
applied
sciences

Article

s2p: Provenance Research for Stream Processing System

Qian Ye 1,2 and Minyan Lu 1,2,*

����������
�������

Citation: Ye, Q.; Lu M. s2p:

Provenance Research for Stream

Processing System. Appl. Sci. 2021, 11,

5523. https://doi.org/10.3390/

app11125523

Academic Editors: Kwan-Hee Yoo,

Carson K. Leung and Nakhoon Baek

Received: 21 May 2021

Accepted: 11 June 2021

Published: 15 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Key Laboratory on Reliability and Environmental Engineering Technology, Beihang University,
Beijing 100191, China; yeqian@buaa.edu.cn

2 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
* Correspondence: lmy@buaa.edu.cn

Abstract: The main purpose of our provenance research for DSP (distributed stream processing)
systems is to analyze abnormal results. Provenance for these systems is not nontrivial because of the
ephemerality of stream data and instant data processing mode in modern DSP systems. Challenges
include but are not limited to an optimization solution for avoiding excessive runtime overhead,
reducing provenance-related data storage, and providing it in an easy-to-use fashion. Without any
prior knowledge about which kinds of data may finally lead to the abnormal, we have to track all
transformations in detail, which potentially causes hard system burden. This paper proposes s2p
(Stream Process Provenance), which mainly consists of online provenance and offline provenance,
to provide fine- and coarse-grained provenance in different precision. We base our design of s2p on the
fact that, for a mature online DSP system, the abnormal results are rare, and the results that require
a detailed analysis are even rarer. We also consider state transition in our provenance explanation.
We implement s2p on Apache Flink named as s2p-flink and conduct three experiments to evaluate
its scalability, efficiency, and overhead from end-to-end cost, throughput, and space overhead. Our
evaluation shows that s2p-flink incurs a 13% to 32% cost overhead, 11% to 24% decline in throughput,
and few additional space costs in the online provenance phase. Experiments also demonstrates the s2p-
flink can scale well. A case study is presented to demonstrate the feasibility of the whole s2p solution.

Keywords: stream provenance; fine-grained provenance; coarse-grained provenance; replay; checkpoint

1. Introduction

Currently, massive volumes of data are produced and analyzed for better decision-
making. In many modern big data scenarios, such as stock trading, e-commerce, and
healthcare [1], data have to be processed not only correctly but also promptly. Some data
naturally comes as infinite stream and temporal featured, whose value declines rapidly
over time [2]. These aspects pose tremendous computational challenges. Distributed stream
processing (DSP) thereby receives more significant interest in the light of business trends
mentioned above. As a new paradigm in big data processing, DSP is designed to handle
a continuous data stream within a short period (i.e., from milliseconds to seconds) after
receiving data. Beyond niche applications in which data are handled by traditional stream
processing systems, current DSP systems are widely adopted across modern enterprises in
complex data computation.

However, like other large system software [3], DSP applications are not always correct
and performant for different reasons, including, but not limited to, data corruption, hard-
ware failure, and software bugs. As they increasingly interact directly with the physical
environment (e.g., IoT data analysis), their source data are more susceptible to interference
(e.g., noise data), malformed data, or error. When some suspicious results come out, it will
be necessary to verify their correctness and trace the error chain back to localize the root
failure. Keeping data traced and understanding the cause of a suspicious result is especially
desirable when a critical situation involving a streaming processing application occurs [4].
This is the first motivation for our stream provenance research to enhance DSPs with the

Appl. Sci. 2021, 11, 5523. https://doi.org/10.3390/app11125523 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1366-5955
https://doi.org/10.3390/app11125523
https://doi.org/10.3390/app11125523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11125523
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11125523?type=check_update&version=1

Appl. Sci. 2021, 11, 5523 2 of 33

capability to replay some data transformation processes and tracing each relevant data
individually. The second motivation is the requirement for data accountability. There are
rules such as GDPR [5] imposing obligations on data controllers and processors, where it
will be necessary to verify how data was used and transferred without consent violation.
The third motivation is about the support for interactive debugging sessions [6,7], where
provenance works as the critical part [7].

The basic idea of provenance [8] is to explain how the output results relate to their
input data, including the origin and various transformations contributing to the end
product. A provenance graph can show the flow of one data routing from source (inputs) to
results (outputs). Its initial work started in database areas [9] and later broadened to other
areas (e.g., operation systems, big data systems) [10]. Provenance is challenging in the big
data area [8], as most traditional provenance solutions require accessing the whole data set,
which is hard to satisfy when faced with massive amounts of data. For big data systems,
their four Vs (i.e., volume, velocity, variety, and veracity) bring fundamental challenges
to provenance; these challenges together are referred to as the “Big Data Provenance”
problem [11,12] in the literature. It involves capturing, storing, managing, and querying
provenance data. In state-of-the-art solutions for big data systems, provenance annotations
are generated for data tuples and all involved intermediate data are passed from source
data to each output result. During this process, all source data must be stored temporarily,
and those that do not contribute to the interested output result must be discarded later [4].
Intermediate data are required to be maintained when backward and forward tracing are
supported in some solutions [13]. Storing and managing these data may not be feasible for
many big data applications, since the size of data used for assisting analysis can easily be
at a similar level of the input data itself, or multiple times larger than the input data [14] if
they are not sophistically managed.

There exist two categories of provenance work that target different data processing
paradigms separately (batch processing vs. stream processing); they are shown in Table 1.

For those targeting batch processing systems [15,16], the state-of-the-art solutions
include RAMP [17] (for Hadoop), HadoopProv [18] (for Hadoop), and Titian [19] (for Spark).
Batch processing systems periodically consume blocks of static data (usually long in hours
or even days). They adopt the BSP model [20,21], which processes in a series of supersteps,
i.e., iterating a large batch of data followed by a global barrier with synchronization among
workers. These two features bring convenience in designing a provenance solution for
batch processing systems, as they can conveniently revisit any source data and intermediate
data from disks (e.g., for Hadoop) or memory (e.g., for Spark). The BSP model also makes
replay from some stages (e.g., Titian [19]) possible, as it naturally divides the job into stages.

On the contrary, solutions targeting stream processing systems include Ariadne [22,23]
and GeneaLog [4,24], among other solutions. DSP adopts the dataflow model [25], in
which incoming data are processed as soon as they arrive and produce results within a
short period (usually in milliseconds or seconds). As a new big data processing pattern,
DSP systems present some new features that challenge the provenance design described
as follows.

(1) Stream data, a.k.a. real-time data, are ephemeral in many applications, which means
that their intermediate data will not be persisted during transformation within jobs.
Storing these intermediate data and their provenance metadata naively is impossible
because the total data may be multiple times larger than the source data. If we store
all dependencies and intermediate data objects, the amount of information recorded
can potentially cause a storage burden problem.

(2) Stream processing systems usually generate results within milliseconds to seconds
processed by jobs. A heavy provenance capturing mechanism will bring in perceived
delay substantially.

(3) Current DSP systems usually closely integrate state with computation [26]. Unlike the
batch processing system, in which data is batched and computed as a whole group,
stream processing systems lack a similar global view for the whole data set. State

Appl. Sci. 2021, 11, 5523 3 of 33

in stream processing systems is then used to memorize the historical data ever seen
or some intermediate results, which may indirectly affect the results. Due to this
new feature, a consummated provenance for stream processing systems should also
consider how states evolve together with the data transformation.

We usually have no previously known information about which kinds of data are
biased or more likely to be tracked by users, whether in crash-culprit scenarios or account-
ability purposes. This elicits another requirement, i.e., the ability to track every piece of
stream data in a provenance solution. It is extremely inefficient to process the entire data
set on every tuple, especially when the data is large. However, provenance for intermediate
data is not directly used most of the time [14], which means that retaining full provenance
for every piece of data would be a waste for most cases. In some scenarios, users want to
“replay” intermediate data in detail [1]. In other scenarios [4,24], they may only need to
know which specific source data contribute to the results to be analyzed.

We present s2p, a novel provenance solution for DSP systems to tackle the challenges
above. The s2p solution consists of online provenance and offline provenance, through
which the previous one builds the mapping relation between source data and result data,
and the latter provides detailed information about transformation processes, intermediate
results, and more. This design is inspired by the philosophy of lambda architecture [27]
in which different results with different precision are handled by different process. Our
s2p solution traces stream data across varieties of operators. We consider the semantics of
each operator (e.g., map, filter, etc.) when deciding the relationship among data, but we
leave the user-defined logic in UDFs as backboxes. We augment each operator to propagate
provenance metadata (e.g., UUID of data) with each stream data. We implement s2p by
modifying the DSP framework and extending its runtime to propagate provenance data.
Our s2p is transparent to users without any additional modification to the original program.
Using s2p, we can exploit the detailed provenance information of the interested stream
data only.

In addition, s2p can achieve high performance by: (1) only replying from some specific
point that is close to the computation process for target data, (2) parallelizing the replay
process on a cluster, (3) caching the most frequent queried data sets for fast further access,
and (4) building provenance graph asynchronously and stopping the replaying process
once necessary provenance information for target data is obtained.

In our study, we have built a prototype to materialize the main features of s2p and
designed experiments to quantify its side effect on normal DSP system execution. We also
carried out one case study to show the feasibility of s2p.

In summary, the main contributions of this paper are:

• s2p, a novel provenance solution for stream processing systems that combines offline
and online parts and provides fine- and coarse-grained provenance at a level of
precision supported by few existing DSP provenance systems.

• Previous approaches aim for all input data oriented provenance analysis; however,
it is hard to support detailed provenance analysis at the tuple level. On the con-
trary, our solution targets detailed provenance for a small amount of stream data by
replaying the computation process and merely monitoring the interested data.

• Our solution considers state transformation of stateful operators together with the data
transformation process in provenance analysis, whereas few existing DSP provenance
systems take operator states into account.

• To minimize the data transformation burden to the network, we manage our prove-
nance data locally and only aggregate some chosen data when a provenance
query happens.

• One prototype s2p-Flink is built on Apache Flink [28] to demonstrate the solution
of s2p.

• We conduct experimental evaluations with three subject applications. Results show
the s2p scaling to large data sets with acceptable overhead.

• One case study is to show its feasibility.

Appl. Sci. 2021, 11, 5523 4 of 33

Table 1. Summary of features in general-purpose data processing systems with provenance support.

Provenance
Systems

Provenance
Support for

Provenance
Storage

Provenance
Tracking
Granularity

Modifying
Application
Required
(Y/N)

Intermediate
Data
Tracking
(Y/N)

Third-Party
Systems
Involved
(Y/N)

Batch
-processing
Oriented
Provenance

RAMP [17] Hadoop HDFS Map/Reduce Level N N N

Newt [29] Hadoop
/Hyracks MySQL Multiple Levels Y N Y

HadoopProv [18] Hadoop File Map/Reduce Level N N N

Lipstick [30] Pig(Hadoop) File Operator Level Y N N

Titian [19] Spark Native Spark Stage Level N Y N

Arthur [31]

Hadoop
/Spark
/Hyracks
/Dryad

File Operator Level Y Y N

Stream
-processing
Oriented
Provenance

Tracing
Framework [32,33] Spark External Operator Level N Y 1 Y

Ariadne [22,23] Borealis File Operator Level Y Y N

GeneaLog [4,24] Flink
/Liebre Memory Operator Level Y N N

On-the-fly
provenance
tracking [34]

Not specific External Operator Level Y N Y

1 They sampled the data. Strictly speaking, their solution can track partial intermediate data.

Appl. Sci. 2021, 11, 5523 5 of 33

The remainder of the paper is organized as follows. Section 2 contains a brief overview
of DSP, the DSP provenance problem definition, and a short introduction to Apache
Flink. Section 3 provides a framework for how s2p works. Techniques involved during
online provenance are introduced in Section 4, and offline provenance-related ones are
introduced in Section 5. Section 6 describes how we manage and query provenance data.
The experimental evaluation is presented in Section 7. The case study is included in
Section 8. Related works about solving big data provenance problems are presented in
Section 9. We conclude with a summary and discussion of future work in Section 10.

2. Preliminaries

We start with a brief overview of the stream processing paradigm accompanied by a
unified DSP computing model and how it is executed. Then, we define DSP provenance
problems with an overview of the challenges they meet. At last, we introduce Apache
Flink, which is selected as the object system in our research.

2.1. DSP System Model

According to Russo et al. [35], DSP is the key to process data in a near real-time fash-
ion, which processes the incoming data flow on multiple computing nodes. Several DSP
systems have been developed and applied in industry, including Storm [36], Samza [37],
and Flink [38], among others. DSP systems achieve low latency and high throughput by
processing the live, raw data as soon as they arrive. Meanwhile, DSP systems usually per-
form message processing without having a costly storage operation [39]. It is also required
to handle stream imperfections such as delayed, missing, and out-of-order data [40].

DSP applications execute in a parallel fashion with numerous subtasks that process
some partition of data. One DSP usually consists of UDFs, which are first-order functions
plugging into second-order functions (i.e., DSP APIs provided by different DSP frameworks
such as flatmap).

A DSP application (a.k.a. job) represents a data processing pipeline in which operators
are sophisticatedly chained together as DAG and data transformations are conducted
inside the operators. From the developers’ view, one typical DSP application is the compo-
sition of some set of DSP APIs and user-defined logic within them. As shown in Figure 1,
DSP APIs, through which we can interact with DSP operators, and user-defined logic
are two blocks for one DSP application. DSP applications are usually compiled and ex-
pressed in graph views. Then, these graphs are submitted to clusters working with the
DSP runtime. DSP applications are automatically scheduled and executed by the DSP
runtime environment.

