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Abstract: The output of a deep-learning model delivers different predictions depending on the input
of the deep learning model. In particular, the input characteristics might affect the output of a deep
learning model. When predicting data that are measured with sensors in multiple locations, it is
necessary to train a deep learning model with spatiotemporal characteristics of the data. Additionally,
since not all of the data measured together result in increasing the accuracy of the deep learning
model, we need to utilize the correlation characteristics between the data features. However, it is
difficult to interpret the deep learning output, depending on the input characteristics. Therefore,
it is necessary to analyze how the input characteristics affect prediction results to interpret deep
learning models. In this paper, we propose a visualization system to analyze deep learning models
with air pollution data. The proposed system visualizes the predictions according to the input
characteristics. The input characteristics include space-time and data features, and we apply temporal
prediction networks, including gated recurrent units (GRU), long short term memory (LSTM), and
spatiotemporal prediction networks (convolutional LSTM) as deep learning models. We interpret the
output according to the characteristics of input to show the effectiveness of the system.

Keywords: spatiotemporal; air quality; deep learning

1. Introduction

Spatiotemporal data contain feature information, such as temporal and spatial in-
formation, at the same time [1]. Therefore, spatiotemporal correlation patterns are often
utilized together in prediction models. Spatiotemporal prediction models are applied in
various fields, such as traffic, weather, social media, flights, and human migration. How-
ever, creating a prediction model is challenging because each field has a different degree
and type of spatiotemporal correlation and complexity [2]. Different means of recording
spatiotemporal data and different data formats make predictions more complicated. Radar
echo data and air pollutant data have different recording schemes and data formats. Radar
echo data are signals reflected from objects, such as raindrops. Radar echo data sets can
be collected in the form of a two-dimensional image sequence in a regular grid. On the
other hand, air pollutant data are recorded with air-condition information from sensors.
Most air pollutant data are continuously recorded in time but have uneven spatial infor-
mation, due to irregular sensor locations, which is more complicated for spatiotemporal
pattern extraction.

In machine learning [3], the machine is trained using data and algorithms to learn
how to perform a task. Deep learning [4] is considered an evolution of machine learning,
which uses a programmable neural network that empowers the machine to make decisions
without guidance from humans. There are two methods in machine learning, including
supervised learning and unsupervised learning. The main difference between these two
is the use of labeled data sets. Supervised learning utilizes labeled input and output
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data, while unsupervised learning does not. Deep learning models can be applied for
temporal pattern prediction. Typically, recurrent neural networks (RNNSs) use recurrent
computations to train temporal patterns from historical sequence information and produce
predictions. Many studies were conducted to predict spatiotemporal data with gated
recurrent unit (GRU) networks and long short term memory (LSTM) networks with RNN
structures [5-7], which have a looping constraint on the hidden layer of the artificial neural
network (ANN). Preprocessing is expected to handle spatiotemporal data as input to
the RNN architectures. Since the RNNs do not consider the spatial structure, the spatial
information within the data may be dropped during the preprocessing.

A spatiotemporal predictive deep-learning model was proposed to resolve the problem
in RNN that does not consider the spatial structure. The convolutional LSTM network [8]
recognizes the spatiotemporal correlation by combining the LSTM layer and the convolu-
tional layer. Although this deep learning model predicts spatiotemporal data adequately,
it is puzzling to understand how the incorporation of spatial information in the input data
can improve the predictive performance of the deep learning model, just by reviewing the
accuracy. Since the spatial information contained in each feature of the data is different,
the prediction performance also varies, according to the feature selection. In addition to
the feature selection, the incorporation of spatial information, such as grid structure, also
affects the deep learning performance. Therefore, it is challenging to interpret deep learning
results that depend on input characteristics such as feature selection, temporal correlation,
and spatial correlation. The more difficult the deep learning model is to interpret, the more
time-consuming the modeling process is. Hence, it is necessary to develop a system that
allows us to quickly interpret the output of the deep learning model, according to the input
characteristics. The contributions of our work are as follows.

e  We develop a visualization system to support the interpretation of outputs from deep
learning models.

