(x) =
E[number of type- j calls served within τ time units]

E[number of type- j calls arrived]
(26)

The denominator in (26) does not include calls that discard before time τ. g0(x) denotes the service
level when calls of all types are included, which is defined as below.

g0(x) =
E[number of all calls served within τ time units]

E[number of all calls received]
(27)

The goal of this SICOP is to minimize the staffing cost (23) under the service-level constraints (24)
in the call center over a single period.

The constrained optimization problem (23)–(25) is a SICOP which is computationally expensive.
The purpose is to look for the optimal number of agents, x∗, for minimizing the staffing costs as well
as satisfying the specified service level. Since the service level constraints are soft constraints, the
objective function is penalized by adding a penalty function. Therefore, the constrained problem
(23)–(25) can simply be reformulated as an unconstrained one as below.

min F(x) = η
K∑

k=1

ckxk + (1− η)
J∑

j=0

PF j(x) (28)

where η ∈ (0, 1) represents an integrated factor, F(x) denotes an integrated objective value and PF j(x)
denotes a quadratic penalty function.

PF j(x) =

 0, i f g j(x) ≥ b j,

104
×

(
g j(x) − b j

)2
, else,

j = 0, . . . , J. (29)

Figure 4 displays the input output relationship in a one-period multi-skill call center, where x
represents the solution vector, λ expresses the vector of arrival rates, L represents the number of calls,
and F(x) indicates the integrated objective value.
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4.4. Employ the EHOO Approach

This section presents the three parts of the EHOO approach for solving the SICOPs in the staffing
optimization of a one-period multi-skill call center.

4.4.1. Construct the Metamodel

Because splines are piecewise polynomials, every coefficient can influence only part of the domain.
In this work, the cubic Hermite splines are utilized as the splines. The cubic Hermite spline separates the
domain into cubic tensor product finite elements. In the cubit Hermite spline, each cubic element is an
n-dimensional hypercube. The 4n multivariate polynomial coefficients are uniquely determined by the
2n interpolant values and derivatives at the 2n nodes. At each node, the same values and derivatives
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are shared between all elements that share this node. The number of elements can be arbitrarily chosen
in each dimension, since the values and derivatives are continuous for adjacent elements.

There are four steps to establish the RMTS metamodel. (i) Randomly chose M x’s from solution
space and evaluate Fa(x) using accurate evaluation, and denote these M solution vectors and their
corresponding evaluations as x(i) and Fa(x(i)), respectively. (ii) Select suitable parameters of cubic
Hermite splines and regularization coefficients. (iii) Configure the discretized matrix to a sparse matrix
regarding the continuous energy function. (iv) Calculate the spline coefficients of the multivariate spline.

4.4.2. Apply the IEHO Associated with the Metamodel

With the RMTS metamodel, N significant solutions are chosen from solution space using the
IEHO. Φ individuals were randomly generated as the initial population. The fitness of each elephant
was evaluated by the RMTS metamodel. When the IEHO executed tmax iterations, the Φ individuals
were ranked based their fitness. Although the IEHO is designed for real values, it is possible to round
a real value to the nearest integer when an integer value is desired. Once a real value of the optimal
solution variable was determined, it could be rounded to a nearest integer by the bracket function

zi
j,k =

⌊
xi

j,k

⌋
, where xi

j,k ∈ < and zi
j,k ∈ Z. Then, we selected the top N individuals to serve as the

significant solutions.

4.4.3. Obtain the Superb Solution

Finally, the AOCBA approach was used to look for a superb solution from the N significant
solutions. The value of N may not be very large for saving computing time; however, some essential
solutions may be missed if the value of N is very small. To discuss the influence of N between the
computing time and solution quality, the EHOO approach was tested for various values of N. Chen
et al. [25] suggest that an appropriate selection of L0 is between 5 and 20. A suitable selection for ∆ is
between 5 and N.

5. Simulation Results

5.1. Simulation Examples and Test Results

Two examples presented in [29] are used to illustrate the application of the EHOO method. The
first one is a small problem with 12 agent groups and five call types, and the size of the search space is
2012. The second example is a large problem with 15 agent groups and 20 call types, and the size of
the search space is 3015. Table 1 shows the arrival rates in calls per hour and the agent skill groups of
the small problem. The overall service level requirements are b0 = 0.8, and b j = 0.5 for j = 1, . . . , 5.
Table 2 shows the arrival rates in calls per hour and the agent skill groups of the large problem. The
overall service level requirements are b0 = 0.8, and b j = 0.5 for j = 1, . . . , 20. The cost in group k is
ck = 1+ 0.1× sk, where sk is the number of skills in group k. The service times are lognormal-distributed
with mean µk, j = 5 minutes and standard deviation σk, j = 3 minutes for all j and k. The waiting times
are exponentially distributed with mean ρ j = 6 minutes. Calls will abandon before τ = 20 seconds.
Every simulation replication has a length with T + T/20. Each simulation replication is divided into 21
batches, and the first batch is discarded. The choice for T is T = 50 h.