During execution, operators, which are the basic units of one data processing pipeline,
are split into several parallel instances in a distributed environment with instances deployed
and executed on different nodes.

DSP API
User-defined

Functions

DSP
APP 1

DSP
APP 2

DSP
APP 3

Constituent
relationship

Deploy &
Scheduled by

DSP Platform

Operators

Data transformation
among operators

Figure 1. Compositions of DSP applications and their relation with DSP platforms.

Appl. Sci. 2021, 11, 5523 6 of 33

This paper adopts a unified DSP computing model, as the example in Figure 2 shows,
to demonstrate our methods more conveniently.

DSP jobs are deployed at multiple nodes and each operator (if its parallelism is set
more than one) is split into multiple parallel instances. The stream manager collects pro-
cessing information periodically. Nodes in Figure 2 are named with different naming
conventions (e.g., Task Manager in Flink [28], Worker in Apache Storm [36]). Those in-
stances are deployed in nodes. Processing nodes refer to physical machines, containers,
virtual machines, etc. For reducing data buffer and transition traffic purposes, multi-
ple operators may be chained together and run on a single processing node. For the
fault tolerance purpose, stateful operators will update their state remotely to the stream
manager periodically.

DSP’s computing model consists of source operators that receive steam data from
various sources, transformation operators, and sink operators that emit the final results.
DSP also defines window operators on the infinite stream to cope with stream data’s
unbounded nature by grouping them into chunks. Windows can be time-based, which de-
composes the stream over time, or count-based, which divides the stream by the number
of data already included in the window.

Operators in DSP can be stateless or stateful. Stateless operators are purely functional,
which means that their output is solely dependent on their input. However, for stateful
operators, their output results depend on their input and internal state over the historical
stream data. Most DSP applications will contain one or more continuous operators to
process data in a long-running fashion [41]. Since data are streamed and arrived over time,
many nontrivial operators must memorize records, partial results, or metadata, which are
also known as state handling (i.e., remerging past input and using them to influence the
processing of future input) in the DSP systems. These stateful operators receive stream
data, update their internal state, and then send new stream data.

Node1
Node3

Node5

Stream Manager

OP5
OP1 OP2

OP7

Master Node

Slave Nodes

OP3 OP4

Node4

OP6

Stateless Operator

Stateful Operator

State

Data transfer among
operators
Control Msg & Sync
Data

Node2

Figure 2. An overview of the DSP computing model.

2.2. Stream Provenance Problem Definition

The purpose of DSP provenance is to track how each stream data has changed over
time. The provenance schema involves provenance capturing, storage, and querying.
Here, we will classify some related expressions for future convenience. The set X =
{xt, xt+1,xt+2, ...} represents the input stream data into one operator with timestamps
t, t + 1, t + 2, etc. The set Y = {yu, yu+1, yu+2, ...} represents the computing results out
of this operator with timestamps u, u + 1, u + 2, etc. P(.) is operator transformation,
which encapsulates user-defined data processing logic.

Then, we conduct the provenance definition in this paper. Result data yu’s provenance
consists of the minimal source data set and a series of transformations that derivate
it from the source data set. In other words, the provenance for stream result data is
constituted by subinstance of source data I ⊆ X where the set I is the minimum set among
all subsets that contribute to yu, and transformations Pn(...(P2(P1(P0(I))))) such that
yu = Pn(...(P2(P1(P0(I))))).

Appl. Sci. 2021, 11, 5523 7 of 33

Though user-defined data processing logic varies, the semantics of DSP APIs constrain
the input and output data relationship at a high level. For instance, map is a standard
operator in DSP systems that ingests one stream data each time and produces one output.
In this case, P(.) corresponds to map. For any output data yu, we can find at least one
input xi. Hence, we can express the provenance for the result data yu as (map, {xi}min, yu),
where {xi}min is the minimal subset of the input data that leads to yu.

However, the way to find the minimal set I for one DSP system differs for stateless
operators and stateful operators. For stateless operators, their output results purely de-
pend on the latest input and operators’ semantics. Nevertheless, for stateful operators,
the historical stream data will also potentially contribute to the current result indirectly
through the internal states S, which are persisted by stateful operators. Consider one DSP
job (shown in Figure 3) as an example. It consists of three stateless operators (i.e., OP1, OP2,
OP4) and one stateful operator (i.e., OP3). We can see that OP3’s output is determined by
its input values and its “side effects” (i.e., state) affected by historical data.

To include complete provenance information for stateful operators, we express it as a
list of nested tuples (P, ({xi}min, sj), yu), where {xi}min is the minimal subset of input data.
The state sj is a snapshot when {xi}min is being processed and potentially decided by the
historical input data recursively. For the example in Figure 3, we express the provenance of
one result data as a graph, shown in Figure 4.

Because of the long-running (e.g., months, or even years) nature of one nontrivial DSP
job, recording all state transition for further provenance purposes is expensive or even
impossible. In this paper, our solution will only pinpoint every state transition in a certain
period in the offline provenance phase when quite a few state data are to be stored.

Stateless Operator

Stateful Operator

State

S

iS1iS 2iS 
... S

1OP 2OP 3OP 4OP

Figure 3. One DSP dataflow instance, which consists of four operators. OP3 is a stateful operator
with state S, recursively traced back to the previous state.

1iS 

2iS 

...(1OP), ,

(), ,2OP

(), S,() ,

(), ,

iS

3OP

4OP

Figure 4. Provenance graph for our DSP instance.

State tracking is not the only obstacle for DSP provenance. DSP data’s ephemeral
nature brings another problem: that we have to cache the intermediate stream data for
further provenance query. Since we have no previously known information about the
potential analysis bias in the future, we have to assume that every stream data might be
selected as object data. Therefore, our solution should have the capability to retrospect
every piece of data. Our first attempt to achieve this requirement is to cache all the

Appl. Sci. 2021, 11, 5523 8 of 33

intermediate data before and after every operator. However, we ran into two significant
issues, i.e., enormous space cost and rapid decline in DSP response time.

Space cost: The space cost for storing all intermediate data is prohibitively expensive.
We implement this cache-all mechanism in Apache Flink, called Flink-cache-all afterward
and assess how much additional space is required to store intermediate data. Flink-cache-
all is instrumented to collect data before and after each operator. This instrumentation
wraps operators and sends a copy of every data item to our provenance manage sys-
tem. Figure 5 shows a quantitative result about additional space needed to execute the
WordCount job in Flink-cache-all under different workloads. In general, the size of the
intermediate data increases proportionally with the size of the workloads. More specifically,
the intermediate data size is about 5.3 times the size of the source data. The storage cost
is relatively expensive, let alone more provenance metadata required to store for a fully
functional provenance system.
Response time: Data copy happens locally since our provenance manage system is dis-
tributing alongside each node. In our experiment, it takes about three milliseconds on
average to send one piece of data item to the provenance manage system. We found that
the execution time of our experimental job on Flink-cache-all is over 1000 times as much
as on normal Flink (e.g., Flink-cache-all takes 1316 seconds in total to process a 20 MB data
set while it finishes within 1 second for normal Flink accordingly).

In summary, we have clarified our provenance concept for DSP systems. We also
have analyzed challenges in designing DSP provenance with a quantitative assessment of
additional space and time needed when naively caching all intermediate data.

2 5 1 0 1 5 3 0 6 0 1 2 0 2 4 0 5 0 0
0
1
2
4
8

1 6
3 2
6 4

1 2 8
2 5 6
5 1 2

1 0 2 4
2 0 4 8
4 0 9 6

So
urc

e D
ata

 (G
B)

W o r k L o a d (G B)

 S o u r c e D a t a
 I n t e r m e d i a t e D a t a

Figure 5. Space cost for storing all intermediate data comparing with the scale of source data. Both
source data and intermediate data are on a logarithmic scale. The size of intermediate data is about
5.3 times as much as source data for all workloads.

2.3. Apache Flink

In this paper, we implement s2p on Flink, a leading stream processing system with
increasing popularity. It is an emerging stream processing engine that follows a paradigm
that embraces continuous data stream processing as the unifying model for real-time
analysis and batch processing [28].

Flink executes dataflow programs in a data-parallel and pipelined manner [42].
Flink applications can be implemented in various program languages (e.g., Java, Scala,
etc.), and then automatically transformed into dataflow programs executed in clusters.
A dataflow starts with one or more sources and ends in one or more sinks, represented as
DAG under specific conditions.

Appl. Sci. 2021, 11, 5523 9 of 33

3. DSP Provenance

This section will briefly talk about our provenance solution in tackling DSP prove-
nance problems. As shown in Figure 6, our solution consists of online provenance for
coarse-grained solutions, offline provenance for fine-grained solutions, and provenance
management to handle all provenance data.

Online provenance is to build the mapping relationship between source data and
result data, i.e., what are all combinations of source data that contribute to the output
results after executing the application. Operator intrusion is required with introspecting
operators in DSP systems to capture data relationships before and after each transformation.
Nevertheless, it lacks a detailed description of how inner transformation happens during
stream data passing through operators.

As a supplement to online provenance methods, offline provenance refers to capturing
the data transition process in detail, which, no doubt, is much heavier. Our offline solution
isolates with the original execution environment by replaying specific data transformation
in a simulated environment, which is more controllable and on a smaller scale.

We also present how to manage provenance-related data in online and offline phases
and respond to the provenance query.

Wrap the
code

DSP Source Code

DSP with Provenance
Capability

Online Provenance Offline Provenance

Label source data
with unique IDs

IDs
propagation

Checkpoint
Management

Simulation
Environment

Setup

Monitoring Stream
Results Continuously

Resume Execution
from Specific
Checkpoint

Monitor Detailed
Runtime Data of
Relevant Data

Reverse Querying
Corresponding Source Data

Calculate the Specific
Checkpoint

Specify Data
of Intrest

Preparation

Source Data/Intermediate
Data Storing & Management

Provenance Management

Checkpoint Management

Provenance Data
Management

Provenance-Query Response
Service

Deploy &
Execute

Figure 6. A framework for our DSP provenance solution.

4. Online Provenance

The online provenance phase aims to build the relationship between each output result
data and their corresponding source stream data. Our online provenance solution only
answers the question of what combination of the nearest source stream data contributes to
the object result data instead of providing a complete explanation. Object data refers to the
data of interest, which is selected by users for provenance analysis. Similar to the reliance
in [23], s2p relies on instrumented operators. It maintains the relationship among output
and input data of each operator basing on the operators’ semantics.

Reaccess DSP systems’ source data is nontrivial. DSP is suitable for many areas,
e.g., stock analysis and user activity analysis, which usually produce massive data at high
speeds and require real-time processing. These require data to be processed instantly
instead of storing them in one unified place and waiting to be processed. Some DSP
applications integrate third-party systems (e.g., Kafka) to consume source data through
interacting connectors. Other DSP applications ingest source data directly from sensors
to consume them only once. For convenience, we assume a uniform method to access the
source data, i.e., every source data bounded with a unique ID and accessing source data by
its ID.

Appl. Sci. 2021, 11, 5523 10 of 33

Then, our online provenance works as follows. First, label every input data with
a unique ID in source operators. Next, the IDs are piggybacked on each data during
transformations and propagate alone the DSP pipeline. Last, when some result data are
selected as object results, we can reverse their corresponding source data by extracting the
source ID list attached in object result data. A more detailed description of this process is
as follows.

4.1. IDs Generation in Source Operators

We hijack each source data before being ingested by source operators, generate a
unique ID, and attach the ID to this source data, similar to the method in [23]. Maintaining
a unique ID for every data is for the reaccess purpose when answering provenance queries
in the future. The enriched stream data carries the IDs of the source data contributing to it.
Based on the set of ID information, the provenance graph can be built as a tree rooted at
sink results with each leaf representing one source data.

DSP systems read stream data from files, sockets, and other third-party systems
(e.g., Apache Kafka, RabbitMQ). We generate source data IDs basing on where they are
ingesting data from accordingly. For instance, we attach file offset to source data as its ID
if this DSP application reads data from filesystems (e.g., Hadoop FileSystem (https://ci.
apache.org/projects/flink/flink-docs-stable/ops/deployment/hadoop.html)), as these
systems internally manage all source data. In these systems, we can then leverage their
data management features without further manually storing source data.

However, for other data sources, e.g., sockets, we have to generate unique IDs on our
own. For these, we adopt Snowflake [24] to generate IDs for each stream data. We also save
IDs and their corresponding data for reverse querying, which happens in the provenance
analyzing phase. Reverse querying, in this paper, refers to querying the source data
according to its ID. Section VI will discuss how to store these kinds of data at a lower
storage cost.

4.2. IDs Propagation during Transformations

The s2p tracks source data and every intermediate record associated with each opera-
tor as the data propagates along the stream job. In this way, s2p knows which source data
and intermediate records affect the creation of a given output. The semantics of operators
constrains the relationship between their input and output. After introspecting the DSP
operators, we can capture the mapping relation of one operator’s input and output data on
runtime and build the cascade relation between result data and source data by joining all
relational data pairs starting from source operators to terminal operators in sequence.

In s2p, we extend the native stream data structure with a new property List<string>
parentList, which saves the source ID list from its ancestral data on upstream, and retroac-
tively traces back to source data. Then source data IDs are piggyback on stream data and
propagated from upstream data to downstream data through the operators in order during
job execution. Each result data from the sink operators will contain a complete source ID
list, indicating which source data correspond to these results.