*  We propose multiple feature selection functionalities with temporal and spatial infor-
mation.

¢ Our system enables us to perform prediction modelings by visualizing information,
such as correlations between variables, temporal autocorrelation, and spatial autocor-
relation.

¢  We evaluate our system through prediction modeling for a spatiotemporal air pollu-
tant data set.

We expect that our system supports us in understanding deep learning modeling and
exploring the results with data and parameters interactively for prediction improvements.

2. Related Work

Many researchers desire to understand how deep learning models are trained, how
model representations are interpreted, and how deep learning supports decision making [9].
The idea of model understanding in machine learning is divided into interpretability and ex-
plainability [10]. The interpretation is to understand the status transitions that occur while
changing input or algorithm parameters in machine learning models. Explainability is the
interpretation of the internal mechanisms of machine learning models in understandable
human terms.

In visualization and visual analytics (VA) areas, some studies have been proposed to
support the design and debugging of models by applying VA to an interactive machine
learning workflow [9]. In the area of model interpretation, visual analytics has focused
on understanding the structure of models [11], analyzing the performance of predictive
models [12], identifying misclassified instances [13-15], and comparing the performance
of multiple predictive models [16]. To explain the structure of the model, node-link di-
agrams [17], drawing directed graphs [11], and directed acyclic graphs [18] are applied.
Wongsuphasawat et al. [11] presented a TensorFlow graph visualizer to assist in under-
standing machine learning architectures. Liu et al. [18] proposed a visual analytics system
to understand and diagnose a convolutional neural network, using a directed acyclic
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graph. Although many visual analysis systems support machine learning modeling, most
are limited in classification models. Therefore, we believe that our system assists us in
understanding deep learning modeling while improving spatiotemporal predictions.

The performance analysis of the predictive model includes studies to explore the
combination of input features [19] and to improve the quality of the labeled data [13,20].
Xiang et al. [13] introduce a system for correcting false labels in training data, using hi-
erarchical visualization with incremental t-distributed stochastic neighbor embedding
(t-SNE). If we can observe the cause and consequence of the predictive model in interactive
machine learning, the explainable AI (XAI) must be able to analyze why the model makes
such a decision [21]. To understand the internal mechanism, researchers detect errors or
weight changes observed in specific output changes during the learning process based
on the performance metrics [22]. Comprehensive theoretical studies of the role of visual
analytics in deep learning have been conducted, and it is possible to interpret various deep
learning models, such as CNN [23], DNN [24], RNN [25,26], LSTM [27,28], and DQN [29].
Spinner et al. [22] also presented an interactive and explainable visual analytics framework
for understanding machine learning models. They can diagnose and improve the limita-
tions of the designed model through quality monitoring, provenance tracking, and model
comparison in the TensorBoard environment.

In the field of statistics, time-series data predictions are mainly performed with the au-
toregressive model, moving average model, and autoregressive moving average (ARIMA)
model. In machine learning studies, the RNN and LSTM are known to be suitable for time
series prediction. LSTM models can be constructed according to the layer layout, structure,
connectivity, and combination with other neural networks. Typical LSTM models are
Vanilla LSTM [30], Stacked LSTM [31], Bidirectional LSTM [32], etc. Although the LSTM
model generally outperforms the ARIMA model in time series prediction [33], the ARIMA
model outperforms the LSTM in time series data with strong seasonal factors [34]. Studies
for the interpretation of LSTMs and RNNs were published in the visual analytics com-
munity. Tang et al. [35] visualized the behavior of LSTM and GRU in speech recognition
and presented that LSTM has long-term memory but is more sensitive to noise than RNN.
Strobelt et al. [36] provided a visual tool to improve the performance of LSTM models
with the exploration and summarization of long-term dependencies in time series and
sequence data. Since our data have temporal features, we employ LSTM and GRU for deep
learning modeling.