Table 1. Skill groups of the small problem.

Call Type λj Agent Groups

1 440 1 3 4 5 7 8 9 11 12
2 540 3 6 7 8 11 12
3 440 2 4 6 7 9 10 11 12
4 540 5 10 12
5 440 8 9 10 11 12
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Table 2. Skill groups of the large problem.

Call Type λj Agent Groups

1 240 1 3 5 7 9
2 240 1 11 13 15
3 160 2 4 6 8 10
4 260 4 12 14
5 130 1 2 5 11
6 230 3 7 8 10
7 260 5 9 12 13
8 130 5 6 10 12 14 15
9 260 2 4 5 6 10
10 125 5 6 9 13 14
11 235 1 5 8 10 12
12 155 4 9 11 14 15
13 230 2 5 7 10 15
14 260 3 8 9 13 15
15 225 2 6 7 14
16 130 1 5 10 12
17 160 2 6 11
18 130 3 4 13 14
19 260 2 8 12 15
20 260 3 6 8 12 13 14

In both problems, the RMTS was trained by arbitrarily choosing M = 9604 samples. The quantity
M = 9604 was provided by the sample size calculation in a confidence interval for 1% and a confidence
level for 95% [30]. In the choice of parameters for modeling RMTS, δ = 0.5 and ξ = 10−14 were obtained
by the analytic approach. The objective value of each sample was obtained by accurate evaluation.

The integrated factor λ was 0.9 in the small problem. After running numerous hand-tuning
experiments, the values of parameters used in IEHO were αmax = 0.9, αmin = 0.3, βmax = 0.3,

βmin = 0.1, I = 5, ci = 10, i = 1, . . . , 5, Φ =
I∑

i=1
ci = 50 and tmax = 500. Tentative experiments have

shown that IEHO with the above values has performed better over 30 runs. The IEHO beneficially
explored the solution space at the beginning and tended to exploit excellent solutions closer to the
end. When the iterative processes proceeded, the parameters α and β were dynamically modified to
emphasize diversity in early searches and intensity in later searches. Figure 5 presents the curves of α
and β along with iterations. The value of α decreases exponentially. A large α is in favor of promoting
diversity at the beginning, then a small α enhances fine-tuning of local search toward the end. The
value of β is exponentially increased to keep a balance between explorative and exploitative processes.
At first, β has a small value which can achieve the exploration goal more effectively. When the iterative
process proceeds, β is exponentially increased and the search process progressively concentrates around
the optimum to accomplish local exploitation. The number of significant solutions was N = 5. The
following parameters were used in the AOCBA, L0 = 20, ∆ = 10 and La = 104. The time saving factor s
corresponding to N = 5 is 2.08 [25]. Accordingly, the permissible computing budget Cb is 24,038. Table 3
demonstrates the superb solution x∗, cost, service-levels and the CPU times in the small problem.

Table 3. The superb solution x∗, cost, service-levels and the CPU times in the small problem.

x∗ [17,18,17,16,18,17,16,17,16,16,17,17]T

g0(x) ∼ g5(x) 0.80, 0.93, 0.86, 0.93, 0.51, 0.78
COST 253.9

CPU time (sec.) 24.67
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were N = 10, 20, 30 and 40. The values of parameters used in the IEHO were αmax = 0.9, αmin = 0.3,

βmax = 0.3, βmin = 0.1, I = 5, ci = 20, i = 1, . . . , 5, Φ =
I∑

i=1
ci = 100 and tmax = 2000. The parameters

used in the AOCBA were L0 = 20, ∆ = 10 and La = 104. The time saving factors corresponding to N =

10, 20, 30 and 40 are s = 3.4, 6.07, 8.32 and 10.65 [25], respectively. Thus, the permissible computing
budgets are Cb = 29,411, 32,948, 36,058 and 37,559 for N = 10, 20, 30 and 40, respectively. Table 4 shows
the superb solution x∗, cost, service-levels and the CPU times. Experimental results show that when
the value of N increases, the CPU time increases but the total cost decreases. In practice, the value
of N is related to the permissible computing budget for the application. From Table 4, N = 40 is a
recommended choice for the large problem. In addition, all the CPU times are less than two minutes
which are fast enough for real-time application.