Nevertheless, methods to propagate IDs vary for stateless operators and stateful
operators.

4.2.1. Stateless Operators

For stateless operators, their results depend entirely upon the nearest input data only;
namely, no historical data would affect the results. We divide stateless operators into four
categories, shown in Figure 7. Each represents a pattern of data transformation. Then, we
will illustrate how the output data acquire their source ID list from the input data for
different categories.

Before that, we will give some expressions for future convenience. The g(.) represents
the function that extracts the source ID list attached in each stream data. The P(.) represents
the transformation in operators.

https://ci.apache.org/projects/flink/flink-docs-stable/ops/deployment/hadoop.html
https://ci.apache.org/projects/flink/flink-docs-stable/ops/deployment/hadoop.html

Appl. Sci. 2021, 11, 5523 11 of 33

OP OP

OP

1 - N

M - 1

1 - 1

OP

M - N

A B

C D

iX iXjY

jY

1
iX

M
iX

M
iX

1
iX

1
jY

N
jY

1
jY

N
jY

Figure 7. OP (circle) represents one DSP operator with X as its input data and Y as its output data.
From left to right: (top) one input data with one output, one input with multiple outputs. (bottom)
multiple input data with one output, multiple input data with multiple output data.

1-1 operators: This type of operator, e.g., map, takes one single data as input and produces
another single data as output. Under this one-to-one transformation, the source ID for
output data Yj is the source ID in its corresponding input data Xi, i.e.,

g(Yj) = g(Xi) (1)

where
∀Xi, Yj|Yj = P(Xi)

1-N operators: This type of operator, e.g., flatmap, takes one data as input and produces
multiple outputs. The source ID for the kth output data Yk

j is the source ID of its corre-
sponding input data Xi, i.e.,

g(Yk
j) = g(Xi) (2)

where
P(Xi) = Y1

j
⋃

Y2
j
⋃

...
⋃

YN
j

M-1 operators: This type of operator takes multiple input data as input and produces one
output. The source ID list for the output data Yj is the group of the source ID list from its
corresponding input data set {X1

i , X2
i , ..., XM

i }, i.e.,

g(Yj) = g(X1
i)

⋃
g(X2

i)
⋃

...
⋃

g(XM
i) (3)

where
Yj = P(X1

i
⋃

X2
i
⋃

...
⋃

XM
i)

M-N operators: This type of operator, e.g., Union, takes input data from two or more
streams and produces multiple output data as output. We can regard this as the composition
of the other three categories as above. Therefore, we can determine the source ID list by
decomposing their mapping relation and aggregating the individual analysis result.

4.2.2. Stateful Operators

Stateful operators will maintain inner states that record the previous data ever seen
or some temporary results for correct computation and fault tolerance purposes. We will
leave state tracing in the offline phase. While in the online phase, we will only capture the
most recent input stream data corresponding to the object output and map their source
ID list to output data. In other words, the source ID list of output data from one stateful
operator will acquire its source ID list from the input stream data instantly processed.

For instance, consider windows as the stateful operator that data passes through with
a state that records the maximum value ever seen. DSP systems usually aggregate stream
data into “buckets” of finite size using different types of time windows (e.g., tumbling
windows, sliding windows (https://ci.apache.org/projects/flink/flink-docs-stable/dev/
stream/operators/windows.html)) and apply a transformation to these data set together.

https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html

Appl. Sci. 2021, 11, 5523 12 of 33

Therefore, we can get the source ID list for its output data in two steps—first, cache the
source ID lists of input data decided by the length of windows; second, generate the source
ID list according to the input data when the bounding action in windows is triggered.
We will not consider its state, i.e., the maximum value, at this time.

4.3. Checkpoint Information Storing

As we mentioned, we will replay the job from some specific point and set the job’s
runtime context from that corresponding checkpoint. All these are based on how we
manage checkpoint data together with source data. In the online provenance phase,
we will bound the nearest checkpoint information (i.e., checkpoint file path, checkpoint
IDs, etc.) to each source data ID. Our provenance management system will store these data
as key-value pairs with source data ID as the key and its corresponding nearest checkpoint
information as the value. In some cases in which IDs are strictly increasing, we can only
store the pairs when checkpoints happen because we can infer which checkpoint they
belong to for source data with ID larger.

5. Offline Provenance

The purpose of offline provenance is to obtain detailed execution information for
some specific data of interest. To avoid affecting the original DSP system, we replay the
DSP job in a simulation environment. We restart the job from a certain point and track
the transformation of data of interest. Figure 8 outlines how to replay the process in a
simulation environment based on the online data collected in the online provenance phase.

Distributed FS

...

Simulation Environment

OP1

OP3

OP4

OP2

DSP Execution Environment

OP2 OP3 OP4OP1

OP2 OP3 OP4OP1

OP2 OP3 OP4OP1

OP2 OP3 OP4OP1

Write Checkpoints
To Remote DFS

Recover
state

Figure 8. Replaying DSP jobs from one specific checkpoint n-k. First, stateful operators fetch
corresponding state values from distributed filesystems and set as their current state. Then source
operators ingest the old stream data starting from where checkpoint n-k marks.

Offline (Offline, in our paper, means the process of capturing and querying fine-
grained provenance is independent with the original DSP execution environment) prove-
nance refers to replaying the DSP job partially. It relies on the checkpoint mechanism in
DSP systems and the ability to reaccess their source data. The periodic checkpoints slice
the continuous processes and put marks in the stream. We can then replay the application
from some specific points as required.

The process to obtain fine-grained provenance information for some object output
result data is as follows. First, initialize the simulation environment with the extended
s2p-DSP platforms (i.e., DSP systems extended with provenance capability) predeployed.
Second, extract the source ID lists of the object result data. Third, query their corresponding
source data according to the source ID list and obtain the earliest checkpoint among them.
Fourth, set the job state from the earliest checkpoints and tune stateful operators with the
checkpoint data from remote backup repositories (e.g., state persisted in distributed file

Appl. Sci. 2021, 11, 5523 13 of 33

systems). Finally, rerun this stream process job and track the detailed data transformation
information passing operators.

Restart from the earliest checkpoint bounded in object source data: The nearest
state snapshot may happen some time ago before the object source data arrive. In the
online provenance phase, we bound IDs of each data item with the nearest checkpoint
information. Checkpoints may vary for different object source data. To determine where
our replay process should occur, we process the object source data in Algorithm 1.

Algorithm 1: Checkpoint Determination Among Object Source Data
Input: Object source data set {(IDn, Chkm)}
Output: The checkpoint Chkr where we restart the job from during offline

provenance

init Chkr ←− MAX_ChkVersion;
length←− length of {(IDn, Chkm)};
for i← 0 to length− 1 do

if Chkr small than Chki
m in (IDn, Chkm)i then

Chkr ←− Chki
m;

end
end

Runtime monitoring: Detailed runtime information, including object data that arrives
at or leaves operators, state transformation, etc. We also generate a unique ID for every data,
including the intermediate data derivated from our object data. Similar to what we have
done in online provenance, we wrap operators to store the data of interest, including data
fed into operators, the temporary result after operators, etc. Furthermore, it is also necessary
to record stateful operators’ state values because they may contribute to output results.

For reducing the network burden caused by moving these monitoring data, they are all
stored in their local machines and managed by our system transparently in distributed mode.

6. Provenance Management
6.1. Source Data Storing

For postmortem purposes, it is necessary to reaccess the stream data after its trans-
formation completes. It is straightforward when source data is stored and managed by
third-party systems, e.g., Kafka. However, this is not always true, especially when source
data are transient and dropped immediately after being fed into the DSP system. For these,
we have to store the source data on our own for future analysis purposes. In our solution,
we cache the source data explicitly if they are not stored inherently. Otherwise, we will
only maintain the value’s reference (e.g., offset in Kafka) for future reaccess.

The big data nature and infinite stream data make it costly and inefficient to store all
the source data deliberately. We assume that users are more interested in the latest data
since the value of source data for debugging decreases as the system is running smoothly.
On this assumption, we will remove the “out-of-date” data continuously in our cache-side.
We adopt a FIFO (first in first out) strategy to remove old data. In our paper, we implement
it as a customized circular buffer (https://en.wikipedia.org/wiki/Circular_buffer) where
the write pointer moves forward as new data arrives to be stored and the read pointer is
statically pointing to one entry position. The circular buffer capability is predefined based
on the estimation of how many data items will be stored. For reducing the traffic burden,
data are stored locally and managed by our system automatically. Algorithm 2 shows how
we manage source data in one local machine where one instance of a source operator is
running and producing the data items to be stored.

https://en.wikipedia.org/wiki/Circular_buffer

Appl. Sci. 2021, 11, 5523 14 of 33

Algorithm 2: Source Data Caching and Purging Algorithm
Precondition: A linked list L, a parameter M {the predefined capability}, a read
pointer pr, and a pointer pcurrent pointing to the position where new data should
write

Input: Data items A[0...j] from source operators {For any element A[i], it consists
of one unique ID and corresponding value}

if L is NULL then
init L←−mallocSpace(M) ;
init pr ←− getAddress(L[0]) ;
Ltail point to Lhead ;
init pcurrent ←− getAddress(L[0]) ;

end
pcurrent.data_id←− A[0].ID;
pcurrent.data_value←− A[0].value ;
for i = 1 to j do

pcurrent ←− pcurrent.next ;
pcurrent.data_id←− A[i].ID ;
pcurrent.data_value←− A[i].value ;

end

6.2. Provenance Data Management

Provenance data refers to the data generated and stored for provenance purposes,
including parents’ ID list in each stream data, operators’ states, and intermediate data in
the offline provenance phase.

Intermediate data of interest: In the offline provenance phase, we will cache all the
intermediate data derived from the object source data. In s2p, the intermediate data is
expressed in the form as < OPname, Duuid, Dvalue, {Puuid}, Flag > OPname representing the
operator’s name, Duuid as the ID of this data, Dvalue as the actual value, {Puuid} as the ID
set of upstream data that is related to, and Flag denoting it as input data, output. All of
these intermediate data are stored locally and managed transparently by our provenance
management system.

Since we track the object data and their dependent data only, we filter out other data
using a tagging method as follows. We tag the data whose upstream data is object data to
be tracked—starting from source operators. This tag operation continuous until to sink
operators. The other untagged data are filtered out without consideration.

Parents’ ID list of stream data: All stream data, including the temporary data within
the transformation, are appended with a parents’ ID list, which comes from their upstream
data. In the online provenance phase, since we only focus on the source data contributing
to the final results, the parents’ ID lists for stream data are the source IDs, leading to
these data, instead of their upstream data’ IDs. However, parents’ ID lists in the offline
provenance phase are aggregating IDs of all related upstream data.

Provenance data transmission and storing: We adopt a server–client architecture,
where each operator runs with one ProvClient, which interacts with ProvServer and each
physical machine runs one ProvServer for provenance-related data collecting and storing.
ProvServer also reacts to query commands from ProvManagerQueryService, which man-
ages the provenance data from different ProvServers and responds to provenance queries.
Consider one tiny Apache Flink application as an instance, which consists of two nodes
with one task manager per node. Our provenance management system works for this
application, shown as in Figure 9. This Flink application is decomposed into parallel tasks
that are running on task slots (https://ci.apache.org/projects/flink/flink-docs-stable/
concepts/flink-architecture.html). Each task works with one ProvClient, through which it
interacts with ProvServer. The ProvServer contains provenance data locally in one node
and talks with ProvManagerQueryService transparently.

 https://ci.apache.org/projects/flink/flink-docs-stable/concepts/flink-architecture.html
 https://ci.apache.org/projects/flink/flink-docs-stable/concepts/flink-architecture.html

Appl. Sci. 2021, 11, 5523 15 of 33

Task

Task
Slot

TaskManager

ProvClient

Task

Task
Slot

ProvClient

Task

Task
Slot

ProvClient

ProvServer

Prov
Msg

Cmd
Msg

Prov
Data

Node 1

Task

Task
Slot

TaskManager

ProvClient

Task

Task
Slot

ProvClient

Task

Task
Slot

ProvClient

ProvServer

Prov
Msg

Cmd
Msg

Prov
Data

Node 2

ProvManageQuery
Service

Figure 9. Demonstration for provenance management system working in with one Flink application
in distributed mode.

6.3. Querying the Provenance Data

In this paper, querying provenance data varies in online provenance and offline prove-
nance. For online provenance, we extract the source ID list from the output data and
locate their corresponding input stream data, shown in Algorithm 3. For offline prove-
nance, we can get complete provenance information about the object result by querying
as Algorithm 4. The result of Algorithm 4 is a tree whose root is the result data and the
leaves are its corresponding source data. The tree presents the opposite direction of data
transformation, starting from object results data to source data. We can reverse its direction
and obtain a DAG starting from source data to object result data with intermediate data
among them. Based on this information, we can get stream data lineage or debugging
results by tracing backward or forward.