Spatial interpolation estimates the unobserved data inside the sampled area with the
observed data [37]. Spatial interpolation is generally applied for visualization, mainly by
computing the pixel values from pixel-based data [38]. Many algorithms were developed
for interpolation, including nearest-neighbor interpolation, bilinear interpolation, and bicu-
bic interpolation [39]. Inverse distance weighted interpolation (IDW) is assumed to have
similar values as the data become closer to each other [40]. IDW interpolation estimates the
value of an unknown point by weighting it inversely with distance [41]. IDW interpolation
assigns consecutive weights, while nearest-neighbor interpolation weights only 1 to the
nearest data. Linear interpolation is a simple interpolation that estimates data linearly. We
can use cubic interpolation to reduce the discontinuities caused by linear interpolation. Cu-
bic interpolation produces more smooth data than linear interpolation or nearest-neighbor
interpolation. As a high-order interpolation, radial basis function (RBF) is employed for
more accurate interpolation of unstructured data. The RBF interpolation can be constructed
in an artificial neural network by using RBFs as activation functions [42]. In this work, we
apply cubic, linear RBE, and nearest-neighbor techniques for spatial interpolation.

Prediction of spatiotemporal data is generally performed considering both the tempo-
ral and spatial feature points. Deep learning algorithms that are mainly used for space-time
data prediction include LCRN [43] and convolutional LSTM (ConvLSTM) [8]. LCRN has
a structure in which CNN and LSTM are sequentially connected. In the LCRN structure,
the spatiotemporal data inputs are trained for the spatial feature points with the CNN
and the temporal feature points with the LSTM. Johan et al. [44] presented PVNet, using
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the LCRN structure. PVNet predicts photovoltaic power by training numerical weather
information, including irradiance, cloud, temperature, the clear sky model and a power
model, calculated with the persistence model. LCRN contains a sequential connection
structure between CNN and LSTM, while ConvLSTM includes convolution operations
within the cells of LSTM. ConvLSTM trains spatiotemporal data by performing convolution
operations as soon as input data are inserted into LSTM cells. ConvLSTM has faster com-
putational speed and has higher performance than LCRN in many studies. Yuan et al. [45]
conducted a study on the traffic accident prediction problem, using the ConvLSTM model.
They predicted data by applying a spatial ensemble to the results predicted by ConvLSTM.
The proposed model shows a much higher prediction accuracy than the conventional
method. He et al. [46] proposed STCNN using ConvLSTM for long-term traffic predictions.
The proposed model combines the weekly ConvLSTM prediction result and the daily
Skip-ConvLSTM prediction result for CNN training to identify the periodic pattern of
traffic. Lin et al. [47] proposed a ConvLSTM-based spatiotemporal temperature deviation
prediction model (PredTemp). They compared the predictions with ConvLSTM, using tem-
perature deviation data, and with ConvLSTM, using both precipitation and temperature
deviation data. To utilize spatiotemporal features, we also include ConvLSTM for deep
learning modeling.

3. Data Description

Particulate matter (PM) is a particle that is generated naturally or artificially and is
contained in the air as an aerosol. The most commonly used PM parameters include PM;,
whose diameter is 10 micrometers or less, and PM, 5, whose diameter is 2.5 micrometers
or less. PM is a fine particle that floats in the air and is a respirable substance that has a
significant impact on health. Many countries around the world treat PM as an environmen-
tal issue. In October 2013, the World Health Organization (WHO) and the International
Agency for Research on Cancer (IARC) classified PM as a Class 1 carcinogen, due to the
high toxicity. According to the State of Global Air [48] released in 2018, 33.7% of the world
was exposed to household air pollution in 2016, and the death toll associated with PM; 5
reached 4.1 million by 2016.

