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Featured Application: Bearing anomaly recognition using an intelligent digital twin integrated
with machine learning.

Abstract: In this study, the application of an intelligent digital twin integrated with machine learning
for bearing anomaly detection and crack size identification will be observed. The intelligent digital
twin has two main sections: signal approximation and intelligent signal estimation. The mathe-
matical vibration bearing signal approximation is integrated with machine learning-based signal
approximation to approximate the bearing vibration signal in normal conditions. After that, the
combination of the Kalman filter, high-order variable structure technique, and adaptive neural-fuzzy
technique is integrated with the proposed signal approximation technique to design an intelligent
digital twin. Next, the residual signals will be generated using the proposed intelligent digital twin
and the original RAW signals. The machine learning approach will be integrated with the proposed
intelligent digital twin for the classification of the bearing anomaly and crack sizes. The Case Western
Reserve University bearing dataset is used to test the impact of the proposed scheme. Regarding the
experimental results, the average accuracy for the bearing fault pattern recognition and crack size
identification will be, respectively, 99.5% and 99.6%.

Keywords: digital twin; Kalman filter; high-order variable structure technique; support vector
algorithm; adaptive neural-fuzzy approach; bearing anomaly detection; crack size identification
nonstationary; rotating machinery

1. Introduction

The effort to reduce energy consumption has been one of the significant challenges in
recent years. In this regard, heavy industries play a considerable role in energy consump-
tion. Induction motors are the essential tools used in heavy industries and consume around
80% of the energy in these industries. To increase efficiency and reduce energy consump-
tion in motors, various factors such as improving the quality of power consumption and
condition monitoring for fault detection, identification, and tolerance play a constructive
role. To examine faults in motors, it should be noted that in general, mechanical defects at
about 79% and electrical faults at around 21% are the major fault groups in these systems.
One of the remarkable types of mechanical faults is bearing failure, which accounts for
about 69% of mechanical defects [1].

Nondestructive tests are extremely important for condition monitoring of bearings.
The basic concept of nondestructive tests is analyzing the various types of signals extracted
from bearings. Nondestructive test methods are evolving day by day, the most important of
which are magnetic detection tests, sound and vibration tests, ultrasound, electromagnetic
spectroscopy, signal processing, and multidimensional image processing. Each of these
methods has special advantages that make them more suitable for use in various industries.
Condition monitoring means fault diagnosis and maintenance from the operating bearing.
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In general, this method works based on data collection of dynamic properties of the bearing
and comparing them with their healthy state. In classical condition monitoring, faults
are usually detected by one of the following techniques: vibrations, acoustic emission,
and motor current signature analysis [2]. In this work, the vibration sensor is used for
data collection.

Different methods have been introduced for bearing-fault detection and identifica-
tion (BFDI) and are categorized into the following four main groups: signal processing-
based approaches, model-based schemes, machine/deep learning methods, and hybrid
approaches [3,4]. Signal processing-based techniques have been used to diagnose de-
fects in various studies, but robustness in noisy conditions is the principal challenge of
these techniques [5,6]. On the other hand, model-based approaches are robust and stable,
but modeling the physical systems in uncertain conditions is the main challenge of this
method [7]. Most recently, machine/deep learning schemes have been applied in numer-
ous applications, but reliability is the foremost challenge of these methods [4]. Hybrid
algorithms are a combination of two or three of the above algorithms to make new reliable
and effective techniques for BFDI [8]. In this research, a hybrid algorithm based on the
incorporation of the model-based approach, data-driven technique, artificial intelligence
method, and machine learning algorithm is prescribed.

Digital twins are important to confirm the style of a physical system. This basic concept
is introduced to make a connection between the modeling and the real-time measurement
from the systems. Moreover, the digital twin is used for state prediction [9]. To design a
BFDI based on a digital twin (DT), the combination of the model-based approach, data-
driven technique, artificial intelligence approach, and machine learning scheme is used.
The central concept of a DT is designed based on physical system modeling. To model the
real systems, diverse procedures have been used that are categorized into two principal
groups: (i) mathematical-based system modeling such as the newton Euler technique,
Lagrange method, and (ii) data-driven-based system modeling such as system identifica-
tion techniques, artificial intelligence methods, machine learning approaches, and deep
learning schemes [10]. Mathematical modeling for vibration signals in the bearings has
been presented in [10,11]. The main affirmative point for vibration modeling in the bearing
based on the mathematical-based approach (such as multi degrees of freedom vibration
bearing modeling) is reliability. However, the complexity and difficulty of the modeling in
the presence of uncertain conditions can be the most important challenge of this technique.
To reduce the complexity of system modeling based on mathematical algorithms, data-
driven approaches have been introduced [12,13]. The applications of the fuzzy technique
in function approximation (system modeling) have been reported in [14]. Tuning the gain
updating factors and membership functions are significant challenges of the classical fuzzy
technique for function approximation. The next candidate for function approximation in
nonlinear systems is a neural network. The applications of the neural network such as
multilayer perceptron (MLP) and radial bases neural network for approximation of the
system/signal have been proposed in [15]. In recent years, the application of machine
and deep learning for function approximation has increased sharply. The application of a
machine learning-based approach such as support vector regression for signal approxima-
tion has been introduced in [16]. Recently, deep learning methods such as convolutional
neural networks [17], recurrent neural networks [18], generative adversarial networks [19],
self-organizing maps [20], Boltzmann machines [21], deep reinforcement learning [22], and
autoencoders [23] have been highly recommended for function approximation. The next
algorithms for function approximation are identification techniques. These techniques
work based on the combination of modern control algorithms and regression techniques.
The identification algorithms are categorized into two groups: a linear approach and a
nonlinear approach [24]. In the linear based identification technique, the linear function
based on the regression technique is used to approximate the function of systems. In the
nonlinear-based identification technique, the nonlinear functions based on a combina-
tion of the identification algorithm, artificial intelligence, and modern control algorithm
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are used to approximate the function of systems [17]. In this research, a combination of
mathematical-based modeling and a nonlinear-based identification algorithm for modeling
the DT of the bearing is recommended.

To increase the accuracy of modeling in DT, various techniques can be used such as
observation techniques and the Kalman filter method [25]. The observation techniques are
categorized into two general groups: (i) linear observers such as proportional-integral (PI)
observer [26] and proportional multi-integral (PMI) observer [27]; (ii) nonlinear observers
such as sliding mode observer (SMO) [10,28], feedback linearization observer (FLO) [29],
backstepping observer (BSO) [30], fuzzy observer (FO) [31], neural network observer
(NNO) [32], and Lyapunov observer (LO) [33]. However, the main advantage of the linear
observer is simplicity, while accuracy is the main challenge of this algorithm. The FLO and
the BSO have solved the challenge of estimation accuracy, but robustness was the challenge
in these techniques. To reduce the challenge of robustness, SMO and LO have been used
in different applications. The challenge of classical SMO is the chattering phenomenon.
The LO also has the challenge of complexity. The FO and the NNO have the challenge
of reliability for signal estimation. The second way to estimate the signal is the Kalman
filter (KF) technique. The KF assumes that the noise is distributed Gaussian, and the signal
observation models are linear [34]. Nevertheless, the filter gives the succeeding conditional
probability estimate in the particular case where the errors follow a Gaussian distribution.
The main drawback of the KF for signal estimation is the performance of this algorithm
against nonlinear signals. Over the years, generalizations and extensions to this method
have been established, such as the unscented Kalman filter (UKF) and the extended Kalman
filter (EKF) in which both techniques are worked based on a linearization algorithm [35].
The extended Kalman filter is the most widely used estimation algorithm for nonlinear
systems based on a linearization algorithm [33]. In the linearization technique, the accuracy
of signal estimation is not accurate enough for signal estimation for fault pattern recognition
and crack size identification (FPRCI). To develop the performance of signal estimation
including reducing the estimation error in normal conditions and increasing the level of
separability for FPRCI, the hybrid-based Kalman filter (HBKF), which is a combination
of the Kalman filter, a high-order variable structure uncertainties estimator, hybrid-based
signal modeling, and adaptive neural-fuzzy technique, will be introduced here.