Algorithm 3: Provenance Querying Algorithm in Online Phase
Input: Output result data R of interest
Output: Source data sets S[0...j]

init S←− NULL;
foreach address in address of all machines do

raddress ←− Laddress.search(R) {L is the Linked List mentioned in Algorithm 2} ;
if raddress[] is not NULL then

foreach value in raddress[] do
S.add(value) ;

end
end

end

We built one prototype tool called ProvManagerQueryService, which provides CIL
to assist the query process, shown as in Figure 10. It is built on Spring Shell 2.0.0
(https://spring.io/projects/spring-shell) and Netty 4.1.16 (https://netty.io/). ProvMan-
agerQueryService aggregates provenance-related information in different machines trans-
parently and replies to our query commands by integrating these messages.

https://spring.io/projects/spring-shell
https://netty.io/

Appl. Sci. 2021, 11, 5523 16 of 33

Algorithm 4: Provenance Querying Algorithm in Offline Phase
Input: Object result data R of interest
Output: A tree T with the opposite direction of data transformation

init Q←− NULL {Q is a queue};
init T ←− NULL ;
Q.add(R) ;
while Q.size() is not 0 do

treenode←− (TreeNode)Q.poll() ;
T.add(treenode) ;
parentIDs←− treenode.parentList {parentList of source data is NULL} ;
if parentIDs is not NULL then

foreach id in parentIDs do
data←− GetData(id) {GetData is the function to get data by its ID} ;
Q.add(data) ;

end
end
foreach node in T do

if node.parentList contains treenode.ID then
node.nextSet.add(treenode) {nextSet contains references to child node};

end
end

end

Figure 10. CLI for ProvMangerQueryService. It provides commands controlling ProvServer (e.g., clos-
eServer) and query commands (e.g., getParentUUID) to answer queries.

7. Experimental Evaluation

Our experimental evaluation is a qualitative appraisal for determining the overhead,
throughput, and scalability of s2p in online provenance phase.

To be concrete, we implement our s2p solution on Apache Flink, called s2p-flink,
for convenience. During the implementation phase, we have designed various test cases to
make it as bug-free as possible. Meanwhile, we have also verified the correctness of the
algorithms about checkpoint determination, source data purging, etc. We choose s2p-flink
as the experimental object platform and choose three applications (shown as in Table 2)

Appl. Sci. 2021, 11, 5523 17 of 33

working on this platform and normal Flink platform under various workloads. We also
compare the performance results on s2p-flink with those on native Flink.

7.1. General Settings

Dataset: We constructed a diverse set of data sets based on the data benchmark in [43],
which consists of Tweets in six months, and the data benchmark in [44]. For Twitter data
sets, we filtered out coordinates and timestamps; only the Twitter messages were left. Then,
we randomly sampled text lines and formed a new text collection to simulate the scenario
in which some people send Tweets independently, and DSP ingests the data for further
analysis. For the movie rating data set, we extend it by randomly sampling them and
appending them to a new data file. Basing on these two kinds of data sets, we constructed
our data sets in different sizes ranging from 2 GB to 500 GB.
Object Applications: In terms of benchmark applications, we choose three subject appli-
cations from earlier works [45,46], some of which are adapted and extended with stream
processing features (e.g., process data with time windows). These subject applications are
listed in Table 2 (the extended applications are tagged with an asterisk).

Table 2. Subject Applications.

Subject
Application Output # Of

Operators Operators Input
Sizes

P1 WordCount
Counts the times
each word appears
at regular intervals

4

FlatMap,
KeyBy,
Window,
Reduce

2G,
5G,
10G,
15G,
30G,
60G,
120G,
240G,
500G

P2 Grep

Finds the words in
the input data sets
that match any
one in one given
list of words

2 FlatMap,
Filter

P3 MovieRatings
Finds movies with
scores greater than
four

7

Map,
Filter,
KeyBy,
Window,
Reduce

Hardware and Software Configuration: Our experiments were carried out on a cluster
that contains ten i3-2120 machines, each running at 3.30 GHz and equipped with two cores
(two hyperthreads per core), 4 GB of RAM. Among these machines, eight of them are as the
slave nodes with 500 GB of disk capacity for each. One is the master node. Furthermore,
the left one works as a data node with 3 TB of disk capacity. The data node stimulates
users to send data continuously. All ten of these machines are connected via a TL-SG1024
Gigabit Ethernet Switch.

The operating system is 64-bit Ubuntu 18.04. The data sets are all stored in HDFS with
version 2.8.3. We built s2p-flink on Apache Flink version 1.9.2, the baseline version with
which we will compare our system. We also set the parallelism of jobs to 16.

7.2. Evaluation Metrics

Our experiments take the end-to-end cost (we will simply call it cost for short in the
following) and throughput [47] as metrics to evaluate the efficiency of s2p in the online
provenance phase. We also evaluate space overhead to measure how much additional
space is needed to store provenance-related data.

In our study, we evaluate the cost for various workloads (i.e., data set in different
sizes), i.e., the cost is calculated as the time difference between the moment one stream

Appl. Sci. 2021, 11, 5523 18 of 33

application starts and the moment that all results are generated. Throughput, in this study,
is the number of source data that is ingested and processed per time unit.

The space cost mainly consists of two parts, i.e., references to source data (i.e., parents’
ID list in every stream data) and persisted checkpoints. Since references to source data are
piggybacking on stream data and propagate from upstream operators to downstream oper-
ators, there is no additional space necessary to store references-related data for intermediate
operators until after the sink operators because the intermediate data are temporary and
dropped soon as they are transferred to downstream operators. Therefore, we will focus on
the data passing through sink operators only, for these are to be stored for future analysis.

The first experiment compares how cost changes when normal Flink is enabled with
online provenance capability. This is achieved by executing the same application under
each workload on both s2p-flink and normal Flink, then recording and analyzing their
corresponding computing time.

We measure the increased degree of cost under the workload w as the increased ratio
σw as in Equation (4).

σw =
φ̄w − ϕ̄w

ϕ̄w (4)

where φ̄w represents the trimmed mean of s2p-flink’s cost and ϕ̄w refers to native Flink’s.
The second experiment focuses on the decline of throughput for s2p-flink. We carry

out each workload of various sizes. For each workload, we compare the throughput of the
same application with and without provenance (i.e., s2p-flink vs. normal Flink).

Similarly, we measure the degree of throughput reduction under the workload w as
the decreased ratio ηw as in Equation (5).

ηw =
ρ̄w − ῡw

ρ̄w (5)

where ρ̄ represents the trimmed mean of normal Flink’s throughput and ῡw refers to
s2p-flink’s.

The third experiment is to measure the space overhead. We define the space overhead
ratio τw to present the additional space required quantitively. It is calculated as follows in
Equation (6).

τw =
∑ βi
ψw , i ∈ {0, 1, ..., |OPt|} (6)

where βi is the space overhead for additional space required in ith sink operator instance,
ψw is the size of source data under workload w, and |OPt| is the number of terminus opera-
tors’ instance. In our experiment, we can obtain ∑ βi by calculating the data size difference
between stream data processed by s2p’s terminus operators and the ones processed by
native Flink’s terminus operators under each workload w.

In all experiments, we executed the applications under each workload seven times
and computed the trimmed mean value by removing the maximum and minimum results
and averaging the remaining five among the seven runs. We also configured s2p-flink to
retain 20 versions of checkpoints and persisted these checkpoints in HDFS.

7.3. Cost Results

Figure 11 reports the cost of running P1, P2, and P3 applications under different
workloads with (i.e., s2p) and without (i.e., normal Flink) provenance. Y-axes are all on a
logarithmic scale. Table 3 summarizes the increased cost ratio for the three applications
on s2p-flink. As the table shows, the increased cost ratio on s2p-flink fluctuates between
1.13X to 1.32X in comparison with the baseline results on normal Flink. We make further
analysis on these data and get statistical results shown as in Table 4. In general, the cost
ratio varies among different applications, but it fluctuates little for the same application
under different workloads. This implies that the s2p scales well from the cost perspective
and has great potential to be applied in practical engineering applications.

Appl. Sci. 2021, 11, 5523 19 of 33

2G
B

5G
B

10
GB

15
GB

30
GB

60
GB

12
0G

B

24
0G

B

50
0G

B

0

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192 flink-1.9.2
 s2p-flink
 Increased Ratio

L
a

ten
c

y (s)

In
c

reas
ed

R
atio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(a)

2G
B

5G
B

10
GB

15
GB

30
GB

60
GB

12
0G

B

24
0G

B

50
0G

B

0

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192 flink-1.9.2
 s2p-flink
 Increased Ratio

L
a

ten
c

y (s)

In
c

reas
ed

R
atio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(b)

2G
B

5G
B

10
GB

15
GB

30
GB

60
GB

12
0G

B

24
0G

B

50
0G

B

0

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192 flink-1.9.2
 s2p-flink
 Increased Ratio

L
a

ten
c

y (s)

In
c

reas
ed

R
atio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(c)

Figure 11. (a) P1 cost results; (b) P2 cost results; (c) P3 cost results.

More precisely, we analyze the cost results for each application as follows. Figure 11a
reports the cost for running the P1 application on varying workloads. Under all workloads,
s2p-flink offers no more than 1.16X normal Flink. The cost for s2p-flink remains fairly
flat, fluctuating up and down around 1.15X (the median) normal Flink cost for all data
sets in our experiment. Figure 11b reports the cost corresponding to the P2 application.
The increased cost ratio ranges from 1.16X (minimum) to 1.24X (maximum) normal Flink
cost for all data sets. More precisely, s2p-flink is more than 1.2X normal Flink for data sets
smaller than 10G, and shows a decreasing trend for larger data set sizes (from 10 GB to
500 GB). Figure 11c compares the cost results for P3 application. We can observe its cost

Appl. Sci. 2021, 11, 5523 20 of 33

ratio is higher than P1 and P2. However, it can still keep a stable fluctuation cost ratio for
different data sets.

Table 3. Latency comparison results for P1, P2, and P3 applications under various workloads on
s2p-flink and native Flink.

WorkLoads P1 P2 P3
2 GB 1.16X 1.22X 1.19X

5 GB 1.13X 1.22X 1.20X

10 GB 1.13X 1.24X 1.20X

15 GB 1.16X 1.20X 1.27X

30 GB 1.14X 1.16X 1.29X

60 GB 1.15X 1.21X 1.28X

120 GB 1.14X 1.19X 1.26X

240 GB 1.15X 1.16X 1.30X

500 GB 1.16X 1.16X 1.32X

Table 4. Statistical results for increased cost ratio of P1, P2, and P3.

P1 P2 P3

Mean 0.146 0.196 0.257

Median 0.15 0.2 0.27

Variance (σ2) 0.0001 0.0008 0.0021

7.4. Throughput Results

Figure 12 reports the throughput results for both s2p-flink and normal Flink under
various workloads. In general, s2p-flink causes an 11% to 24% decline in throughput,
and these increase ratio values fluctuate around 16% (the median) with the variance
0.00014 for the whole decreased ratio for P1, P2, and P3. This also implies good scalability
of s2p.

More precisely, Figure 12a reports the throughput results for P1. For all workloads
ranging from 2 GB to 500 GB, s2p-flink brings less than 14% decline in throughput, and
even only 11% for some workloads. Figure 12b compares the results for P2. For this
application, we observe the throughput decline ratio of s2p-flink no more than 19%, and
shows a decreasing trend when the data set is larger than 10 GB. Figure 12c shows the
results for P3. The throughput decline ratio of s2p-flink is less than 17% for data sets
smaller than 10 GB and stays steady for data sets between 15 GB and 120 GB. The decline
ratio slightly increased for large data sets (i.e., larger than 120 GB) but was still no more
than 24%.

Appl. Sci. 2021, 11, 5523 21 of 33

2G
B

5G
B

10
GB

15
GB

30
GB

60
GB

12
0G

B

24
0G

B

50
0G

B

20

30

40

50

 flink-1.9.2 (M/s)
 s2p-flink (M/s)
 Decreased Ratio

T
h

ro
u

g
h

p
u

t (M
/s)

D
e

c
rea

s
ed

 R
a

tio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

2G
B

5G
B

10
GB

15
GB

30
GB

60
GB

12
0G

B

24
0G

B

50
0G

B

40

45

50

55

60

65

70

75

80

85

90

95

 flink-1.9.2 (M/s)
 s2p-flink (M/s)
 Decreased Ratio

T
h

ro
u

g
h

p
u

t (M
/s)

D
ec

rea
sed

 R
atio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a) (b)

2G
B

5G
B

10
GB

15
GB

30
GB

60
GB

12
0G

B

24
0G

B

50
0G

B

30

40

50

60

70

80

90
 flink-1.9.2 (M/s)
 s2p-flink (M/s)
 Decreased Ratio

T
h

ro
u

g
h

p
u

t (M
/s)

D
ec

reas
ed

 R
atio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

(c)

Figure 12. (a) P1 throughput results; (b) P2 throughput results; (c) P3 throughput results.

7.5. Space Overhead Results

Figure 13 reports the space cost overhead ratio ρw for P1, P2, and P3 jobs on s2p-flink
and normal Flink. We can see that the reference data size is within 3.3% of the source
data size from our experimental results. For P2, space overhead ratio is relatively low.
Simple jobs (e.g., P2) have a lower space overhead ratio because complex jobs are always
involving complicated data dependency so that we have to store more reference data for
future analysis purposes.

The storage for persisted checkpoints is decided by how many versions of check-
points are required to store. In our experience, we count the total space for storing every
checkpoint ever happened during execution, as it is the extreme provenance requirement,
i.e., tracing back to DSP systems’ initial state. Admittedly, it is the most costly strategy with
respect to space. We will explore its upper bound for storing checkpoints.

Figure 14 reports the additional space cost required for storing all checkpoints under
various workloads for P1 and P2. We found that the size of space cost increases proportion-
ally with the size of workloads, but within a reasonably low ratio comparing the whole data
sets. P3 requires the additional storage, similar to P1 and P2 in our preliminary experiment
for the 2 GB, 5 GB, and 10 GB dataset, but we leave it as further experiment for larger data
sets in our future work.