PM tends to float in the air and propagate with the flow of the atmosphere. The smaller
the PMs, the longer they stay in the air. The diffusion rate varies depending on the particle
compositions. The PM forecast is a challenge for climate forecasts, as they show different
patterns depending on the climate impact of each country. PM data are the density of the
particulate matter, such as PM; 5 and PMyq collected from ground stations. In general, it is
desirable for the stations to be evenly distributed throughout the country but they usually
tend to be concentrated in major cities and towns. The distribution is not even uniform,
which makes it challenging to predict such spatiotemporal data.

In this paper, we compare the performances of deep learning models to predict
air pollutant data as spatiotemporal data. We utilize air pollutant data provided by
kweather [49]. Data were collected from 413 discrete stations in Seoul, South Korea.
The collected data include PM; 5, PMjg, noise, temperature, and humidity, and we utilize
data that were measured every hour for 75 days from 5 September 2019, to 18 November
2019. We examined the missing data as preprocessing and removed 16 days of data. We
also scaled all the data, using min-max scaling. To properly apply deep learning models,
the models are trained with the training data, and the model parameters are tuned with the
validation data. Then, the model performance is evaluated with the test data, which are
unbiased. We randomly separated the data sets into 991, 212, and 213 h for the training data
set, validate data set and test data set, respectively, at the ratio of 7:1.5:1.5. In this paper,
we design PM prediction models using these data sets and compare the PM prediction
performance depending on the data feature selection and temporal and spatial correlations
with deep learning models.
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4. Spatiotemporal Prediction Models

In this paper, we compare spatiotemporal data prediction models using deep learn-
ing and investigate the prediction performances according to deep learning models and
training data sets. The prediction performance of spatiotemporal data varies depending on
the feature selection, temporal correlation, and spatial correlation of the input data. There-
fore, a comprehensive review of spatiotemporal data is essential to understand prediction
performance. We examine the performance of deep learning prediction models in terms
of feature selection and spatiotemporal correlation. This section presents the algorithms
used to analyze how features, temporal correlations, and spatial correlations affect the
predictive performance.

4.1. Feature Selection with Correlations

Feature selection is the process of constructing a subset of correlated variables and is
an essential technique that is directly related to training performance. In general, feature
selection generates a data subset according to the data relationships, such as mutual
information and the Pearson correlation coefficient. However, the feature selection of
spatiotemporal data makes it challenging to choose subsets based only on simple correlation
coefficients or scores because we must examine both temporal and spatial relationships.
In this work, we employ the Pearson correlation coefficient, temporal autocorrelation,
spatial autocorrelation, and the LISA algorithm to support the feature selection of the
spatiotemporal data.

The linearity of correlation between variables is meaningful in determining feature as-
sociation. We employ the Pearson correlation coefficient, visualize the correlations, and use
it as an indicator of feature selection, depending on the data features. We also visualize
temporal and spatial autocorrelation of features. We visualize LISA (local indicators of
spatial association) values as indicators of spatial association. In addition to the feature
selection, feature extraction techniques, such as PCA, t-SNE, and LDA, can also be applied.
However, this paper does not cover features from feature extraction techniques.

4.2. Deep Learning Models for Temporal Prediction

We compare temporal prediction and spatiotemporal prediction algorithms to see how
the prediction performance changes with and without spatial information. Deep learning
for temporal forecast is examined, focusing on RNN, and the representative algorithms
are LSTM and GRU. We construct LSTM and GRU architectures as temporal prediction
algorithms and convLSTM as a spatiotemporal prediction algorithm.