After estimating the vibration signals, the classification algorithms can be selected for
FPRCI. To classify the signal’s state different techniques have been used that are divided
into three main groups: (a) classical classifiers such as the sliding mode technique [10];
(b)machine learning-based classifiers including support vector machine (SVM) [36] and
decision trees [37]; (c) deep learning-based classifiers including convolution neural net-
works [38] and autoencoders [39]. In this work, the SVM is recommended for classification
of the faults and identification of the crack sizes.

In this research, the combination of the hybrid-based signal modeling, an adaptive
neural-fuzzy-based variable structure Kalman filter, and SVM is suggested for FPRCI. Thus,
this technique has three stages: signal approximation and estimation using the intelligent
DT technique, residual signal generation, and classification. The first stage (intelligent
digital twin) has two parts: (a) signal approximation and (b) signal estimation. Therefore,
first, the normal signal is approximated using a combination of the mathematical-based
approach and machine learning-based regression. Next, the combination of a Kalman
filter (KF), the high-order variable structure technique (HVS), and the adaptive neural-
fuzzy method (ANF) are recommended in this research, which from now on is called the
hybrid robust Kalman filter (HRKF) for signal estimation. In the next stage, the residual
signal is generated using the difference between the original and the estimated vibration
signals. In addition, in the third stage, an SVM is suggested for FPRCI. This work has the
following contributions:

• The vibration signal approximation using a combination of the mathematical-based
approach and machine learning-based regression is the first contribution of this work.
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• The vibration bearing signal estimation using intelligent DT based on the combination
of a Kalman filter, the high-order variable structure technique, and the adaptive
neural-fuzzy method (ANF) that is approximated using the proposed approach.

• The anomaly classification and crack size identification using intelligent DT integrated
with machine learning approach is the third contribution.

This research work has the following parts. The proposed digital twin integrated with
the machine learning approach is proposed in Section 2. Section 3 provides experimental
results for the proposed digital twin integrated with the machine learning approach as
compared with the other approaches. The conclusion is explained in Section 4.

2. Proposed Methodology

Figure 1 illustrates the intelligent DT integrated with SVM for FPRCI. Based on this
figure, the combination of the proposed signal approximation algorithm, adaptive neural-
fuzzy integrated with variable structure Kalman filter, and SVM is recommended for FPRCI.
Thus, the intelligent DT (signal approximation and estimation), residual signal generation,
and classification are the three main stages in the proposed algorithm.
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In the first stage, the proposed intelligent DT is designed. This part has two sub-
blocks, the signal approximation unit and the signal estimation unit. For normal signal
approximation, the mathematical vibration signal modeling is integrated with the data-
driven algorithm. The data-driven-based regression is designed based on the combination
of the autoregression technique, the Laguerre method, and the machine learning-based
(support vector regression (SVR)) approach (henceforth called SAL). Therefore, from now
on the combination of the mathematical-based modeling (MAT) and SAL algorithm is
called MS. For vibration signal estimation, the hybrid robust Kalman filter (HRKF) is
proposed. The HRKF is the combination of the Kalman Filter (KF), the high-order variable
structure technique (HVS), and the adaptive neural-fuzzy method (ANF). Thus, first, the
KF is developed based on the normal signal state-space signal modeling. Next, The HVS
technique is suggested to reduce the error of signal modeling in uncertain conditions. After
that, the combination of the KF and the HVS with the ANF method is used to increase the
reliability and flexibility of the normal signal estimation.

Thus, the proposed intelligent DT is developed by MS integrated with the HRKF. The
second stage is the residual signal generation based on the difference between the original
RAW signals and the estimated ones. The level of residual signals in different patterns
is completely different. In addition, the different crack sizes have different signal levels.
Thus, the level of residual signals for normal (NS), roller fault state (RFS), inner fault state
(IFS), and outer fault state (OFS) are different, which from now on is called fault pattern
recognition. Moreover, the level of these signals in the various crack sizes (0.007, 0.014, and
0.021 inch) are different, which from now on is called crack size identification.

The third stage is used for the classification of residual signals based on the machine
learning approach. Thus, the SVM is used for FPRCI.

2.1. Dataset

The Case Western Reserve University bearing dataset (CWRUBD) is recommended
to test the proposed intelligent digital twin technique for FPRCI in the bearing. In the
CWRUBD, a 2 horsepower (hp) reliance electric motor drives a shaft on which a torque
transducer and encoder are mounted. Torque is applied to the shaft via a dynamometer and
electronic control system. A motor is utilized to rotate the bearing at four different rotation
per minute (RPM) speeds—including 1797, 1772, 1750, and 1730 RPM [38]. Vibration data
was collected using accelerometers, which were attached to the housing with magnetic
bases. Accelerometers were placed at the 12 o’clock position at both the drive end and
fan end of the motor housing. During some experiments, an accelerometer (PCB 353B33
accelerometers-PCB Piezotronics) was attached to the motor supporting base plate as well.
Vibration signals were collected using a 16-channel data acquisition module NI DAQ 6062E
recorder and were post processed in a MATLAB environment. The vibration signals were
collected via installed on bearing housing. A vibration sensor is used to collect the data in
four different conditions including NS, RFS, IFS, and OFS, with three different crack sizes
including 0.007, 0.014, and 0.021 inch. Moreover, the sampling rate of data collection is
48 kHz. The bearing type used in the CWRUBD is the 6205-2RS JEM SKF roller bearing.
Figure 2 shows the testbed for data collection which is designed by CWRUBD. Moreover,
Table 1 summarizes the information of the CWRUBD according to the signal conditions,
motor torque loads, and the bearing crack sizes [40].
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Table 1. Summarized information of the CWRUBD [40].

Dataset Group States Load (hp) Crack Sizes (inch)

i

NS 0

0.007, 0.014, and 0.021
RFS 0
IFS 0
OFS 0

ii

NS 1

0.007, 0.014, and 0.021
RFS 1
IFS 1
OFS 1

iii

NS 2

0.007, 0.014, and 0.021
RFS 2
IFS 2
OFS 2

iv

NS 3

0.007, 0.014, and 0.021
RFS 3
IFS 3
OFS 3

2.2. Digital Twin

Designing an intelligent digital twin has two parts: (a) signal approximation using a
combination of mathematical-based vibration signal of bearing modeling with machine
learning-based regression, and (b) signal estimation to improve the performance of signal
modeling using the combination of a Kalman filter, the high-order variable structure
technique, and the adaptive neural-fuzzy method (ANF).

2.2.1. Signal Modeling: The First Step to Design the Digital Twin

The first part of this stage is the vibration signal modeling in the normal state for the
bearing. Therefore, first, the vibration signal in the normal state using the five degrees
of freedom (DOF) mathematical Lagrangian technique is modeled. The mathematical
vibration signal modeling for the bearing in the normal state is expressed by the following
function [10,41].

fM(q) = MM(q)
[ ..
q
]
+ BM

(
q,

.
q
)
+ ∆M (1)

Here, fM(q), MM(q),
..
q, BM

(
q,

.
q
)
, and ∆M are the force applied to the bearing, the matri-

ces of mass for the bearing, the vibration signal acceleration for the bearing, the nonlinear
term of the vibration signal that is one of the important challenges for mathematical
modeling, and unknown conditions including faults and uncertainties, respectively. The
nonlinear term of the vibration signal should be calculated using the following definition.

BM
(
q,

.
q
)
= VM

[ .
q
]
+ DM[q] (2)



Appl. Sci. 2021, 11, 4602 7 of 26

Here, VM,
.
q, and DM are the stiffness of the bearing which is a nonlinear-based param-

eter, the velocity of the vibration signal of the bearing, and the damping of the bearing,
respectively. Regarding (1), estimation of the parameter of the unknown condition is one
of the main challenges of mathematical modeling of nonlinear systems such as the bearing.
Therefore, based on [10,41], the unknown conditions that are a combination of uncertainties
and faults can be modeled using 5-DOF vibration signal modeling, and is defined by the
following equation.

∆M = αr + αi + αo (3)

where αr, αi, and αo are the predicted effect of RFS, IFS, and OFS, respectively. The predicted
RFS effect, IFS effect, and OFS effect are represented as the following definitions, respectively.

αr = Max
(

αioCos
(
αj
)
+ αioSin

(
αj
)
− εω − α f , 0

)
(4)

αi = Max
(

αioCos
(
αj
)
− αioSin

(
αj
)
−
(

2×
(

εω − α f

))
, 0
)

(5)

αo = Max
(

αioCos
(
αj
)
+ 1.5× αioSin

(
αj
)
− εω + α f , 0

)
(6)

where the difference between the center of mass in IFS and OFS, (αio), is represented
as follows:

αio = αxi − αxo (7)

Here, αxi and αxo are the IFS center of mass and the OFS center of mass, respectively.
The angular position in the RFS, IFS, and OFS,

(
αj
)
, is computed as the following equation.