Appl. Sci. 2021, 11, 5523 22 of 33

2 5 10 15 30 60 120 240 500

0.00

0.01

0.02

0.03

S
p

a
ce

 O
ve

rh
ea

d
 R

a
ti

o

workloads (GB)

 P1
 P2
 P3

Figure 13. Space overhead ratio results for storing references for P1, P2, and P3 in s2p-flink comparing
native Flink under various workloads.

-1 0 1 2 4 8 16 32 64 128 256 512
-2
-1
0
1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384 P1

D
at

a
S

iz
e

(M
B

)

WorkLoads (GB)

-2
-1
0
1
2
4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536

 P2

D
at

a
S

iz
e

(B
)

Figure 14. Additional space cost required for checkpoints persisting for WordCount and FilterWord
jobs in s2p-flink under various workloads.

7.6. Auxiliary Evaluation

The Efficiency of Getting Source Data: Here, we turn to measure the efficiency of getting
source data. We begin with a subset of stream results. Then, we extract the source data
references (i.e., source ID list) attached to them and trace their corresponding source
data reversely. To estimate the expected time it takes to fetch the source data by any
client, we randomly conduct our experiment on one slave machine. We send a series
of request data to HDFS and calculate their response time on average. We repeat this

Appl. Sci. 2021, 11, 5523 23 of 33

process one-thousand times and get the trimmed mean value by removing the top fifty
and bottom fifty results before averaging the remaining nine-hundred. We got the results
µ = 443.14, σ = 4.37 with the milliseconds unit. In many cases, e.g., debugging, it is
acceptable to fetch one piece of data from its source within this time frame.

8. Case Study

This section uses one real Flink application, ItemMonitor, to demonstrate the feasibil-
ity of s2p. ItemMonitor monitors items clicked, purchased, added to the shopping cart, or
favorited and analyzes each item’s popularity. UserBehavior (https://tianchi.aliyun.com/
dataset/dataDetail?spm=a2c4e.11153940.0.0.671a1345nJ9dRR&dataId=649), a dataset of
user behavior from Taobao, is used as the workload to ItemMonitor. Online provenance
and offline provenance were examined in sequence and illustrated how s2p works in
tracing target stream data.

8.1. Introduction of the Object Application

ItemMonitor was built by chaining Flink operators and implemented custom data
processing logic in them. It continuously ingests user behavior data and analyzes the
frequency of visits for each item in a period (e.g., seconds). It warns of the sudden peak,
i.e., items are visited over 1000 times greater than the lastest time period, or outliers
(e.g., visit number is less than zero). Figure 15 shows the composition of ItemMonitor,
which consists of five operators with data processing login implementing within them.

The source operator reads data from HDFS line by line and then passes them to the
next operators. FlatMap transfers the plain strings from the source operator into POJOs
and then passes them to the following operators. In window operator, data are assorted
by the key (i.e., Item ID in our experiment) and grouped according to the time window
length. Reduce works in every time window by combining the new data with the last
values and emitting new values. Results from window operators are then processed by a
user-customizeed process operator (i.e., process operator in Figure 15), which maintains
temporary historical results (e.g., the maximum visits of each item) and applies the user-
customized processing logic (e.g., warning for outliers). Sink operator sends results to
standard output in our experiment.

Source:
Custom
Source

FlatMap Window(Redu
ceFunction) Process Sink:

Custom Sink

Figure 15. The pipeline of ItemMonitor with five operators chained in order.

Before conducting our experiment, we preprocessed the UserBehavior data set,
in which several unnecessary fields such as "Category ID" were trimmed out. The prepro-
cessed data were then extended, similar to the method in Section VII, and stored in HDFS
with each row representing one user behavior. We intentionally appended some items
with large visit numbers to simulate the extreme scenarios (e.g., flash sale on Black Friday).
We modified the configurations to save multiple checkpoints. By default, only the lastest
checkpoint will be persisted in Flink. We altered the “state.checkpoints.num-retained” in the
configuration file (i.e., flink-conf.yaml) to a large number so that many more checkpoints
could be saved. The experiment was conducted in the same cluster as in section VII.

8.2. Online Provenance Results

During the execution, we noticed one abnormal result whose data ID is 1769192.
Its total visits suddenly dropped as a negative value in some time, shown in Figure 16a.
Obviously, it is a wrong value. We want to infer the reason why this happens. We divide
this into two subproblems: (a) what source data contributes to this result; (b) how these
source data are transformed through the pipeline. The previous question is solved in the

https://tianchi.aliyun.com/dataset/dataDetail?spm=a2c4e.11153940.0.0.671a1345nJ9dRR&dataId=649
https://tianchi.aliyun.com/dataset/dataDetail?spm=a2c4e.11153940.0.0.671a1345nJ9dRR&dataId=649

Appl. Sci. 2021, 11, 5523 24 of 33

online provenance phase, when s2p tracks related data automatically. Data to answer the
latter question are obtained in the offline provenance phase.

After querying its corresponding source data of item 1769192 through ProvMan-
agerQueryService (i.e., the provenance query assistant tool in VI), we got a set of IDs
{458804144, 458804118, 458804194, 458804168} shown as in Figure 16b. We can further get
their original source data by reverse search according to the ID sets. Meanwhile, s2p also
tracks checkpoints and connects each source data point with its latest checkpoint. Source
data for item 1769192 are shown in Table 5. To some degree, these results can validate the
correctness of Algorithms 1–3.

(a)

(b)

(c)

Figure 16. (a) Abnormal results for item 1769192, whose visit is −2147483639 with timestamp 1599083700; (b) ID list of the
source data that contribute to the result; (c) restart the job from a specific checkpoint.

Table 5. Source IDs with their corresponding source data and the latest checkpoint before the source
data are ingested.

Source
Data’s ID Source Data Checkp.

458804144 1769192,5327,1559688951 chk-25
458804118 1769192,321791,1551688946 chk-25
458804194 1769192,2146425285,1561688967 chk-25
458804168 1769192,731254,1573688967 chk-25

8.3. Offline Provenance Results

We reran the ItemMonitor job with offline provenance enabled. The object source
data obtained in the online provenance phase and their derivative data will be tracked in
detail. Meanwhile, the process of state transformation in operators will also be tracked.
Since the latest checkpoint of all the object source data is chk-25, we restarted the job with
the parameter “-s” from chk-25, shown in Figure 16c.

We then obtain the intermediated transformation data within operators and state
transitions in stateful operators, shown in Figure 17. When tracing back from result
data in the sink operator, we found intermediate data “1769192 ==> −2147483639” in
the output of the Window operator. Its upstream data are “1769192 ==> 2146425285”,
“1769192 ==> 5327”, “1769192 ==> 731254” and “1769192 ==> 321791”. The expected
result should be “1769192 ==> 2147483657” instead of “1769192 ==> −2147483639”.
After checking the corresponding source code, we found that integer overflow led to this
problem. For the buggy version of ItemMonitor, each item’s visit number is classified as
an integer type. The bug will be triggered under some extreme scenario, e.g., flash sale
for some item. Our s2p can assist the debugging process by tracing back from the result
in detail.

Appl. Sci. 2021, 11, 5523 25 of 33

u
u

id
:

4
5

8
8
0

4
1
9

4

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
,

2
1

4
6
4

2
5
2

8
5
,

1
6

1
1
6

8
8
9

6
7

P
a
ren

tL
ist:

4
5

8
8
0

4
1
9

4

T
a
g
: I

u
u

id
:

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0

O
P

 N
a
m

e:

T
im

e
W

in
d

o
w

{sta
r
t=

1
5

9
9
0

8
6

0
9

9
0
0

0
, e

n
d

=
1
5
9

9
0
8

6
1
0

0
0
0

0
}

V
a

lu
e:

1
7

6
9
1

9
2
=

=
>

2
1
4
6

4
2
5

2
8
5

P
a
ren

tL
ist:

4
5

8
8
0

4
1
9

4

T
a
g
: I

u
u

id
:

7
5

0
8
4

6
2
6

7
8
3

2
6
7

2
2
5

6

O
P

 N
a
m

e:

W
in

d
o
w

(1
5

9
9
0

8
6
0

9
9
0

0
0
,

1
5

9
9
0

8
6
1

0
0
0

0
0
)

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

-2
1

4
7
4

8
3
6

3
9

P
a

ren
tL

ist:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2
;

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2
;

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0
;

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

T
a
g
: O

V
a
lu

e
:

1
7

6
9
1

9
2
,2

1

4
6

4
2
5

2
8
5

,1

6
1

1
6
8

8
9
6

7
O

ffse
t:

4
5
8

8
0
4

1
9
4

V
a
lu

e
:

1
7

6
9
1

9
2
,5

3

2
7

,1
5
5
9

6
8
8

9
5

1
O

ffse
t:

4
5
8

8
0
4

1
4
4

u
u

id
:

4
5

8
8
0

4
1
4

4

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
,5

3
2
7
,1

5

5
9

6
8
8

9
5
1

P
a
ren

tL
ist:

4
5

8
8
0

4
1
4

4

T
a

g
: I

u
u

id
:

4
5

8
8
0

4
1
6

8

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
,7

3
1
2
5

4
,

1
6

1
1
6

8
8
9

6
7

P
a
ren

tL
ist:

4
5

8
8
0

4
1
6

8

T
a
g
: I

u
u

id
:

4
5

8
8
0

4
1
1

8

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
,3

2
1
7
9

1
,

1
5

5
1
6

8
8
9

4
6

P
a
ren

tL
ist:

4
5

8
8
0

4
1
1

8

T
a

g
: I

V
a
lu

e
:

1
7

6
9
1

9
2
,7

3

1
2

5
4
,1

6
1
1
6

8
8

9
6
7

O
ffse

t:

4
5
8

8
0
4

1
6
8

V
a
lu

e
:

1
7

6
9
1

9
2
,3

2

1
7

9
1
,1

5
5
1
6

8
8

9
4
6

O
ffse

t:

4
5
8

8
0
4

1
1
8

u
u

id
:

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

2
1
4
6

4
2
5

2

8
5

P
a
ren

tL
ist:

4
5

8
8
0

4
1
9

4

T
a
g
: O

u
u

id
:

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

5
3
2
7

P
a

ren
tL

ist:

4
5

8
8
0

4
1
4

4

T
a

g
: O

u
u

id
:

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

O
P

 N
a

m
e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

7
3
1
2

5
4

P
a
ren

tL
ist:

4
5

8
8
0

4
1
6

8

T
a

g
: O

u
u

id
:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

3
2
1
7

9
1

P
a

ren
tL

ist:

4
5

8
8
0

4
1
1

8

T
a
g
: O

u
u

id
:

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2

O
P

 N
a
m

e:

T
im

e
W

in
d

o
w

{sta
r
t=

1
5

9
9
0

8
6

0
9

9
0
0

0
, e

n
d

=
1
5
9

9
0
8

6
1
0

0
0
0

0
}

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

5
3
2
7

P
a

ren
tL

ist:

4
5

8
8
0

4
1
4

4

T
a

g
: I

u
u

id
:

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

O
P

 N
a
m

e:

T
im

e
W

in
d

o
w

{sta
r
t=

1
5

9
9
0

8
6

0
9

9
0
0

0
, e

n
d

=
1
5
9

9
0
8

6
1
0

0
0
0

0
}

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

7
3
1
2

5
4

P
a
ren

tL
ist:

4
5

8
8
0

4
1
6

8

T
a
g
: I

u
u

id
:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2

O
P

 N
a
m

e:

T
im

e
W

in
d

o
w

{sta
r
t=

1
5

9
9
0

8
6

0
9

9
0
0

0
, e

n
d

=
1
5
9

9
0
8

6
1
0

0
0
0

0
}

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

3
2
1
7

9
1

P
a
ren

tL
ist:

4
5

8
8
0

4
1
1

8

T
a

g
: I

u
u

id
:

7
5

0
8
4

6
2
6

7
8
3

2
6
7

2
2
5

6

O
P

 N
a
m

e:

C
u

sto
m

 P
ro

c
ess

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

-2
1

4
7
4

8
3
6

3
9

P
a
ren

tL
ist:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2
;

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2
;

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0
;

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

T
a

g
: I

u
u

id
:

7
5

0
8
4

6
2
6

8
5
7

7
3
7

8
3
0

4

O
P

 N
a
m

e:

C
u

sto
m

 P
ro

c
ess

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

-2
1

4
7
4

8
3
6

3
9

P
a
ren

tL
ist:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2
;

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2
;

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0
;

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

T
a

g
: O

u
u

id
:

7
5

0
8
4

6
2
6

8
5
7

7
3
7

8
3
0

4

O
P

 N
a
m

e:

S
in

k

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

-2
1

4
7
4

8
3
6

3
9

P
a
ren

tL
ist:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2
;

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2
;

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0
;

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

T
a

g
: E

N
D

C
u

sto
m

S
o

u
rc

e
F

la
t M

a
p

W
in

d
o
w

C
u

sto
m

P
ro

c
e
ss

S
in

k

u
u

id
:

4
5

8
8
0

4
1
9

4

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
,

2
1

4
6
4

2
5
2

8
5
,

1
6

1
1
6

8
8
9

6
7

P
a
ren

tL
ist:

4
5

8
8
0

4
1
9

4

T
a
g
: I

u
u

id
:

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0

O
P

 N
a
m

e:

T
im

e
W

in
d

o
w

{sta
r
t=

1
5

9
9
0

8
6

0
9

9
0
0

0
, e

n
d

=
1
5
9

9
0
8

6
1
0

0
0
0

0
}

V
a

lu
e:

1
7

6
9
1

9
2
=

=
>

2
1
4
6

4
2
5

2
8
5

P
a
ren

tL
ist:

4
5

8
8
0

4
1
9

4

T
a
g
: I

u
u

id
:

7
5

0
8
4

6
2
6

7
8
3

2
6
7

2
2
5

6

O
P

 N
a
m

e:

W
in

d
o
w

(1
5

9
9
0

8
6
0

9
9
0

0
0
,

1
5

9
9
0

8
6
1

0
0
0

0
0
)

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

-2
1

4
7
4

8
3
6

3
9

P
a

ren
tL

ist:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2
;

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2
;

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0
;

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

T
a
g
: O

V
a
lu

e
:

1
7

6
9
1

9
2
,2

1

4
6

4
2
5

2
8
5

,1

6
1

1
6
8

8
9
6

7
O

ffse
t:

4
5
8

8
0
4

1
9
4

V
a
lu

e
:

1
7

6
9
1

9
2
,5

3

2
7

,1
5
5
9

6
8
8

9
5

1
O

ffse
t:

4
5
8

8
0
4

1
4
4

u
u

id
:

4
5

8
8
0

4
1
4

4

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
,5

3
2
7
,1

5

5
9

6
8
8

9
5
1

P
a
ren

tL
ist:

4
5

8
8
0

4
1
4

4

T
a

g
: I

u
u

id
:

4
5

8
8
0

4
1
6

8

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
,7

3
1
2
5

4
,

1
6

1
1
6

8
8
9

6
7

P
a
ren

tL
ist:

4
5

8
8
0

4
1
6

8

T
a
g
: I

u
u

id
:

4
5

8
8
0

4
1
1

8

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
,3

2
1
7
9

1
,

1
5

5
1
6

8
8
9

4
6

P
a
ren

tL
ist:

4
5

8
8
0

4
1
1

8

T
a

g
: I

V
a
lu

e
:

1
7

6
9
1

9
2
,7

3

1
2

5
4
,1

6
1
1
6

8
8

9
6
7

O
ffse

t:

4
5
8

8
0
4

1
6
8

V
a
lu

e
:

1
7

6
9
1

9
2
,3

2

1
7

9
1
,1

5
5
1
6

8
8

9
4
6

O
ffse

t:

4
5
8

8
0
4

1
1
8

u
u

id
:

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

2
1
4
6

4
2
5

2

8
5

P
a
ren

tL
ist:

4
5

8
8
0

4
1
9

4

T
a
g
: O

u
u

id
:

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

5
3
2
7

P
a

ren
tL

ist:

4
5

8
8
0

4
1
4

4

T
a

g
: O

u
u

id
:

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

O
P

 N
a

m
e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

7
3
1
2

5
4

P
a
ren

tL
ist:

4
5

8
8
0

4
1
6

8

T
a

g
: O

u
u

id
:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2

O
P

 N
a
m

e:

F
la

t M
a
p

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

3
2
1
7

9
1

P
a

ren
tL

ist:

4
5

8
8
0

4
1
1

8

T
a
g
: O

u
u

id
:

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2

O
P

 N
a
m

e:

T
im

e
W

in
d

o
w

{sta
r
t=

1
5

9
9
0

8
6

0
9

9
0
0

0
, e

n
d

=
1
5
9

9
0
8

6
1
0

0
0
0

0
}

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

5
3
2
7

P
a

ren
tL

ist:

4
5

8
8
0

4
1
4

4

T
a

g
: I

u
u

id
:

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

O
P

 N
a
m

e:

T
im

e
W

in
d

o
w

{sta
r
t=

1
5

9
9
0

8
6

0
9

9
0
0

0
, e

n
d

=
1
5
9

9
0
8

6
1
0

0
0
0

0
}

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

7
3
1
2

5
4

P
a
ren

tL
ist:

4
5

8
8
0

4
1
6

8

T
a
g
: I

u
u

id
:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2

O
P

 N
a
m

e:

T
im

e
W

in
d

o
w

{sta
r
t=

1
5

9
9
0

8
6

0
9

9
0
0

0
, e

n
d

=
1
5
9

9
0
8

6
1
0

0
0
0

0
}

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

3
2
1
7

9
1

P
a
ren

tL
ist:

4
5

8
8
0

4
1
1

8

T
a

g
: I

u
u

id
:

7
5

0
8
4

6
2
6

7
8
3

2
6
7

2
2
5

6

O
P

 N
a
m

e:

C
u

sto
m

 P
ro

c
ess

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

-2
1

4
7
4

8
3
6

3
9

P
a
ren

tL
ist:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2
;

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2
;

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0
;

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

T
a

g
: I

u
u

id
:

7
5

0
8
4

6
2
6

8
5
7

7
3
7

8
3
0

4

O
P

 N
a
m

e:

C
u

sto
m

 P
ro

c
ess

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

-2
1

4
7
4

8
3
6

3
9

P
a
ren

tL
ist:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2
;

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2
;

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0
;

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

T
a

g
: O

u
u

id
:

7
5

0
8
4

6
2
6

8
5
7

7
3
7

8
3
0

4

O
P

 N
a
m

e:

S
in

k

V
a
lu

e:

1
7

6
9
1

9
2
=

=
>

-2
1

4
7
4

8
3
6

3
9

P
a
ren

tL
ist:

7
5

0
8
4

6
2
6

4
6
2

0
9
0

0
3
5

2
;

7
5

0
8
4

6
2
6

4
7
6

9
3
5

9
8
7

2
;

7
5

0
8
4

6
2
6

5
1
9

7
6
0

8
9
6

0
;

7
5

0
8
4

6
2
6

5
1
0

8
8
2

8
1
6

0

T
a

g
: E

N
D

C
u

sto
m

S
o

u
rc

e
F

la
t M

a
p

W
in

d
o
w

C
u

sto
m

P
ro

c
e
ss

S
in

k

m
a
x
V

isited
S

ta
te

 6
2

1
6
0

4
3

4
5

0
3

1
u

u
id

:

4
5

8
8
0

4
1
9

4

u
u

id
:

4
5

8
8
0

4
1
4

4

u
u

id
:

4
5

8
8
0

4
1
6

8

u
u

id
:

4
5

8
8
0

4
1
1

8

Figure 17. Data transformation and state transition for object data during the offline provenance phase.

Appl. Sci. 2021, 11, 5523 26 of 33

9. Related Work

There exist some provenance solutions such as PASS [48] and SPADE [49] to track
the provenance at the OS level. These provenance-tracking systems work at a low system
level, so that it will cause a great burden if they are applied to capture and manage data
relations at a high level for big data systems. X-Trace [50] provides a holistic view of the
data transformation on the network among applications. Nevertheless, it lacks the ability to
track the data when there is no network transfer involved. Dapper [51] goes further than X-
Trace with additional monitoring and sampling strategies. However, it brings large latency
when analyzing monitoring data, which is not suitable for DSP systems. In the following
part, we will focus on the work exclusively about provenance for general-purpose big
data systems.

For state-of-the-art solutions, data provenance for big data applications is achieved
by operator instrumentation, which enriches the source data and intermediate data with
additional provenance-related annotations [23]. We can briefly divide these works into
two categories, i.e., batch-processing-oriented provenance vs. stream-processing-oriented
provenance, according to the types of systems that they target on.

9.1. Batch-Processing Oriented Provenance

Titian [19] is an interactive data provenance library integrating with Apache Spark.
It enhances RDD [52] in Spark with fine-grained data provenance capabilities. We chose
Titian as our first attempt to implement data provenance for Flink. However, as it is so
tightly coupled with Spark, it is challenging to migrate directly into the DSP systems.
Their approaches rely on stage replay capability, which means that Titian can trace RDD
transformation within a stage by tracing back to the stage input and rerunning the stage
transformation. This benefits from the RDD model, i.e., an RDD has enough information
about how it was derived from other data sets, contributing to Titian’s low overhead since
it needs only to capture data lineage at the stage boundaries and adopt stage replay to trace
RDD transformation within a stage.

However, this is not feasible for DSP systems. Take Apache Flink as an instance.
DataSet and DataStream [28] are two fundamental data types at Flink’s core, which target
bounded data sets and unbounded data streams, respectively. In contrast with RDD,
they preserve no lineage data as RDDs such that it requires tracing each record to maintain
their lineage relation when fine-grained provenance is required. Stage replay does not
work for DSP systems either. DSP systems do not adopt the BSP model [20,21], as Spark
does. Instead, they adopt the dataflow computation model [53] with long-running or
continuous operators. As computation progresses, operators update their local state,
and messages are directly transferred between operators [54]. Data passing in DSP systems
are more complicated because there exists asynchronous redistribution for interoperator
data passing, which means that data will be buffered for a short time, such as milliseconds,
and then sent to the downstream operator immediately to continue the process. All these
together imply unfeasible to realize the same Titian stage boundary rerunning policy in
DSP systems.

RAMP [17] extends Hadoop to support provenance capturing and tracing for MapRe-
duce jobs. It wraps Map and Reduce functions and propagates input identifiers of functions
through the computations. RAMP requires user intervention in many cases, but it does not
modify the core of Hadoop. RAMP does not store any intermediate data, which prevents a
complete provenance and lacks the ability to view any intermediate data.

Arthur [31] enables debugging map-reduce systems with minimal overhead by se-
lectively replaying partial data computation. It can re-execute any task in the job in a
single-process debugger. It achieves low overhead by taking advantage of task determin-
ism, which is assumed in frameworks such as MapReduce [55], Dryad [56], etc. It runs a
daemon with the framework’s master only to collect information, while s2p runs several
daemons with both masters and slaves so that the number of data transmitted can be
efficiently reduced.

Appl. Sci. 2021, 11, 5523 27 of 33

Others, including Newt [29], BigDebug [1] (a Titian follow-up research) argument big
data frameworks with provenance ability, but are restricted to computing over static data
and cannot easily be applied into DSP systems.

9.2. Stream-Processing-Oriented Provenance

On the contrary, Zvara et al. [32,33] present a tracing framework to trace individual
input records in stream processing systems. They build record lineage by wrapping each
record and capture record-by-record causality. They sample incoming records randomly
to reduce overhead, which works for their efficiency optimization problems. However,
it could not provide enough information for “any data may be chosen” data provenance in
our research as the lineage will be incomplete because of the sampling strategy. Tracing
every record in their research is expensive. In [32], evaluation results show tracing every
record may incur a 300% overhead in a non-large-scale data set (running WordCount
job in 20,000 sentences with 3 to 10 words in length). In [33], the overhead for tracing
increases dramatically when the sampling ratio above 0.1% (e.g., exponential growth in
direct reporting and piggybacking increases only slowly).

Carbone mentioned in [57] mentioned that stream processing provenance could be
achieved by Flink epoch-based snapshot. Their provenance, in my opinion, is on the system
level, i.e., their provenance answers how the historical system state looks like, whereas
our study focuses on data level explanation, i.e., how a set of result data are obtained
through different transformations, what the intermediate data looks like, etc.

Glavic et al. [22,23] presented one operation-instrumentation-based solution for the
Borealis system (one of the old stream systems). Their solution requires stream application
developers to modify operations explicitly. Even though the paper provided provenance
wrappers to ease the instructions process, we think that it is challenging for stream appli-
cation developers as they may not be familiar with the internal implementation of each
stream operator [58]. On the contrary, provenance data collection and management in
our solution is transparent to stream application developers. Their solution is limited to
a specific language paradigm. It will be difficult to extend their operations if the stream
application is implemented in declaration language (e.g., SQL). Their solution is heavy
for the big data domain, as they provide temporary storage for tuples that pass through
a queue.

GeneaLog in [4,24] is about explaining what source data tuples contribute to each re-
sult tuple. They define the fine-grained data provenance as the ability which allows linking
back each output with the source data that lead to it. In their solution, no intermediate
data or transformations are included in the explanation. Our research aims to answer how
one result tuple is derived from source to destination, i.e., the corresponding set of source
data, as well as the intermediate data, are included in the explanations. The GeneaLog
had not considered the long-term state in their solution. The long-term state is the state
that one stream system maintains since its first starting (e.g., the highest price for one item
ever seen). These kinds of long-term states are another factor that influences the output
results. As we claim before, a complete explanation for one result tuple should include
not only its source data and intermediate data alone the dataflow, but also some state in
application level (e.g., some valuables used to memorize the data ever seen). Furthermore,
GeneaLog assumes that both the input and output data of operators follow the timestamp
order, which does not always hold for modern DSP systems since data may arrive out of
order [59,60] or be reassembled, disrupting the order among operators [58].

Suriarachchi et al. [34] present an on-the-fly provenance tracking mechanism for
stream processing systems. Their notion of fine-grained provenance is similar to why-
provenance. They implement a service to handle provenance, which is independent of the
original stream system, to reduce system overhead. They eliminate the storage problem
by enabling provenance queries to be performed dynamically so that no provenance
assertions need to be stored. In our online provenance part, we also adopt an independent
third-part service to collect provenance information. Comparing with their solution, we

Appl. Sci. 2021, 11, 5523 28 of 33

maintain more metadata, including state-related data that may contribute to computing
results. In their solution, provenance-related properties are computed and propagated
through the independent service, while we propagate the provenance data within the
stream system layer by modifying the internal processing of DSP operators. Their solution
is standalone-oriented, whereas we focus on distributed DSP systems.