LSTM is a type of RNN that is a recurrent neural network designed to resolve the
long-term dependencies in RNNs and to achieve faster convergence in training. Time-series
training is performed by adding memory cell and a forget gate to the RNN structure. The
LSTM cell is largely composed of a forget gate f, input gate 7, and output gate 0. The input
of the LSTM cell consists of a vector h; for a short-term state state and a vector ¢; for a
long-term state. In LSTM, the output vector y;, according to the previous state h;_1, c;—1
and input vector x;, is presented as follows [50].

fr = 0(Wys - x¢ + Wys - hiq + by) @
it = (Wi - xt + Wy - b1 + by) 2)

or = 0(Wrxo - Xt + Wi - ht—1 + bo) ®)
gt = tanh(Wxg - xt + Wig - hy 1 + bg) 4)
c=fiQQe1+i Qg ®)

e, he = op (X) tanh(cy), (6)

where W, ¢, Wy;, Wyo, Wyg are weight matrices for the layers connected to the input vector
xt, and Wy, Wi, Wy,, Wi, are weight matrices for the layers connected to the short-term
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state h1;_1. Additionally, b Iz b, by, and by are biases for four layers. The &) is an element-
wise matrix multiplication. The current short-term state h; is affected by the long-term
state ¢;_1 and the current long-term state c; is calculated based on the long-term state
c;—1 at the previous time and the input gate i; at the present time. LSTM resolves the
long-term dependence problem in RNN by transmitting the long-term state and prevents
the vanishing of the gradient, using tanh as a cell activation function.

The GRU algorithm utilizes only one state vector /; and controls both the forget gate
and input gate with one gate controller, z;. The GRU is presented as follows [51].

ry = U'(er cxt 4+ Wy - hyeoq + br) (7)
zt = 0(Wiz - x¢ + Wiy - hy—1 + b2) 8)
gt = tanh(Wxg - Xt + Wyg - (1t ®ht,1) + bg) 9)
he =z @ hi—1 + (1—2z¢) Q) 8- (10)

The GRU algorithm works similar to LSTM and can perform time-series training with
fewer parameters. However, since only one state is stored, it is difficult to analyze the
state value of each cell. In this paper, we choose LSTM and GRU as temporal prediction
algorithms and train the data to compare model performances.

4.3. Deep Learning Models for Spatiotemporal Prediction

We compare the temporal prediction algorithms with the spatiotemporal prediction
algorithm to analyze how the prediction performance changes with and without spatial
information. In this paper, we use convLSTM as a spatiotemporal prediction algorithm.

ConvLSTM is a network structure that can be employed to predict spatiotemporal
data by applying convolution to a fully-connected LSTM structure. The LSTM cell structure
itself does not change much. However, the most significant difference is that the input
datum is not a vector but an image, and the convolution is added to the LSTM internal
operation. The convLSTM is presented as follows [8].

it = 0 (Wyi % xp + Wyi % by + Wei Q) ci—1 + bj) (11)
fr = 0(Wyp s ¢+ Wyp s ly_q + Wep @ -1 + by) (12)
0t = 0(Wao * xt + Wi hy_1 + Woo ® ci_1+bo) (13)

gt = tanh(Wyg x x¢ + Wi * hy 1 + bg) (14)
a=fQc1+ir Qg (15)
he = oy Q) tanh(cy), (16)

where Ws are the weight matrices for the layers, and b £ bi, b, by are the biases of the layers.
The Q) is element-wise matrix multiplication, and * represents a convolution operation.
The input datum is convoluted in image form. In this model, the spatial information
is incorporated in the convolution operation, and the recurrent structure of the LSTM
incorporates the temporal information.

4.4. Spatial Interpolation Techniques

We use spatiotemporal data measured from discrete stations in our deep learning
prediction models. Therefore, the prediction result of the spatiotemporal data must be
visualized by interpolating discrete data in two-dimensional space. We apply the nearest,
linear, and cubic interpolation to spatially interpolate and compare the predictions of
the deep learning models as postprocessing. The nearest interpolation is the most basic
interpolation technique, and the algorithm fills the empty space by copying the adjacent
value. The linear and cubic interpolation can be applied as a higher-order interpolation
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technique, and these techniques usually produce excellent approximations for regularly
distributed stations.