Table 4. The superb solution x∗, cost, service-levels and the CPU times in the large problem.

N x* Cost g0(x) CPU Times (sec.)

40 [22,22,22,22,23,23,22,23,22,22,23,23,22,23,22]T 538 0.80 115.65
30 [23,22,23,22,23,22,22,23,23,22,23,23,22,22,22]T 539.1 0.81 112.34
20 [22,22,23,23,23,22,23,23,22,22,22,23,22,23,22]T 539.3 0.82 109.51
10 [22,23,22,22,23,22,22,23,22,23,23,23,22,23,22]T 539.7 0.82 107.47

5.2. Comparisons

To reveal the efficiency and quality of the EHOO approach, three optimization methods, particle
swarm optimization (PSO), genetic algorithm (GA) and evolutionary strategies (ES), were utilized to
resolve the large problem. In the employed PSO [31], the maximum allowable velocity was 0.5; the
inertia factor was 1; both cognitive factor and social factor were 2.05; and the population size was
100. In the applied GA [32], a real-value coding was adopted to represent an integer-valued solution.
A roulette wheel selection, a single point crossover with probability 0.8, and a mutation with probability
0.03 were adopted. The population size was 100. In the employed ES [33], the population size was 100,
the offspring size was 200, and the mutated time constant was 1/

√
15. The rate of self-adaptation in ES

depends on the choice of the mutated time constant. Empirical as well as theoretical investigations
suggest to choose it as 1/

√
K, where K is the dimension of a solution vector. The accurate evaluation

was utilized to evaluate the objective value of a solution vector for three optimization methods.
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We simulated 30 individual runs for the large problem. Because three competing methods should
execute a very long period of time to obtain the optimum, the search processes were stopped after
they spent 100 min of consumed CPU time. Figure 6 displays the computing efficiencies and solution
qualities using four approaches over 30 individual runs. The “∗” point with coordinates (1.93, 538.6)
shown in Figure 6 represents the pair of consumed CPU time and average obtained objective value
obtained using the EHOO for the case N = 40. The progressions of the average best-so-far objective
value of (28) and the corresponding consumed CPU times at the end of every iteration of three heuristic
methods are also shown in Figure 6. The progressions of these values associated with PSO, GA and ES

are plotted as solid line with triangles
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, respectively. Table 5 reveals that the average best-so-far objective values computed
by PSO, GA and ES were 2.54%, 5.71% and 3.96% larger than that obtained by EHOO, respectively. The
average best-so-far objective values determined by three competing approaches were worse not only
than that obtained by EHOO with case N = 40, but also than those obtained by other three cases of N.
Simulation results show that the EHOO approach can determine superb solutions in an acceptable time
and outperforms the three competing approaches. As long as the three competing approaches continue
to proceed for a very long time, it is reasonable to obtain better results than the proposed approach.
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Table 5. Comparison of the average best-so-far objective values of four methods over 30 individual runs.

Approaches ABO † ABO−∗ §

* ×100%

EHOO, CASE N = 40 538.6 0
PSO with accurate evaluation 552.3 2.54%
GA with accurate evaluation 569.4 5.71%
ES with accurate evaluation 559.9 3.96%
† ABO: Average best-so-far objective value; §: ABO obtained by EHOO.

6. Conclusions

To resolve the SICOPs in an acceptable computation time, a heuristic method coupling EHO
with OO was presented. The EHOO method has three parts including metamodel construction,
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diversification and intensification. The RMTS metamodel evaluated a solution vector in a short
computing time. The EHOO method utilized the IEHO for diversification with the AOCBA for
intensification. The EHOO method was applied to minimize the staffing cost in a one-period multi-skill
call center, which was formulated as a SICOP. The EHOO method was compared to three optimization
methods—PSO, GA and ES—with accurate evaluation. The superb solution that was resulted by
the EHOO method had a high quality with favorable computing efficiency. Experimental results
demonstrate that most of the objective values obtained by the EHOO method are close to the optimum
in 30 individual runs. The EHOO method usually obtains a near optimum even though it does not
provide a globally optimal solution. Future research will continue to focus on the improvement of
OO method to resolve more complex stochastic optimization problems, such as portfolio optimization
with stochastic dominance constraints and optimal reinsurance-investment problems.
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