αj =
2π(j− 1)

kr
+ εω + αo (8)

where kr and εω are the RFS numbers and the rotor velocity, respectively. Moreover, the
deformation, (α f ), is determined as follows:

α f = εωa + εωb (9)

Here, (εωa and εωb) are the angular width at two positions, position a and b, re-
spectively. Thus, regarding (1), the state-space function for modeling the bearing in the
healthy state based on the mathematical technique using 5-DOF vibration signal modeling
is represented by the following definition.

WMAT(k + 1) = γMAT(WMAT(k), Uin(k)) + ∆(WMAT(k), Uin(k))

ZMAT(k) = (βMAT)
TWMAT(k)

(10)

Here, WMAT(k), Uin(k), γMAT(WMAT(k), Uin(k)), ZMAT(k), βMAT , and ∆(WMAT(k),
Uin(k)) are the state of the bearing signal, the input signal that should be measured,
the nonlinearity term for the bearing modeling using the 5-DOF vibration signal, the out-
put of the signal’s model using 5-DOF vibration signal modeling, the coefficient to optimize
the state-space output, and finally the unknown conditions, respectively. Table 2 illustrates
the bearing parameter information to the mathematical modeling of the bearing that was
collected by CWRUBD. This procedure is reliable, but the complexity and uncertain condi-
tion modeling are the two main problems of the mathematical system modeling to design
the digital twin.
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Table 2. Information of the bearing for mathematical modeling of the CWRUBD [10,40].

Parameters Value

Number of rollers 9
Stiffness of roller 5.96× 107 (N

m )
Mass of outer (kg) 2.7 (Kg)
Stiffness of outer 1.31× 105 (N

m )
Mass of shaft (kg) 1.36 (Kg)
Stiffness of shaft 23.3× 106 (N

m )
Damping 654 (NS

m )
Roller diameter 7.940 (mm)
Pitch diameter 39.04 (mm)

Defect size 7 (mm)
Defect depth 2 (mm)

Inside diameter 25 (mm)
Outside diameter 52 (mm)

Ball diameter 7.94 (mm)
Thickness 15 (mm)

In the next step, the data-driven system identification technique is suggested to modify
the accuracy of system modeling for the bearing digital twin. Thus, regarding Figure 1, first,
the autoregressive technique is recommended to approximate the state-space function of
the vibration signal of the bearing in the normal state. The autoregressive (AUT) technique
is a linear-based signal approximation for modeling the signal in different domains such
as state-space. Thus, the state-space bearing signal modeling in a healthy condition is
represented as follows [42].

WAUT(k + 1) = [γAUTWAUT(k) + ∆AUT(k)] + eAUT(k)

ZAUT(k) = (βAUT)
TWAUT(k)

(11)

Here, WAUT(k), eAUT(k), ∆AUT(k), ZAUT(k), and (γAUT , βAUT) are the state of the
signal modeling based on the AUT technique for the bearing’s digital twin, the error of the
bearing’s digital twin modeling using the AUT technique, the unknown condition of the
bearing’s digital twin modeling that is computed using the AUT technique, the bearing’s
digital twin output modeling using the AUT technique, and the coefficients for the state-
space bearing’s digital twin tuning using the AUT method, respectively. Moreover, the
unknown condition and the error of the bearing’s digital twin modeling that are computed
using the AUT technique are represented as follows.{

∆AUT(k) = Z(k)− ZAUT(k)
eAUT(k) = ZAUT(k + 1)− ZAUT(k)

(12)

Here, Z(k) is the bearing RAW signal in the healthy state. The AUT technique is
linear. To increase the robustness and reduce the effect of uncertain conditions, which was
a challenge in mathematical modeling, and the AUT method of the digital twin, the robust
autoregressive-Laguerre (AUT-LAG) technique is suggested. The state-space definition
of the AUT-LAG method for the bearing’s digital twin modeling is represented as the
following equation.

WAUT−LAG(k + 1) =
[
γAUT−LAG1WAUT−LAG(k) + γAUT−LAG2 ZAUT−LAG(k) + ∆AUT−LAG(k)

]
+eAUT−LAG(k)

ZAUT−LAG(k) = (βAUT−LAG)
TWAUT−LAG(k)

(13)
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Here, WAUT−LAG(k), eAUT−LAG(k), ∆AUT−LAG(k), ZAUT−LAG(k), and
(
γAUT−LAG1 ,

γAUT−LAG2 , βAUT−LAG
)

are the state of the signal modeling based on the AUT-LAG tech-
nique for the bearing’s digital twin, the error of the bearing’s digital twin modeling using
the AUT-LAG technique, the unknown condition of the bearing’s digital twin modeling
that is computed using the AUT-LAG technique, the bearing’s digital twin output modeling
using the AUT-LAG technique, and the coefficients for the state-space bearing’s digital twin
tuning using the AUT-LAG method, respectively. Furthermore, the unknown condition
and the error of the bearing’s digital twin modeling that are computed using the AUT-LAG
technique are represented as the following calculation.{

∆AUT−LAG(k) = Z(k)− ZAUT−LAG(k)
eAUT−LAG(k) = ZAUT−LAG(k + 1)− ZAUT−LAG(k)

(14)

The AUT-LAG technique is more robust and stable than the AUT method, but this
technique suffers from the nonlinear behavior of the signal. The machine-learning al-
gorithm based on the support vector regression (SVR) is recommended to improve the
effectiveness of the bearing’s digital twin modeling. Hence, the combination of AUT-LAG
and SVR (henceforth called SAL) to identify the signal of the bearing is represented as the
following function. WSAL(k + 1) =

[
γSAL1WSAL(k) + γSAL2{ZAUT−LAG(k) + ZSVR(k)}

+∆SAL(k)

]
+ eSAL(k)

ZSAL(k) = (βSAL)
TWSAL(k)

(15)

Here, WSAL(k), eSAL(k), ∆SAL(k), ZSAL(k), ZSVR(k), and
(
γSAL1 , γSAL2 , βSAL

)
are the

state of the signal modeling based on the SAL technique for the bearing, the error of
the bearing modeling using the SAL technique, the unknown condition of the bearing
modeling that is computed using the SAL technique, the bearing output modeling using
the SAL technique, the nonlinearity compensator of the bearing’s output compensation
using the SVR technique, and the coefficients for the state-space bearing’s performance
tuning using the SAL method, respectively. Additionally, the unknown condition and the
error of the bearing’s modeling that are computed using the SAL procedure are represented
as the following function.{

∆SAL(k) = Z(k)− ZSAL(k)
eSAL(k) = ZSAL(k + 1)− ZSAL(k)

. (16)

The nonlinearity compensator of the bearing’s output compensation using the SVR
technique, (ZSVR(k)), is introduced using the following definition.

ZSVR(k) = ∑
i

(
δi
+ − δi

−)K(θi, θ) +∅. (17)

Here, (δi
+, δi

−), K(θi, θ), and ∅ are the Lagrange constants, the nonlinear kernel functions
that are selected in this work to improve the power of compensation, and the function’s
bias, respectively. The Gaussian kernel function is suggested in this work and this function
is introduced based on variance, (σ), using the following equation.

K(θi, θ) = e(−
1

2σ2 ‖θi−θ2‖). (18)

In addition, the function’s bias (∅) is made known to the following preparation.

∅ =
1
|S| ∑

s∈S
[ZS −∑

i∈S

(
δi
+ − δi

−)× K(θi, θS)− ({× sign
(
δi
+ − δi

−))]. (19)

Here, S, ZS, and { are the support vector of approximation, the signal which is defined
in the range of the support vector, and the accepted boundary of the support vector to allow
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for better signal compensation, respectively. Furthermore, if ω is defined as a constant, the
support vector of approximation, (S), is defined using the following definition.