5. System Evaluation with Air Pollutant Prediction Models

In this section, we describe the deep learning modeling process within the proposed
system, using spatiotemporal air pollutant data. The deep learning modeling process
involves selecting features, time lags, and deep learning algorithms, according to the corre-
lation information between variables, temporal autocorrelation, and spatial autocorrelation.
The spatial autocorrelation is computed with Moran’s I [52] and the local indicator of spa-
tial association (LISA [53]. Moran’s I is one of the representative statistics for testing global
spatial autocorrelation, confirming whether the values of specific variables in the analysis
target region are correlated. Moran’s I indicates how similarly the values of the variables
measured in adjacent spaces are distributed. When the value of Moran’s I is close to 1, the
adjacent neighboring spatial units have similar values, and when the value of Moran’s I
is close to —1, the neighboring spatial units have different values. LISA (local indicator
of spatial association) is sometimes called local Moran’s I because it shows local spatial
dependence. LISA makes it possible to identify the occurrence of local clustering patterns
of a given variable in space. The proposed visualization system supports the deep learning
modeling of spatiotemporal data by visualizing the information and prediction results
required for better modeling. Therefore, the system enables us to observe the prediction
results of the deep learning model to discover problems within the modeling.

The purpose of deep learning modeling with the air pollutant data introduced in
Section 3 is to predict the amount of air pollution in the future. In this paper, we train
PMj; 5 with the temporal and spatiotemporal predictions of deep learning models. Then,
we calculate the mean absolute percentage error (MAPE) from the test data set not used
for the training as a measure of the performance of the model. The predicted values by
the deep learning model are inserted into the interpolation algorithm. The interpolated
continuous results are projected on a map, which makes it easy to recognize the visual
distribution of the prediction.

Our spatiotemporal data prediction modeling system, as shown in Figure 1, is a
web-based application developed under the Flask framework, and visualization modules
are implemented using D3.js. In the back-end, the prediction network models, such as
LSTM, GRU, and Convolutional LSTM, are implemented with Python. Figure 1 presents
our air pollutant prediction modeling system that enables us to compare spatiotemporal
data prediction models and investigate the prediction performance. In Figure 1a, the scat-
terplot shows the correlation and probability distribution between input variables. We
compare five input variables to capture the correlations and data distributions and observe
that PM, 5 and PMj are highly correlated. The system also presents spatial autocorrela-
tion (Moran’s I) in (b), where LISA is visualized. We recognize high-high and low-low
LISA as clusters. The temporal autocorrelation is plotted in (c). We recognize that the
temporal autocorrelation of PM; 5 becomes weaker as time goes on. The Sankey diagram
supports the modeling of the spatiotemporal prediction by combining features, deep
learning models, and interpolation models, as shown in Figure 1d. We set the prediction
parameters for the models in (e). Here, we set the time lag and deep learning parameters.
The interpolated prediction with the nearest neighbor is visualized in (f), where we see the
predicted values over the global area. The observed ground truth data are visualized in
(g), and the prediction errors are visualized in (h). The standard deviation of prediction
over time is presented in (i). The LISA is shown in (j). The box plots represent the temporal
predictions compared to the actual observed values in (k).
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Figure 1. Our visualization system for analyzing deep learning models. (a) is the scatterplot of
the correlation and probability distribution between input variables. (b) shows spatial autocorrela-
tion (Moran’s I) of the selected variable. (c) presents line density map with temporal autocorrelation.
The Sankey diagram supports the modeling of the spatiotemporal prediction by combining features,
deep learning models, and interpolation models in (d). (e) presents our prediction modeling param-
eter settings. (f) presents interpolated predictions with the nearest neighbor algorithm. (g) shows
the observed data. (h) presents the errors between the observed data and predictions. (i) shows the
standard deviation of prediction over time. (j) presents the LISA visualization. (k) The box plots
show temporal predictions with the actual observed values.