Chothia et al. [58] talked about solutions about explaining outputs for the differential
dataflow aiming at iterative computation. Under the iterative computing premise, they can
optimize the provenance solution (more concise, less intermediate data storage) based on
the observation that data collections from different epochs are not totally independent.
Instead, there may be only a few changes happening. This optimization solution is not
suitable for DSP systems, as it is limited in the iterative computation paradigms.

Earlier work done by Vijayakumar et al. [61] proposes a low-latency solution support-
ing coarse-grained provenance model for managing the dependencies between different
streams or sets of stream elements as the smallest unit to collect provenance other than
individual tuples. The obvious shortcoming of their model is not detailed enough in
identifying the dependency relationships among individual stream data. Misra et al. [62]
propose a TVC model (i.e., time-value-centric model) that is able to express the relationship
for individual stream data on the basis of three primitive invariants (i.e., time, value, and
sequence). However, their solution are limited in storing all intermediate data, which will
potentially cause storage burden in high volume stream data scenario.

9.3. Runtime Overhead Optimization

In the end, we will summarize the existing optimization solutions to avoid exces-
sive runtime overhead when the normal big data systems are extended with provenance
capability, shown in Table 6.

Table 6. Optimization solutions to reduce runtime overhead for big data provenance.

Optimization
Strategies

Provenance
Systems Target

Source data
sampling Tracing Framework [32,33] Processing Time

Fixed-size provenance
annotation GeneaLog [4,24] Latency/Throughput

Intermediate data
reduction

Newt [29] Processing Time

Titian [19] Processing Time

Arthur [31] Processing Time

On-the-fly
provenance
tracking [34]

Throughput

Generate provenance
lazily Ariadne [22,23] Processing Time

One solution to minimize the negative impact on the original system is source data
sampling to constrain the data size that will be tracked. Provenance solutions such as
tracing framework [32,33] adopt this strategy. It leads to relatively little performance degra-
dation for some specific scenarios (e.g., performance bottleneck detection) by adjusting the
sampling rate. However, the sampling strategy is essentially weak in other scenarios (e.g.,
trial-and-error debugging) where provenance for all data is required.

Unlike the previous strategy that focuses on the source data, another one is to reduce
intermediate data by trimming the provenance data or discarding unnecessary intermediate

Appl. Sci. 2021, 11, 5523 29 of 33

data. It can be further divided into two strategies, i.e., fixed-size provenance annotation
and intermediate data reduction.

As for the fixed-size provenance annotation strategy, it always incurs a minimal,
constant size overhead for each data. However, this strategy is not generally applicable.
Taking GeneaLog [4,24] as an example, it assumes a strict temporal order for both input
and output data. This kind of assumption does not always hold for modern DSP systems.

In terms of intermediate data reduction, it is a commonly adopted strategy. It usu-
ally works with selectively replaying data processing so that fewer data are required to
record in the runtime. It also works for some specific provenance problems (e.g., why-
provenance) where intermediate data are not directly involved in the provenance query
results. However, deterministic data processing is required for many replaying related
solutions. Intermediate data reduction may lack the capability to support a fine-grained
provenance analysis where intermediate results may contribute to the provenance results.

Generating provenance lazily is also working as an option to reduce overhead. It works
by decoupling the provenance analysis from the original data process. For big data
systems, especially DSP systems, which are required to deal with data at high rates and
low latency, eager provenance generation will always incur significant overhead. However,
this strategy needs to store source data and intermediate data temporarily to construct the
provenance further. This may potentially bring in a storage burden for large-scale data
processing applications.

10. Conclusions and Future Work

In this paper, we propose s2p to solve the provenance problem for DSP systems.
It obtains coarse-grained provenance data and fine-grained provenance data, respectively,
in the online and offline phase. We wrap DSP inner operators and only capture the mapping
information about source data and result data in the online phase. Detailed provenance
data are obtained by replaying the data of interest in an independent cluster. Since we alter
DSP platform source code to support runtime data capture, original DSP applications can
seamlessly work in s2p with few modifications.

Provenance data collection and management is nontrivial. For reducing network data
transfer, in s2p, provenance-related data are stored locally and only send necessary data to
a central server for aggregation.

Data collection will inevitably cause system delays and performance degradation.
Without any previously known information about which kinds of data will be analyzed
by users, we have to assume that any stream process result may be selected. This, if not
sophistically designed, will lead to a heavy system burden. In this paper, our solution
provides a trade-off between provenance detail and system overhead. Our evaluation
demonstrates that s2p will incur a 13% to 32% end-to-end cost, 11% to 24% decline in
throughput, and limited additional space cost during the online provenance phase. Even
though s2p targets more provenance-related data (operator state, checkpoint information,
etc.), it still achieves an acceptable runtime overhead when comparing with existing DSP
provenance solutions (e.g., tracing framework [32,33] will incur a 300% overhead when
tracing every record).

We envision that the provenance ability will open the door to many interesting use
cases for DSP applications, e.g., application logic debugging, data cleaning, etc.

However, it should be noted that our study has several limitations. For one thing,
our s2p solution can only provide detailed provenance results for a DSP application
consisting entirely of deterministic operators, as it can only accurately replay deterministic
data transformation in the offline phase.

For another, we have not carried out a quantitative comparison with most existing
provenance solutions. Instead, we only did a brief analysis. Part of the reason is that we do
not target the same research questions completely as theirs. Other reasons include source
code unavailable, different target platforms, etc.

Appl. Sci. 2021, 11, 5523 30 of 33

Moreover, we conducted our experimental evaluation in a resource-limited environ-
ment. High-speed hardware and highly optimized software stacks may lead to different
s2p performance. In addition, we only take three subject applications from academic
sources (i.e., papers, reports, etc.) in our experiment. We are not clear how s2p will perform
for some domain-specific DSP applications (e.g., machine learning, graph processing, etc.).

In the future, we will implement s2p in other DSP platforms. We envision different
features of DSP systems that will motivate some specific customization. Our methods could
be improved if some provenance analysis patterns are known in advance. For instance, if
one user only cares about one feature in compound stream data, we can then track partial
data instead of whole compound data.

Author Contributions: Conceptualization, Q.Y.; methodology, Q.Y.; software, Q.Y.; validation, Q.Y.;
investigation, Q.Y.; resources, Q.Y.; writing—original draft preparation, Q.Y.; writing—review and
editing, Q.Y. and M.L.; visualization, Q.Y.; supervision, M.L.; project administration, M.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Ivan Beschastnikh and Julia Rubin for their discussions and sugges-
tions on this work. We also thank China Scholarship Council (CSC) for supporting Ye Qian’s visit
to UBC.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DSP Distributed Stream Processing
BSP Bulk-Synchronous Parallel
DAG Directed Acyclic Graph)
RDD Resilient Distributed Data Sets
s2p Stream Process Provenance
GDPR General Data Protection Regulation
UDF User-Defined Functions
OP Operator
API Application Programming Interface

References
1. Nasiri, H.; Nasehi, S.; Goudarzi, M. A Survey of Distributed Stream Processing Systems for Smart City Data Analytics.

In Proceedings of the International Conference on Smart Cities and Internet of Things, SCIOT ’18, Mashhad, Iran, 26–27
September 2018 ; Association for Computing Machinery: New York, NY, USA, 2018. [CrossRef]

2. Wampler, D. Fast Data Architectures for Streaming Applications; O’Reilly Media, Incorporated: Newton, MA, USA, October 2016 .
3. Lou, C.; Huang, P.; Smith, S. Understanding, Detecting and Localizing Partial Failures in Large System Software. In Proceed-

ings of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), Santa Clara, CA, USA,
25–27 February 2020; USENIX Association: Berkeley, CA, USA, 2020; pp. 559–574.

4. Palyvos-Giannas, D.; Gulisano, V.; Papatriantafilou, M. GeneaLog: Fine-Grained Data Streaming Provenance at the Edge.
In Proceedings of the 19th International Middleware Conference, Middleware ’18, Rennes, France, 10–14 December 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 227–238.

5. European Union Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive
95/46. Off. J. Eur. Union (OJ) 2016, 59, 294.

6. De Pauw, W.; Leţia, M.; Gedik, B.; Andrade, H.; Frenkiel, A.; Pfeifer, M.; Sow, D. Visual debugging for stream processing
applications. In Runtime Verification; De Pauw, W., Leţia M., Gedik, B., Andrade, H., Frenkiel, A., Pfeifer, M., Sow, D., Eds.;
Springer: Berlin/Heidelberg, Germany, 2010; Volume 6418 LNCS, pp. 18–35. [CrossRef]

http://doi.org/10.1145/3269961.3282845
http://dx.doi.org/10.1007/978-3-642-16612-9_3

Appl. Sci. 2021, 11, 5523 31 of 33

7. Gulzar, M.A.; Interlandi, M.; Yoo, S.; Tetali, S.D.; Condie, T.; Millstein, T.; Kim, M. BigDebug: Debugging primitives for interactive
big data processing in spark. In Proceedings of the International Conference on Software Engineering, Austin, TX, USA, 4–22
May 2016; ACM: New York, NY, USA, 2016; pp. 784–795. [CrossRef]

8. Groth, P.; Moreau, L. PROV-Overview. An Overview of the PROV Family of Documents; W3C Working Group Note NOTE-prov-
overview-20130430; World Wide Web Consortium: Cambridge, MA, USA, 2013 .

9. Buneman P., Khanna S., Wang-Chiew T. Why and where: A characterization of data provenance? In Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg,
Germany, 2001; Volume 1973, pp. 316–330. [CrossRef]

10. Carata, L.; Akoush, S.; Balakrishnan, N.; Bytheway, T.; Sohan, R.; Seltzer, M.; Hopper, A. A Primer on Provenance: Better
Understanding of Data Requires Tracking Its History and Context. Queue 2014, 12, 10–23. [CrossRef]

11. Glavic, B. Big Data Provenance: Challenges and Implications for Benchmarking. In Specifying Big Data Benchmarks; Rabl, T., Poess,
M., Baru, C., Jacobsen, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 72–80.

12. Wang, J.; Crawl, D.; Purawat, S.; Nguyen, M.; Altintas, I. Big data provenance: Challenges, state of the art and opportunities.
In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November
2015; pp. 2509–2516. [CrossRef]

13. Interlandi, M.; Ekmekji, A.; Shah, K.; Gulzar, M.A.; Tetali, S.D.; Kim, M.; Millstein, T.; Condie, T. Adding data provenance support
to Apache Spark. VLDB J. 2018, 27, 595–615. [CrossRef] [PubMed]

14. Suriarachchi, I.; Withana, S.; Plale, B. Big Provenance Stream Processing for Data Intensive Computations. In Proceedings of the
2018 IEEE 14th International Conference on e-Science (e-Science), Amsterdam, The Netherlands, 29 October–1 November 2018;
pp. 245–255.

15. Mcheick, H.; Petrillo, Y.D.F.; Ben-Ali, S. Quality Model for Evaluating and Choosing a Stream Processing Framework Architec-
ture. In Proceedings of the 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA),
Abu Dhabi, United Arab Emirates, 3–7 November 2019; pp. 1–7. [CrossRef]

16. Woodman, S.; Hiden, H.; Watson, P. Applications of provenance in performance prediction and data storage optimisation.
Future Gener. Comput. Syst. 2017, 75, 299–309. [CrossRef]

17. Park, H.; Ikeda, R.; Widom, J. RAMP: A System for Capturing and Tracing Provenance in MapReduce Workflows. Proc. VLDB
Endow. 2011, 4, 1351–1354. [CrossRef]

18. Akoush, S.; Sohan, R.; Hopper, A. HadoopProv: Towards Provenance as a First Class Citizen in MapReduce. In Proceedings of
the 5th USENIX Workshop on the Theory and Practice of Provenance (TaPP 13), Lombard, IL, USA, 2–3 April 2013; USENIX
Association: Berkeley, CA, USA, 2013.

19. Interlandi, M.; Shah, K.; Tetali, S.D.; Gulzar, M.A.; Yoo, S.; Kim, M.; Millstein, T.; Condie, T. Titian: Data Provenance Support in
Spark. Proc. VLDB Endow. 2015, 9 . [CrossRef]

20. Valiant, L.G. A Bridging Model for Parallel Computation. Commun. ACM 1990, 33, 103–111. [CrossRef]
21. Cheatham, T.; Fahmy, A.; Stefanescu, D.; Valiant, L. Bulk Synchronous Parallel Computing—A Paradigm for Transportable

Software. In Tools and Environments for Parallel and Distributed Systems; Springer: Berlin/Heidelberg, Germany, 1996; pp. 61–76.
[CrossRef]

22. Glavic, B.; Sheykh Esmaili, K.; Fischer, P.M.; Tatbul, N. Ariadne: Managing fine-grained provenance on data streams. In Proceed-
ings of the 7th ACM International Conference on Distributed Event-Based Systems, DEBS ’13, Arlington, TX, USA 29 June–3 July,
2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 39–50.