S =
{

i
∣∣0 < δi

+ − δi
− < ω

}
. (20)

Thus, the proposed technique of the digital twin to model the bearing using the com-
bination of the MAT technique, Equation (10) and the SAL algorithm, and Equation (15),
(henceforth called MS) is represented as the following definition.{

WMS(k + 1) =
[
γMS1WMS(k) + γMS2 ZMS(k) + ∆MS(k)

]
+ eMS(k)

ZMS(k) = (βMS)
TWMS(k)

. (21)

Furthermore, the unknown condition and the error of the bearing modeling using the
digital twin algorithm that was computed using the MS procedure are represented as the
following function. {

∆MS(k) = Z(k)− ZMS(k)
eMS(k) = ZMS(k + 1)− ZMS(k)

(22)

Here, WMS(k), eMS(k), ∆MS(k), ZMS(k), and
(
γMS1 , γMS2 , βMS

)
are the state of the

bearing signal modeling based on the MS technique for the bearing’s digital twin, the error
of the bearing’s digital twin modeling using the MS technique, the unknown condition
of the bearing’s digital twin modeling that was computed using the MS technique, the
bearing’s digital twin output modeling using the MS technique, and the coefficients for the
state-space bearing’s digital twin performance tuning using the MS method, respectively.

2.2.2. Signal Estimation: Second Step to Design the Digital Twin

After the first step of the digital twin’s modeling for the bearing, in the next step, the
signal estimation technique is suggested to improve the accuracy and robustness of the
bearing’s digital twin. In this study, the hybrid robust Kalman filter, which is a combination
of the Kalman filter (KF), the high-order variable structure technique (HVS), and the
adaptive neural-fuzzy method (ANF) is recommended for signal estimation. Thus, first, we
implement a Kalman filter for vibration signal estimation based on the MS signal modeling.
The state-space KF formulation using the MS function approximation is represented as the
following equation.

WMS−KF(k + 1) =
[

γMS1−KFWMS−KF(k) + γMS2−KFZMS−KF(k)
+∆MS−KF(k)

]
+

eMS−KF(k) + ∂[Z(k)− ZMS−KF(k)]
ZMS−KF(k) = (βMS−KF)

TWMS−KF(k)

(23)

Here, WMS−KF(k), eMS−KF(k), ∆MS−KF(k), ZMS−KF(k), ∂, and
(
γMS1−KF, γMS2−KF,

βMS−KF) are the state of the signal estimation based on the KF technique for the bearing’s
digital twin which was modeled by the MS technique, the error of the bearing’s digital
twin estimation using the KF technique which was modeled by the MS technique, the
unknown condition of the bearing’s digital twin estimation that was computed using the
KF technique which was modeled by the MS technique, the bearing’s digital twin output
estimation using the KF technique which was modeled by the MS technique, the Kalman
filter gain matrices, and the coefficients for the state-space bearing’s digital twin tuning
using the KF method which was modeled by the MS technique, respectively. Moreover, the
Kalman filter gain matrices (∂) are represented as the following function.

∂(k) =
γMS1−KF × ∆MS−KF(k)× (βMS−KF)

T

[βMS−KF × ∆MS−KF(k)× (βMS−KF)T + N]
(24)
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Furthermore, to modify the performance of the KF estimator, the unknown condition
of the bearing’s digital twin estimation that was computed using the KF technique which
was modeled by the MS technique is represented using the following definition.

∆MS−KF(k + 1) = γMS1−KF × ∆MS−KF(k)× (γMS1−KF)
T + Q− ∂(k)

×[βMS−KF × ∆MS−KF(k)×
(

βMS−KF)
T + N

]
× ∂T(k)

(25)

Here, N and Q are the sensor noise and the process noise covariance matrices. To
increase the accuracy and robustness of the KF, the combination of the KF and the HVS
(henceforth called RKF) is recommended in this study. The robustness of the RKF to
parameters of unknown conditions is guaranteed. Thus, the state-space RKF formulation
using the MS function approximation is represented as the following calculation.

WMS−RKF(k + 1) =
[

γMS1−RKFWMS−RKF(k) + γMS2−RKFZMS−RKF(k)+
∆MS−RKF(k)

]
+

eMS−RKF(k) + ∂[Z(k)− ZMS−RKF(k)] + γMS3−RKF × sgn(S∗RKF)

ZMS−RKF(k) = (βMS−RKF)
TWMS−RKF(k)

(26)
where the sign function, (sgn(S∗)), is introduced as{

sgn(S∗) = 1 i f S∗ ≥ 0
sgn(S∗) = −1 i f S∗ < 0

. (27)

Besides, the unknown condition of the bearing’s digital twin estimation that was
computed using the RKF technique and was modeled by the MS technique is represented
using the following definition.

∆MS−RKF(k + 1) = γMS1−RKF × ∆MS−RKF(k)× (γMS1−RKF)
T + Q− ∂(k)

×[βMS−RKF × ∆MS−RKF(k)×
(

βMS−RKF)
T + N

]
× ∂T(k)

+γMS4−RKF × sgn‖(S∗RKF)‖0.5 − ϕRKF

(28)

and
.
ϕRKF = γMS5−RKF × sgn(S∗) (29)

Moreover, the surface of the variable structure method in the RKF, (S∗RKF), is repre-
sented as the following explanation.

S∗RKF = Z− ZMS−RKF(k) (30)

Here, WMS−RKF(k), eMS−RKF(k), ∆MS−RKF(k), ZMS−RKF(k), S∗RKF, and
(
γMSi−RKF,

βMS−RKF) are the state of the signal estimation based on the RKF technique for the bearing’s
digital twin which was modeled by the MS technique, the error of the bearing’s digital
twin estimation using the RKF technique which was modeled by the MS technique, the
unknown condition of the bearing’s digital twin estimation that was computed using
the RKF technique which was modeled by the MS technique, the bearing’s digital twin
output estimation using the RKF technique which was modeled by the MS technique,
the surface of the variable structure method in the RKF, and the coefficients for the state-
space bearing’s digital twin tuning using the RKF method which was modeled by the MS
technique, respectively. However, the RKF improves the robustness of the KF to increase the
flexibility and accuracy of the bearing’s digital twin. The combination of the RKF and the
ANF technique (henceforth called HRKF) modeled by the MS approach is recommended.
The ANF approach is an artificial intelligence-based technique that is a combination of
two approaches, a fuzzy logic algorithm and a neural network. Hence, the state-space
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HRKF formulation using the MS function approximation is represented as the following
definition.

WMS−HRKF(k + 1) =

 γMS1−HRKFWMS−HRKF(k)+
γMS2−HRKFZMS−HRKF(k)+

∆MS−HRKF(k)

+
eMS−HRKF(k) + ∂[Z(k)− ZMS−HRKF(k)] + γMS3−HRKF × sgn(S∗HRKF)

ZMS−HRKF(k) = (βMS−HRKF)
TWMS−HRKF(k)

(31)

Above and beyond, the unknown condition of the bearing’s digital twin estimation
that was computed using the HRKF technique and was modeled by the MS technique is
represented using the following definition.

∆MS−HRKF(k + 1) = γMS1−HRKF × ∆MS−HRKF(k)× (γMS1−HRKF)
T

+Q− ∂(k)× [βMS−HRKF × ∆MS−HRKF(k)×
(

βMS−HRKF)
T + N

]
× ∂T(k)

+γMS4−HRKF × sgn‖(S∗HRKF)‖0.5 − ϕHRKF
+γMS6−HRKF × ZANF(k)

(32)

and
.
ϕHRKF = γMS5−RKF × sgn(S∗HRKF) (33)

Moreover, the surface of the variable structure method in the HRKF, (S∗HRKF), is
represented as the following explanation.

S∗HRKF = Z− ZMS−HRKF(k) (34)

Here, WMS−HRKF(k), eMS−HRKF(k), ∆MS−HRKF(k), ZMS−HRKF(k), S∗HRKF, ZANF(k),
and

(
γMSi−HRKF, βMS−HRKF

)
are the state of the signal estimation based on the HRKF

technique for the bearing’s digital twin which was modeled by the MS technique, the error
of the bearing’s digital twin estimation using the HRKF technique which was modeled
by the MS technique, the unknown condition of the bearing’s digital twin estimation
that was computed using the HRKF technique which was modeled by the MS technique,
the bearing’s digital twin output estimation using the HRKF technique which was mod-
eled by the MS technique, the surface of the variable structure method in the HRKF, the
estimation compensator using the ANF method, and the coefficients for the state-space
bearing’s digital twin tuning using the HRKF method which was modeled by the MS
technique, respectively. The artificial intelligence-based technique, (ANF), to compensate
the performance of the bearing’s digital twin output, (ZANF(k)), is introduced using the
following definition. 

ZANF(k) =
∑r Zr×ϑr

∑r ϑr

ϑr = ∑
r

e(−0.5 ∑i (
X(k)−µr

σ )2)
(35)

Here, Zr(k), µr, and σ are the reference point of uncertainty estimation using the ANF
technique, the membership function of the fuzzy set to design the proposed ANF, and
variance, respectively. To improve the performance of ZANF(k), the adaptive member-
ship function and the adaptive variance of the fuzzy set to design the proposed ANF,
(µr
∗) and (σ∗) are defined as the following equations, respectively.

µr,t+1
∗ = µr,t −Θr,t ×

∂ϑr

∂µr,t
(36)

σt+1
∗ = σt −Θr,t ×

∂ϑr

∂σt
(37)

Here, Θr,t is a tuning coefficient. Therefore, to design the digital twin for the bearing,
we have two steps: signal modeling and signal estimation. For the first step of the bearing’s
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digital twin, signal modeling, the combination of autoregression (AR), Laguerre filter (LA),
and support vector regression (SVR) (henceforth called SAL), was recommended. Next,
in the second step of the bearing’s digital twin (signal estimation), the combination of a
Kalman filter (KF), the high-order variable structure technique for robustness (R), and the
adaptive neuro-fuzzy technique (ANF) (henceforth called HRKF), which was modeled by
the SAL technique, was recommended. Consequently, after modeling and estimation the
bearing signal using the proposed digital twin (MS-HRKF), the residual signal is computed
in the next section.

2.3. Residual Signal Generation

Regarding Figure 1, the digital twin was used to model and estimate the signals. First,
the normal condition signal was modeled using the proposed MS technique. Next, the
estimator was designed and tuned for the normal state signal using the HRKF method.
After that, the normal and abnormal state (unknown) signals were estimated using the
proposed digital twin (MS-HRKF) scheme. The accuracy, robustness, and reliability of the
digital twin are quite significant for signal classification. Before the signal classification
using the machine learning algorithm, the residual signal, which is defined by the difference
between the original RAW signal of the bearing and the estimated signal using the digital
twin, is computed using the following formulation.

RMS−HRKF(k) = Z(k)− ZMS−HRKF(k) (38)

where RMS−HRKF(k) is the residual signal of unknown signals using the proposed digital
twin (MS-HRKF) technique. In the next part, the machine learning technique is used for
FPRCI of the bearing.

2.4. Fault Pattern Recognition and Crack Size Identification Using SVM

After generating the residual signals for all conditions, the resampled root means
square (RMS) residual signals are determined. The resampled RMS residual signal is
presented as a following definition.

RMS−HRKF(k)rms =

√√√√ 1
M

M

∑
j=1

RMS−HRKF(k)
2 (39)

Here, RMS−HRKF(k)rms and M denote the resampled RMS value for the residual
signal of unknown signals using the proposed digital twin (MS-HRKF) and the number
of windows to determine the resampled RMS residual signal, respectively. For each state,
the residual signal is made up of 120,000 samples. It was segmented into 100 windows;
each window contains 1200 samples. For signal classification, the RMS feature is used for
100 windows. The support vector machine (SVM) is suggested for the RMS resampled
residual signal classification. The training set includes 75% and the testing set includes
the remaining 25%. The details of the training and testing datasets for FPRCI using SVM
are illustrated in Table 3. In addition, Algorithm 1 illustrates the design steps of the
proposed scheme.

Table 3. Details of the training and testing resampled RMS residual signals using SVM.

Training Samples Testing Samples

Pattern recognition

NS 900 300

RFS 900 300

IFS 900 300

OFS 900 300
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Table 3. Cont.

Training Samples Testing Samples

Crack size
identification

RFS

0.007 inch 300 100

0.014 inch 300 100

0.021 inch 300 100

IFS

0.007 inch 300 100

0.014 inch 300 100

0.021 inch 300 100

OFS

0.007 inch 300 100

0.014 inch 300 100

0.021 inch 300 100

Algorithm 1 The proposed approach: Intelligent digital twin integrated with SVM
for bearing anomaly detection and crack size identification.

1.1. Digital Twin’s Signal Approximation No of Eq.
1: Vibration bearing signal approximation using the MAT algorithm. (10)
2: Vibration bearing signal approximation using the AUT technique. (11,12)
3: Improve the robustness in the AUT using the AUT-LAG method. (13,14)
4: Increase the accuracy in the AUT-LAG using the SAL approach. (15,16)

5:
Combination of the MAT algorithm and the SAL approach for the proposed
approach for vibration bearing signal approximation.

(21,22)

1.2. Digital Twin’s Signal Estimation
6: Vibration bearing signal estimation using the MS-KF method. (23,25)
7: Increase the robustness in the MS-KF using the MS-RKF approach. (26–30)

6:
Increase the accuracy and reliability in the MS-RKF using the MS-HRKF
technique.

(31–34)

2. Residual Signal Determination
7: Determine the intelligent digital twin (MS-HRKF) residual signal. (38)

3. Signal Classification
8: Resample the residual signals and find the RMS resampled residual signal. (39)
9: Pattern recognition and crack size identification using SVM.

3. Experimental Results and Discussion

To experiment with the power of the proposed scheme for FPRCI, the CWRUD was
used in this study. The vibration sensor was selected for data collection. This sensor collects
signals in the following four classes: NS, RFS, IFS, and OFS. Moreover, the crack sizes
for the RFS, IFS, and OFS are 0.007, 0.014, and 0.021 inch. Furthermore, the motor torque
load varies from 0 to 3 hp for all four classes. The experimental results have three main
sections: digital twin test and analysis, residual signals assessment and investigation, and
classification analysis.

3.1. Digital Twin Test and Analysis

Figure 3 shows the original RAW signal for the bearing for the NS, RFS, IFS, and OFS
when the crack sizes are 0.007, 0.014, and 0.021 inch in four different motor torque loads
from 0 to 3 hp.
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loads vary from 0 to 3 hp; moreover, the crack sizes for abnormal conditions are 0.007, 0.014, and
0.021 inch.

In Figure 3, when the crack sizes are 0.007 inch, the IFS and OFS overlap which
can increase the rate of misclassification. Besides, when the crack size is 0.014 inch, the
challenge of classification between OFS, IFS, and RFS increases sharply. In addition, when
the crack size is 0.21 inch, the challenge of misclassification is increased between RFS and
INS. Thus, the original RAW signals cannot be used for the bearing FPRCI. To improve
the performance of the bearing FPRCI, in the first step, digital twin-based modeling was
recommended in this study. Figure 4 shows the original normal RAW signal and modeled
signal using the proposed digital twin signal modeling (MS) scheme. Based on Figure 4,
the power of RAW signal modeling using proposed digital twin signal modeling (MS)
scheme is very good.
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Figure 5 illustrates the bearing modeling in normal conditions using four algorithms:
the proposed digital twin signal modeling (MS) scheme, the SAL technique, the AUT-LAG
technique, and the AUT method.
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Figure 5. The error of the bearing normal signal modeling for the digital twin using four algorithms:
AUT method, AUT-LAG technique, SAL approach, and proposed (MS) scheme.

Based on Figure 5, the error of normal signal modeling of the bearing for the digital
twin using the proposed scheme is less than the others. Thus, the accuracy and robustness
of the proposed (MS) digital twin modeling approach is better than the others. Moreover,
the covariance power spectral density estimation of the normal signal and the modeled
signal using MS technique is illustrated in Figure 6 to describe the distribution of power into
the frequency components composing those signals. Regarding this figure, the distribution
of the signal’s power into the frequency for normal signal and the estimated normal signal
is very close.
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Figures 7 and 8 show the bode plot for the original normal signal and modeled normal
signal. Regarding these figures, the bode plot for the original normal signal and modeled
normal signal are very similar.
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To test the power of signal modeling against some external change, impulse response
is suggested for original normal signal and modeled normal signal. Figures 9 and 10
illustrate the impulse response for original normal signal and modeled normal signal.
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3.2. Residual Signals Test and Analysis

After modeling and estimation, the bearing signals to design a digital twin and the
residual signals are computed using the difference between the original (RAW) signals
and the estimated signals. To test the effectiveness of the proposed digital twin estimation
technique (MS-HRKF), this technique is compared with the following algorithms: (a) the
MS-KF and (b) the MS-RKF. According to Equations (23) and (26), the residual signals for
the MS-KF technique, (RMS−KF(k)), and MS-RKF technique, (RMS−RKF(k)), are computed
as the following equations, respectively.