23. Glavic, B.; Esmaili, K.S.; Fischer, P.M.; Tatbul, N. Efficient Stream Provenance via Operator Instrumentation. ACM Trans.
Internet Technol. 2014, 14, 1–26. [CrossRef]

24. Palyvos-Giannas, D.; Gulisano, V.; Papatriantafilou, M. GeneaLog: Fine-grained data streaming provenance in cyber-physical
systems. Parallel Comput. 2019, 89, 102552. [CrossRef]

25. Akidau, T.; Bradshaw, R.; Chambers, C.; Chernyak, S.; Fernández-Moctezuma, R.J.; Lax, R.; McVeety, S.; Mills, D.; Perry, F.;
Schmidt, E.; et al. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processing. Proc. VLDB Endow. 2015, 8, 1792–1803. [CrossRef]

26. Carbone, P.; Ewen, S.; Fóra, G.; Haridi, S.; Richter, S.; Tzoumas, K. State Management in Apache Flink®: Consistent Stateful
Distributed Stream Processing. Proc. VLDB Endow. 2017, 10, 1718–1729. [CrossRef]

27. Kiran, M.; Murphy, P.; Monga, I.; Dugan, J.; Baveja, S.S. Lambda architecture for cost-effective batch and speed big data processing.
In Proceedings of the 2015 IEEE International Conference on Big Data, IEEE Big Data 2015, Santa Clara, CA, USA, 29 October–1
November 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015 ; pp. 2785–2792. [CrossRef]

28. Carbone, P.; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi, S.; Tzoumas, K. Apache flink: Stream and batch processing in a single
engine. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 2015, 38 , 28-38.

29. Logothetis, D.; De, S.; Yocum, K. Scalable Lineage Capture for Debugging DISC Analytics. In Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, Santa Clara, CA, USA, 1–3 October 2013; Association for Computing Machinery:
New York, NY, USA, 2013; [CrossRef]

30. Amsterdamer, Y.; Davidson, S.B.; Deutch, D.; Milo, T.; Stoyanovich, J.; Tannen, V. Putting Lipstick on Pig: Enabling Database-Style
Workflow Provenance. Proc. VLDB Endow. 2011, 5, 346–357. [CrossRef]

http://dx.doi.org/10.1145/2884781.2884813
http://dx.doi.org/10.1007/3-540-44503-x_20
http://dx.doi.org/10.1145/2602649.2602651
http://dx.doi.org/10.1109/BigData.2015.7364047
http://dx.doi.org/10.1007/s00778-017-0474-5
http://www.ncbi.nlm.nih.gov/pubmed/31007500
http://dx.doi.org/10.1109/AICCSA47632.2019.9035283
http://dx.doi.org/10.1016/j.future.2017.01.003
http://dx.doi.org/10.14778/3402755.3402768
http://dx.doi.org/10.14778/2850583.2850595
http://dx.doi.org/10.1145/79173.79181
http://dx.doi.org/10.1007/978-1-4615-4123-3_4
http://dx.doi.org/10.1145/2633689
http://dx.doi.org/10.1016/j.parco.2019.102552
http://dx.doi.org/10.14778/2824032.2824076
http://dx.doi.org/10.14778/3137765.3137777
http://dx.doi.org/10.1109/BigData.2015.7364082
http://dx.doi.org/10.1145/2523616.2523619
http://dx.doi.org/10.14778/2095686.2095693

Appl. Sci. 2021, 11, 5523 32 of 33

31. Dave, A.; Zaharia, M.; Shenker, S. Arthur: Rich Post-Facto Debugging for Production Analytics Applications; Technical Report;
University of California: Berkeley, CA, USA, 2013 .

32. Zvara, Z.; Szabó, P.G.N.; Hermann, G.; Benczúr, A. Tracing Distributed Data Stream Processing Systems. In Proceedings of
the 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W), Tucson, AZ, USA,
18–22 September 2017; pp. 235–242. [CrossRef]

33. Zvara, Z.; Szabó, P.G.; Balázs, B.; Benczúr, A. Optimizing distributed data stream processing by tracing. Future Gener. Comput. Syst.
2019, 90, 578–591. [CrossRef]

34. Sansrimahachai, W.; Moreau, L.; Weal, M.J. An On-The-Fly Provenance Tracking Mechanism for Stream Processing Systems; In
Proceedings of the 2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS), Niigata, Japan,
16–20 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 475-481.

35. Russo, G.R.; Cardellini, V.; Presti, F.L. Reinforcement Learning Based Policies for Elastic Stream Processing on Heterogeneous
Resources. In Proceedings of the 13th ACM International Conference on Distributed and Event-Based Systems, DEBS ’19,
Darmstadt, Germany 24–28 June 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 31–42. [CrossRef]

36. Toshniwal, A.; Taneja, S.; Shukla, A.; Ramasamy, K.; Patel, J.M.; Kulkarni, S.; Jackson, J.; Gade, K.; Fu, M.; Donham, J.; et al.
Storm@twitter. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD ’14,
Snowbird, UT, USA, 22–27 June 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 147–156. [CrossRef]

37. Noghabi, S.A.; Paramasivam, K.; Pan, Y.; Ramesh, N.; Bringhurst, J.; Gupta, I.; Campbell, R.H. Samza: Stateful Scalable Stream
Processing at LinkedIn. Proc. VLDB Endow. 2017, 10, 1634–1645. [CrossRef]

38. Friedman, E.; Tzoumas, K. Introduction to Apache Flink: Stream Processing for Real Time and Beyond; O’Reilly Media, Inc.: Newton,
MA, USA, 2016 .

39. Isah, H.; Abughofa, T.; Mahfuz, S.; Ajerla, D.; Zulkernine, F.; Khan, S. A Survey of Distributed Data Stream Processing
Frameworks. IEEE Access 2019, 7, 154300–154316. [CrossRef]

40. Stonebraker, M.; Çetintemel, U.; Zdonik, S. The 8 Requirements of Real-Time Stream Processing. SIGMOD Rec. 2005, 34, 42–47.
[CrossRef]

41. Zaharia, M.; Das, T.; Li, H.; Hunter, T.; Shenker, S.; Stoica, I. Discretized Streams: Fault-Tolerant Streaming Computation at Scale.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, Farminton, PA, USA, 3–6
November 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 423–438. [CrossRef]

42. Alexandrov, A.; Bergmann, R.; Ewen, S.; Freytag, J.C.; Hueske, F.; Heise, A.; Kao, O.; Leich, M.; Leser, U.; Markl, V.; et al.
The stratosphere platform for big data analytics. VLDB J. 2014, 23, 939–964. [CrossRef]

43. Cheng, Z.; Caverlee, J.; Lee, K. You Are Where You Tweet: A Content-Based Approach to Geo-Locating Twitter Users.
In Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM ’10, Toronto, ON,
Canada, 26–30 October 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 759–768. [CrossRef]

44. Harper, F.M.; Konstan, J.A. The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst. 2015, 5. [CrossRef]
45. Veiga, J.; Exposito, R.R.; Pardo, X.C.; Taboada, G.L.; Tourifio, J. Performance evaluation of big data frameworks for large-scale

data analytics. In Proceedings of the 2016 IEEE International Conference on Big Data, Big Data 2016, Washington, DC, USA,
5–8 December 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016 ; pp. 424–431. [CrossRef]

46. Gulzar, M.A.; Mardani, S.; Musuvathi, M.; Kim, M. White-box testing of big data analytics with complex user-defined functions.
In Proceedings of the ESEC/FSE 2019—2019 27th ACM Joint Meeting European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Tallinn, Estonia, 26–30 August 2019; Association for Computing Machinery, Inc.:
New York, NY, USA, 2019; pp. 290–301. [CrossRef]

47. Karimov, J.; Rabl, T.; Katsifodimos, A.; Samarev, R.; Heiskanen, H.; Markl, V. Benchmarking distributed stream data processing
systems. In Proceedings of the IEEE 34th International Conference on Data Engineering, ICDE 2018, Paris, France, 16–19 April
2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018 ; pp. 1519–1530. [CrossRef]

48. Muniswamy-Reddy, K.K.; Holland, D.A.; Braun, U.; Seltzer, M.I. Provenance-aware storage systems. In Proceedings of the
Usenix Annual Technical Conference, General Track, 30 May–3 June 2006; pp. 43–56.

49. Gehani, A.; Kim, M.; Malik, T. Efficient Querying of Distributed Provenance Stores. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, HPDC ’10, Chicago, IL, USA, 21–25 June 2010; Association for
Computing Machinery: New York, NY, USA, 2010; pp. 613–621. [CrossRef]

50. Fonseca, R.; Porter, G.; Katz, R.H.; Shenker, S.; Stoica, I. X-trace: A pervasive network tracing framework. In Proceedings of the
Fourth USENIX Symposium on Networked Systems Design and Implementation (NSDI 2007), Cambridge, MA, USA, 11–13
April 2007; USENIX Association: Berkeley, CA, USA, 2007; [CrossRef]

51. Sigelman, B.H.; Andr, L.; Burrows, M.; Stephenson, P.; Plakal, M.; Beaver, D.; Jaspan, S.; Shanbhag, C. Dapper, a Large-Scale
Distributed Systems Tracing Infrastructure; Google, Inc.: Menlo Park, CA, USA, 2010.

52. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), San Jose, CA, USA, 25–27 April 2012; USENIX Association: Berkeley,
CA, USA, 2012; pp. 15–28.

53. Johnston, W.M.; Hanna, J.R.P.; Millar, R.J. Advances in Dataflow Programming Languages. ACM Comput. Surv. 2004, 36, 1–34.
[CrossRef]

http://dx.doi.org/10.1109/FAS-W.2017.153
http://dx.doi.org/10.1016/j.future.2018.06.047
http://dx.doi.org/10.1145/3328905.3329506
http://dx.doi.org/10.1145/2588555.2595641
http://dx.doi.org/10.14778/3137765.3137770
http://dx.doi.org/10.1109/ACCESS.2019.2946884
http://dx.doi.org/10.1145/1107499.1107504
http://dx.doi.org/10.1145/2517349.2522737
http://dx.doi.org/10.1007/s00778-014-0357-y
http://dx.doi.org/10.1145/1871437.1871535
http://dx.doi.org/10.1145/2827872
http://dx.doi.org/10.1109/BigData.2016.7840633
http://dx.doi.org/10.1145/3338906.3338953
http://dx.doi.org/10.1109/ICDE.2018.00169
http://dx.doi.org/10.1145/1851476.1851567
http://dx.doi.org/10.1.1.108.2220
http://dx.doi.org/10.1145/1013208.1013209

Appl. Sci. 2021, 11, 5523 33 of 33

54. Venkataraman, S.; Panda, A.; Ousterhout, K.; Armbrust, M.; Ghodsi, A.; Franklin, M.J.; Recht, B.; Stoica, I. Drizzle: Fast and
Adaptable Stream Processing at Scale. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
Shanghai, China, 28–31 October 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 374–389. [CrossRef]

55. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
56. Isard, M.; Budiu, M.; Yu, Y.; Birrell, A.; Fetterly, D. Dryad: Distributed data-parallel programs from sequential building blocks. In

Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems, Lisbon, Portugal, 21–23 March 2007;
ACM: New York, NY, USA, 2007; pp. 59–72. [CrossRef]

57. Carbone, P. Scalable and Reliable Data Stream Processing. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm,
Sweden, 2018 .

58. Kallas, K.; Niksic, F.; Stanford, C.; Alur, R. DiffStream: Differential output testing for stream processing programs. Proc. ACM
Program. Lang. 2020, 4. [CrossRef]

59. Weiss, W.; Jiménez, V.J.; Zeiner, H. Dynamic Buffer Sizing for Out-of-order Event Compensation for Time-sensitive Applications.
ACM Trans. Sens. Netw. 2020, 17. [CrossRef]

60. Traub, J.; Grulich, P.M.; Rodriguez Cuellar, A.; Bress, S.; Katsifodimos, A.; Rabl, T.; Markl, V. Scotty: Efficient Window Aggregation
for Out-of-Order Stream Processing. In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE),
Paris, France, 16–19 April 2018; pp. 1300–1303. [CrossRef]

61. Vijayakumar, N.N.; Plale, B. Towards low overhead provenance tracking in near real-time stream filtering. In Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Berlin/Heidelberg, Germany, 2006; Volume 4145 LNCS, pp. 46–54. [CrossRef]

62. Misra, A.; Blount, M.; Kementsietsidis, A.; Sow, D.; Wang, M. Advances and challenges for scalable provenance in stream
processing systems. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2008; Volume 5272, pp. 253–265. [CrossRef]

http://dx.doi.org/10.1145/3132747.3132750
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1272996.1273005
http://dx.doi.org/10.1145/3428221
http://dx.doi.org/10.1145/3410403
http://dx.doi.org/10.1109/ICDE.2018.00135
http://dx.doi.org/10.1007/11890850_6
http://dx.doi.org/10.1007/978-3-540-89965-5_26

	Introduction
	Preliminaries
	DSP System Model
	Stream Provenance Problem Definition
	Apache Flink

	DSP Provenance
	Online Provenance
	IDs Generation in Source Operators
	IDs Propagation during Transformations
	Stateless Operators
	Stateful Operators

	Checkpoint Information Storing

	Offline Provenance
	Provenance Management
	Source Data Storing
	Provenance Data Management
	Querying the Provenance Data

	Experimental Evaluation
	General Settings
	Evaluation Metrics
	Cost Results
	Throughput Results
	Space Overhead Results
	Auxiliary Evaluation

	Case Study
	Introduction of the Object Application
	Online Provenance Results
	Offline Provenance Results

	Related Work
	Batch-Processing Oriented Provenance
	Stream-Processing-Oriented Provenance
	Runtime Overhead Optimization

	Conclusions and Future Work
	References