RMS−KF(k) = Z(k)− ZMS−KF(k) (40)

RMS−RKF(k) = Z(k)− ZMS−RKF(k) (41)

Figure 11 shows the power of the MS-KF for the classification condition of the CWRUD
bearing signals in diverse situations.
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0.021 inch.

Regarding the comparison between Figures 3 and 11, it can be seen that the MS-
KF improves the classification. Moreover, Figure 12 shows the power of the MS-RKF
for the classification condition of the bearing signals in different conditions. Regarding
the comparison between Figures 3 and 12, it can be seen that the MS-RKF improves the
classification. Regarding Figure 3, the CWRUD for the bearing has a significant challenge
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in classification, especially when the crack sizes are 0.007 and 0.014 inch. The MS-RKF
improves the classification’s accuracy, especially when the crack size is 0.007 inch. Figure 13
illustrates the residual signals of the proposed digital twin (MS-HRKF) method. Regarding
Figure 13, the overlapping and misclassification of the residual signals in the proposed
digital twin (MS-HRKF) are reduced sharply.
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Regarding this figure, the proposed digital twin (MS-HRKF) method improves the
detection and identification of the fault crack sizes sharply. According to the comparison
between Figures 12 and 13, it is clear that the MS-RKF has a serious challenge for classi-
fication when the crack size is 0.014 inch. The proposed digital twin (MS-HRKF) solves
this problem. Thus, based on Figures 11–13, the accuracy of the proposed digital twin
(MS-HRKF) for the CWRUD for bearing signal classification is better than the MS-RKF and
the MS-KF. In addition, the power spectral density estimation for NS, RFS, IFS, and OFS
using proposed method is illustrated in Figure 14 to describe the distribution of power into
the frequency components composing those signals. Regarding this figure, the distribution
of the signal’s power into the frequency for NS, RFS, IFS, and OFS are separable.
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when the motor torque loads vary from 0 to 3 hp; moreover, the crack sizes for abnormal conditions
are 0.007, 0.014, and 0.021 inch.

3.3. Classification Analysis

To test the power of the proposed method for FPRCI, the combination of the proposed
digital twin integrated with the SVM (hence called MS-HRKF+SVM) is compared with the
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combination of the MS-RKF with SVM (hence called MS-RKF+SVM) and the combination
of the MS-KF with SVM (hence called MS-KF+SVM). Figures 16–18 illustrate the confusion
matrices for 10 experiments to show the accuracy of the fault pattern recognition (FPR)
in the proposed digital twin integrated with SVM (MS-HRKF+SVM), the MS-RKF+SVM,
and the MS-KF+SVM. In the combination of the MS-KF with SVM, the nonlinear signal
modeling algorithm is integrated with the linear estimation algorithm. This algorithm has
two important challenges: linear estimator and robustness. To improve the robustness the
combination of the MS-RKF with SVM is recommended.
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Based on Figures 17 and 18, the combination of the MS-RKF with SVM improves the
accuracy of FPR in the combination of the MS-KF with SVM by around 4.9%. To solve
the challenge of the linear estimator in the combination of the MS-RKF with SVM and the
combination of the MS-RKF with SVM, the proposed digital twin integrated with SVM
(MS-HRKF+SVM) is suggested. Based on these figures, the average FPR in the proposed
digital twin integrated with SVM (MS-HRKF+SVM), the combination of the MS-RKF with
SVM, and the combination of the MS-KF with SVM, respectively, are 99.5%, 87%, and
82.1%. Thus, the proposed digital twin integrated with SVM (MS-HRKF+SVM) improves
the accuracy of FPR in the combination of the MS-RKF with SVM and the combination of
the MS-KF with SVM by 12.55% and 17.4%, respectively.

Moreover, Figure 19 shows the impact of the robustness in the proposed digital twin
integrated with SVM (MS-HRKF+SVM), the combination of the MS-RKF with SVM, and
the combination of the MS-KF with SVM for 10 experiments.
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integrated with SVM (MS-HRKF+SVM), the MS-RKF+SVM, and the MS-KF+SVM to test the power
of robustness.

Based on Figure 19, due to the boxplot, the resistance of the proposed digital twin
integrated with SVM (MS-HRKF+SVM) is higher than the others. Regarding this figure,
the impact of the high-order variable structure technique (HVS) is clear in the proposed
digital twin integrated with SVM (MS-HRKF+SVM) and the combination of the MS-RKF
with SVM compared to the combination of the MS-KF with SVM.

Tables 4–6 demonstrate the power of the proposed digital twin integrated with
SVM (MS-HRKF+SVM), the combination of the MS-RKF with SVM (MS-RKF+SVM),
and the combination of the MS-KF with SVM (MS-KF+SVM) for crack size identifica-
tion (CSI). Table 4 shows the impact of the proposed digital twin integrated with SVM
(MS-HRKF+SVM), the combination of the MS-RKF with SVM, and the combination of
the MS-KF with SVM for the ball CSI when the crack sizes are 0.007, 0.014, and 0.021
inch. Based on this table, the average ball CSI accuracies are 98.7%, 88.9%, and 77.7%,
respectively, using the proposed digital twin integrated with SVM (MS-HRKF+SVM), the
combination of the MS-RKF with SVM, and combination of the MS-KF with SVM. Thus,
the proposed digital twin integrated with SVM (MS-HRKF+SVM) improves the average
ball CSI in the combination of the MS-RKF with SVM and the combination of the MS-KF
with SVM by 9.8% and 21%, respectively.
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Table 4. Average accuracy of the ball CSI using the proposed MS-HRKF+SVM, the MS-RKF+SVM,
and the MS-KF+SVM.

Ball Crack Sizes (inch) 0.007 0.014 0.021 Average

MS-HRKF+SVM (%) 100 97 99 98.7
MS-RKF+SVM (%) 88.8 82.5 95.5 88.9
MS-KF+SVM (%) 78.2 73 81.8 77.7

Table 5. Average accuracy of the inner CSI using the proposed MS-HRKF+SVM, the MS-RKF+SVM,
and the MS-KF+SVM.

Inner Crack Sizes (inch) 0.007 0.014 0.021 Average

MS-HRKF+SVM (%) 100 100 100 100
MS-RKF+SVM (%) 90 88.8 91.5 90.1
MS-KF+SVM (%) 70.2 78 84.8 77.7

Table 6. Average accuracy of the outer CSI using the proposed MS-HRKF+SVM, the MS-RKF+SVM,
and the MS-KF+SVM.

Outer Crack Sizes (inch) 0.007 0.014 0.021 Average

MS-HRKF+SVM (%) 100 100 100 100
MS-RKF+SVM (%) 95 83.8 93.5 90.7
MS-KF+SVM (%) 77.3 80 85.3 80.8

Table 5 illustrates the impact of the proposed digital twin integrated with SVM (MS-
HRKF+SVM), the combination of the MS-RKF with SVM, and the combination of the MS-KF
with SVM for the inner CSI when the crack sizes are 0.007, 0.014, and 0.021 inch. Based on
this table, the average inner CSI accuracies are 100%, 90.1%, and 77.7%, respectively, using
the proposed digital twin integrated with SVM (MS-HRKF+SVM), the combination of the
MS-RKF with SVM, and the combination of the MS-KF with SVM. Hence, the proposed
digital twin integrated with SVM (MS-HRKF+SVM) improves the average inner CSI in
the combination of the MS-RKF with SVM and the combination of the MS-KF with SVM
by 9.9% and 22.3%, respectively. Table 6 proves the effect of the proposed digital twin
integrated with SVM (MS-HRKF+SVM), the combination of the MS-RKF with SVM, and
the combination of the MS-KF with SVM for the outer CSI when the crack sizes are 0.007,
0.014, and 0.021 inch. Based on this table, the average outer CSI accuracies are 100%,
90.7%, and 80.8%, respectively, using the proposed digital twin integrated with SVM
(MS-HRKF+SVM), the combination of the MS-RKF with SVM, and the combination of
the MS-KF with SVM. Henceforth, the proposed digital twin integrated with SVM (MS-
HRKF+SVM) modifies the average outer CSI in the combination of the MS-RKF with SVM
and the combination of the MS-KF with SVM by 9.3% and 19.2%, respectively.

Based on Tables 4–6, the power of the CSI in the proposed digital twin integrated
with SVM (MS-HRKF+SVM) is better than the other two methods. Thus, the proposed
digital twin integrated with SVM (MS-HRKF+SVM) is more reliable than the other two
methods for the ball, inner, and outer CSI. Furthermore, Figure 12 demonstrates the effect
of the robustness in the proposed digital twin integrated with SVM (MS-HRKF+SVM), the
combination of the MS-RKF with SVM, and the combination of the MS-KF with SVM for
10 experiments. Based on this figure, due to the boxplot, the resistance of the proposed
digital twin integrated with SVM (MS-HRKF+SVM) for the outer, inner, and ball CSI is
better than the other two approaches. Thus, based on Figures 8–10, the accuracy of the
proposed digital twin integrated with SVM (MS-HRKF+SVM) is significantly better than
the combination of the MS-RKF with SVM and the combination of the MS-KF with SVM
for bearing FPR. In addition, based on Figure 11, the proposed digital twin integrated with
SVM (MS-HRKF+SVM) is more robust than the combination of the MS-RKF with SVM and
the combination of the MS-KF with SVM for bearing FPR. Tables 4–6 and Figure 20 show
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that the impact (accuracy and robustness) of the proposed digital twin integrated with
SVM (MS-HRKF+SVM) for the bearing CSI is better than the combination of the MS-RKF
with SVM and the combination of the MS-KF with SVM.
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RMS feature was extracted from the resampled residual signals. In the final stage of de-
sign, the SVM was integrated with an intelligent digital twin to identify the bearing crack 
sizes and fault patterns. The impact of the proposed scheme was tested by CWRUBD and 
compared with the MS-RKF and the MS-KF algorithms. Regarding the experimental re-
sults, the proposed scheme improved the average accuracy for the bearing fault pattern 
recognition by 12.55% and 17.4%, respectively, compared with the MS-RKF and the MS-
KF algorithms. In addition, in the view of crack size identification, the impact of the pro-
posed technique was 98.7%, 100%, and 100% for the ball, inner, and outer faults, respec-
tively. For future work, the parallel machine/deep learning digital twin will be suggested 
for fault diagnosis of nonlinear systems with nonstationary signals. 
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Figure 20. Boxplots of the average CSI metrics over 10 experiments for the MS-HRKF+SVM, the
MS-RKF+SVM, and the MS-KF+SVM to test the power of robustness.

4. Conclusions

In this research, the application of the intelligent digital twin integrated with machine
learning was observed for bearing anomaly detection and crack size identification. The
proposed algorithm had three main parts: intelligent digital twin, residual signal deter-
mination, and anomaly classification, and crack size identification. The first part of the
intelligent digital twin was the function approximator. The integration of the mathematical-
based vibration signal modeling, autoregressive with Laguerre technique, and support
vector regression was recommended for the proposed function approximator. Moreover,
the next part of the intelligent digital twin was the signal estimator. The combination of a
Kalman filter, the high-order variable structure technique, and the adaptive neural-fuzzy
approach was used for signal estimation. After designing the intelligent digital twin, the
residual signals were determined. The residual signals were resampled and the RMS
feature was extracted from the resampled residual signals. In the final stage of design, the
SVM was integrated with an intelligent digital twin to identify the bearing crack sizes and
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with the MS-RKF and the MS-KF algorithms. Regarding the experimental results, the
proposed scheme improved the average accuracy for the bearing fault pattern recognition
by 12.55% and 17.4%, respectively, compared with the MS-RKF and the MS-KF algorithms.
In addition, in the view of crack size identification, the impact of the proposed technique
was 98.7%, 100%, and 100% for the ball, inner, and outer faults, respectively. For future
work, the parallel machine/deep learning digital twin will be suggested for fault diagnosis
of nonlinear systems with nonstationary signals.

Author Contributions: Conceptualization, F.P. and J.-M.K.; data curation, F.P.; formal analysis, F.P.
and J.-M.K.; funding acquisition, J.-M.K.; methodology, F.P. and J.-M.K.; software, F.P.; supervision,
J.-M.K.; validation, F.P. and J.-M.K.; visualization, F.P. and J.-M.K.; writing—original draft, F.P.;
writing—review and editing, F.P. and J.-M.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by 2021 Research Fund of University of Ulsan.

Data Availability Statement: The data are publicly available.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 4602 25 of 26

References
1. Sihag, N.; Sangwan, K.S. A systematic literature review on machine tool energy consumption. J. Clean. Prod. 2020, 275, 123125.

[CrossRef]
2. Huayu, Z.; Zhang, C.; Wang, C.; Xie, F. A survey of non-destructive techniques used for inspection of bearing steel balls.

Measurement 2020, 159, 107773.
3. Subhasis, N.; Toliyat, H.A.; Li, X. Condition monitoring and fault diagnosis of electrical motors—A review. IEEE Trans. Energy

Convers. 2005, 20, 719–729.
4. Liu, Z.; Zhang, L. A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine

bearings. Measurement 2020, 149, 107002. [CrossRef]
5. He, M.; He, D. A new hybrid deep signal processing approach for bearing fault diagnosis using vibration signals. Neurocomputing

2020, 396, 542–555. [CrossRef]
6. Xu, Y.; Zhen, D.; Gu, J.X.; Rabeyee, K.; Chu, F.; Gu, F.; Ball, A.D. Autocorrelated Envelopes for early fault detection of rolling

bearings. Mech. Syst. Signal Process. 2021, 146, 106990. [CrossRef]
7. Qin, Y. A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis. IEEE

Trans. Ind. Electron. 2017, 65, 2716–2726. [CrossRef]
8. Zhao, B.; Yuan, Q.; Zhang, H. An improved scheme for Vibration-Based rolling bearing fault diagnosis using feature integration

and AdaBoost tree-based ensemble classifier. Appl. Sci. 2020, 10, 1802. [CrossRef]
9. Wihan, B.; Wilke, D.N.; Heyns, S. Deep digital twins for detection, diagnostics and prognostics. Mech. Syst. Signal Process. 2020,

140, 106612.
10. Farzin, P.; Kim, J.-M. Bearing fault diagnosis by a robust higher-order super-twisting sliding mode observer. Sensors 2018, 18, 1128.
11. Parker, R.G.; Guo, Y.; Eritenel, T.; Ericson, T.M. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using

Mathematical Modeling and Finite Element Analysis; NASA Glenn Research Center: Cleveland, OH, USA, 2012.
12. Prakash, G. A Bayesian approach to degradation modeling and reliability assessment of rolling element bearing. Commun. Stat.

Theory Methods 2020, 1–22. [CrossRef]
13. Antoni, J.; Bonnardot, F.; Raad, A.; El Badaoui, M. Cyclostationary modelling of rotating machine vibration signals. Mech. Syst.

Signal Process. 2004, 18, 1285–1314. [CrossRef]
14. Kumbhar, S.G. An integrated approach of Adaptive Neuro-Fuzzy Inference System and dimension theory for diagnosis of rolling

element bearing. Measurement 2020, 166, 108266. [CrossRef]
15. Rahmoune, M.B.; Hafaifa, A.; Kouzou, A.; Chen, X.; Chaibet, A. Gas turbine monitoring using neural network dynamic nonlinear

autoregressive with external exogenous input modelling. Math. Comput. Simul. 2021, 179, 23–47. [CrossRef]
16. Yang, H.; Rad, H.N.; Hasanipanah, M.; Amnieh, H.B.; Nekouie, A. Prediction of vibration velocity generated in mine blasting

using support vector regression improved by optimization algorithms. Nat. Resour. Res. 2020, 29, 807–830. [CrossRef]
17. Cheng, C.; Ma, G.; Zhang, Y.; Sun, M.; Teng, F.; Ding, H.; Yuan, Y. A deep learning-based remaining useful life prediction approach

for bearings. IEEE ASME Trans. Mechatron. 2020, 25, 1243–1254. [CrossRef]
18. Chen, L.; Xu, G.; Zhang, S.; Yan, W.; Wu, Q. Health indicator construction of machinery based on end-to-end trainable convolution

recurrent neural networks. J. Manuf. Syst. 2020, 54, 1–11. [CrossRef]
19. Gao, Y.; Liu, X.; Xiang, J. FEM simulation-based generative adversarial networks to detect bearing faults. IEEE Trans. Ind. Inform.

2020, 16, 4961–4971. [CrossRef]
20. Alia, S.; Nasri, R.; Meddour, I.; Younes, R. Comparison between sound perception and self-organizing maps in the monitoring of

the bearing degradation. Int. J. Adv. Manuf. Technol. 2020, 110, 2003–2013. [CrossRef]
21. Pan, T.; Chen, J.; Pan, J.; Zhou, Z. A deep learning network via shunt-wound restricted Boltzmann machines using raw data for

fault detection. IEEE Trans. Instrum. Meas. 2019, 69, 4852–4862. [CrossRef]
22. Dai, W.; Mo, Z.; Luo, C.; Jiang, J.; Zhang, H.; Miao, Q. Fault diagnosis of rotating machinery based on deep reinforcement learning

and reciprocal of smoothness index. IEEE Sens. J. 2020, 20, 8307–8315. [CrossRef]
23. Kong, X.; Mao, G.; Wang, Q.; Ma, H.; Yang, W. A multi-ensemble method based on deep auto-encoders for fault diagnosis of

rolling bearings. Measurement 2020, 151, 107132. [CrossRef]
24. Stack, J.R.; Habetler, T.G.; Harley, R.G. Bearing fault detection via autoregressive stator current modeling. IEEE Trans. Ind. Appl.

2004, 40, 740–747. [CrossRef]
25. Abid, A.; Khan, M.T.; Iqbal, J. A review on fault detection and diagnosis techniques: Basics and beyond. Artif. Intell. Rev. 2020, 10,

1–26. [CrossRef]
26. Piltan, F.; Kim, J.-M. Bearing fault identification using machine learning and adaptive cascade fault observer. Appl. Sci. 2020,

10, 5827. [CrossRef]
27. TayebiHaghighi, S.; Koo, I. Fault diagnosis of rotating machine using an indirect observer and machine learning. In Proceed-

ings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea,
21–23 October 2020; pp. 277–282.

28. Gou, L.; Shen, Y.; Zheng, H.; Zeng, X. Multi-Fault diagnosis of an aero-engine control system using joint sliding mode observers.
IEEE Access 2020, 8, 10186–10197. [CrossRef]

29. Meng, X.; Yu, H.; Xu, T.; Wu, H. Disturbance observer and l2-gain-based state error feedback linearization control for the
quadruple-tank liquid-level system. Energies 2020, 13, 5500. [CrossRef]

http://doi.org/10.1016/j.jclepro.2020.123125
http://doi.org/10.1016/j.measurement.2019.107002
http://doi.org/10.1016/j.neucom.2018.12.088
http://doi.org/10.1016/j.ymssp.2020.106990
http://doi.org/10.1109/TIE.2017.2736510
http://doi.org/10.3390/app10051802
http://doi.org/10.1080/03610926.2020.1734826
http://doi.org/10.1016/S0888-3270(03)00088-8
http://doi.org/10.1016/j.measurement.2020.108266
http://doi.org/10.1016/j.matcom.2020.07.017
http://doi.org/10.1007/s11053-019-09597-z
http://doi.org/10.1109/TMECH.2020.2971503
http://doi.org/10.1016/j.jmsy.2019.11.008
http://doi.org/10.1109/TII.2020.2968370
http://doi.org/10.1007/s00170-020-06009-y
http://doi.org/10.1109/TIM.2019.2953436
http://doi.org/10.1109/JSEN.2020.2970747
http://doi.org/10.1016/j.measurement.2019.107132
http://doi.org/10.1109/TIA.2004.827797
http://doi.org/10.1007/s10462-020-09934-2
http://doi.org/10.3390/app10175827
http://doi.org/10.1109/ACCESS.2020.2964572
http://doi.org/10.3390/en13205500


Appl. Sci. 2021, 11, 4602 26 of 26

30. Piltan, F.; Prosvirin, A.E.; Sohaib, M.; Saldivar, B.; Kim, J.-M. An SVM-based neural adaptive variable structure observer for fault
diagnosis and fault-tolerant control of a robot manipulator. Appl. Sci. 2020, 10, 1344. [CrossRef]

31. Islam, S.I.; Lim, C.-C.; Shi, P. Robust fault detection of TS fuzzy systems with time-delay using fuzzy functional observer. Fuzzy
Sets Syst. 2020, 392, 1–23. [CrossRef]

32. Guo, X.-G.; Tian, M.-E.; Li, Q.; Ahn, C.K.; Yang, Y.-H. Multiple-fault diagnosis for spacecraft attitude control systems using
RBFNN-based observers. Aerosp. Sci. Technol. 2020, 106, 106195. [CrossRef]

33. Guzman, J.; López-Estrada, F.R.; Estrada-Manzo, V.; Valencia-Palomo, G. Actuator fault estimation based on a proportional-
integral observer with nonquadratic Lyapunov functions. Int. J. Syst. Sci. 2021, 1–14. [CrossRef]

34. Hu, J.; Zheng, S.; Liu, X.; Wang, M.; Deng, J.; Yan, F. Optimizing the fault diagnosis and fault-tolerant control of selective catalytic
reduction hydrothermal aging using the Unscented Kalman Filter observer. Fuel 2021, 288, 119827. [CrossRef]

35. Krokavec, D.; Filasová, A. Discrete-time linear systems fault diagnosis using schmidt-kalman filters. In Proceedings of the 2020
21th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 27–29 October 2020; pp. 1–6.

36. Wang, Z.; Yao, L.; Cai, Y. Rolling bearing fault diagnosis using generalized refined composite multiscale sample entropy and
optimized support vector machine. Measurement 2020, 156, 107574. [CrossRef]

37. Castellanos, M.B.; Serpa, A.L.; Biazussi, J.L.; Verde, W.M.; Sassim, N.D.S.D.A. Fault identification using a chain of decision trees
in an electrical submersible pump operating in a liquid-gas flow. J. Pet. Sci. Eng. 2020, 184, 106490. [CrossRef]

38. Li, Y.; Sarvi, M.; Khoshelham, K.; Haghani, M. Multi-view crowd congestion monitoring system based on an ensemble of
convolutional neural network classifiers. J. Intell. Transp. Syst. 2020, 24, 437–448. [CrossRef]

39. Pulgar, F.J.; Charte, F.; Rivera, A.J.; del Jesus, M.J. Choosing the proper autoencoder for feature fusion based on data complexity
and classifiers: Analysis, tips and guidelines. Inf. Fusion 2020, 54, 44–60. [CrossRef]

40. Bearing Data Center. Case Western Reserve University Seeded Fault Test Data. Available online: https://csegroups.case.edu/
bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website (accessed on 23 December 2020).

41. Mishra, C.; Samantaray, A.K.; Chakraborty, G. Ball bearing defect models: A study of simulated and experimental fault signatures.
J. Sound Vib. 2017, 400, 86–112. [CrossRef]

42. Njima, B.; Garna, T. PIO output fault diagnosis by ARX-Laguerre model applied to 2nd order electrical system. IEEE Access 2020,
8, 83052–83061. [CrossRef]

http://doi.org/10.3390/app10041344
http://doi.org/10.1016/j.fss.2019.03.020
http://doi.org/10.1016/j.ast.2020.106195
http://doi.org/10.1080/00207721.2021.1873451
http://doi.org/10.1016/j.fuel.2020.119827
http://doi.org/10.1016/j.measurement.2020.107574
http://doi.org/10.1016/j.petrol.2019.106490
http://doi.org/10.1080/15472450.2020.1746909
http://doi.org/10.1016/j.inffus.2019.07.004
https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
http://doi.org/10.1016/j.jsv.2017.04.010
http://doi.org/10.1109/ACCESS.2020.2990696

	Introduction 
	Proposed Methodology 
	Dataset 
	Digital Twin 
	Signal Modeling: The First Step to Design the Digital Twin 
	Signal Estimation: Second Step to Design the Digital Twin 

	Residual Signal Generation 
	Fault Pattern Recognition and Crack Size Identification Using SVM 

	Experimental Results and Discussion 
	Digital Twin Test and Analysis 
	Residual Signals Test and Analysis 
	Classification Analysis 

	Conclusions 
	References