5.1. Analysis Based on Correlation and Time Lag Settings at Initial State

First of all, the correlations between variables can be identified in the scatter plot
matrix in (a). The scatter plot shows the features that correlate strongly with the PM; 5
that we attempt to predict. The Pearson correlation coefficient between PM; 5 and PM1q
is close to 1, and the scatter plot shows a strong linear correlation, which confirms that
PMj has the highest correlation with PM; 5. Therefore, we can attempt to predict PM; 5
by inserting PMj, 5 and PMj features together in the GRU network and the LSTM network.
Our system supports three time lags as an input time range, including 6, 24, and 72 h. The
results are summarized in Table 1. Overall, it is difficult to tell that all six network models
have good predictive performance. Note that we observe the high correlation between
PM; 5 and PM;( within our data, and this is also reported in the study by Zhou et al. [54].

Now, we compare the model performance with different time lags. In both GRU and
LSTM networks, when only the parameters of PM; 5 and PMj are selected, setting the
time lag to 6 h produces lower MAPE than 24 or 72 h. Since the visualization shown in
Figure 2 is proposed to set an appropriate time lag, we check that the autocorrelation of
each variable changes according to the time lag. We observe the temporal autocorrelation
graphs of PM; 5 and PM; in Figure 2 to infer the cause for these results. Since the temporal
autocorrelation of PMj; 5 and PM;o has a major decreasing trend, we can interpret it as the
accuracy for a long time lag tends to decrease. In other words, when only two variables are
used, including much data from a past time, it may degrade the prediction performance.
We can try two approaches to improve the performance of the GRU and LSTM. First,
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the models are fixed with GRU and LSTM and features are reselected for the training.
Second, we fix the selected features and apply another model, such as the ConvLSTM.

Table 1. Prediction accuracy of different time lags and models with PM; 5 and PM for gated recur-
rent units (GRU) and long short term memory (LSTM) with mean absolute percentage error (MAPE).

Selected Features Model Time Lag (h) MAPE (%)
6 69.4
PM, 5 GRU 24 89.6
72 729
6 70.5
PMjg LSTM 24 83.0
72 72.2
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Figure 2. The temporal autocorrelations of all variables are visualized over time lags. Humidity,
noise, and temperature tend to have high autocorrelations every 24 h. However, PM; 5 and PM;, do
not have repeated temporal autocorrelations.

5.2. Analysis Based on Different Feature Selection

When we reconsider the feature selection, we need to identify the problem with the
selected features. The selected features, PMjy and PM; 5, have a strong linear relationship.
Therefore, the PMjj information is almost similar to the PM, 5 information. If duplicate or
nearly similar information is included in the input, the information may be insignificant in
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the prediction. Therefore, we train PM; 5 again with temperature and humidity features,
which have high linear coefficients next to PMyg. The results are summarized in Table 2 and
visualized in Figure 3. We observe that the model with PM; 5, humidity, and temperature
produces more accurate prediction than one with only PM; 5 and PMjg as presented in
Figure 3a,b. The fixed model with the same features predict PM; 5 differently according
to the time lags, as shown in Figure 3c—e. Although the average MAPE with the time lag
of 6 h is lower than one with the time lag of 24 h, we observe that the time lag of 24 h

produces lower errors overall in the map visualizations.

Table 2. Prediction accuracy of different time lags and models with PM; 5, temperature, humidity for
gated recurrent units (GRU), long short term memory (LSTM) and mean absolute percentage error

(MAPE).

Selected Features Model Time Lag (h) MAPE (%)

6 454

GRU 24 43.0

Tenf;\gifture 72 49.9

Humidity 6 491

LSTM 24 59.6

72 82.9
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Figure 3. The visualizations of PM; 5 predictions. (a,b) Visualizations of prediction results with

different features. (c—e) Results with different time lags.

In the results after selecting the new feature set, we observe that the MAPE becomes
smaller, compared to the previous feature selection. One reason for this is that duplicated
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information, as previously suspected, may somewhat degrade the prediction performance.
We can also see that the model performance according to the time lag is stable in the case of
GRU. However, in the case of LSTM, it can be seen that the accuracy decreases significantly
as the time lag increases. Therefore, the GRU designed in this paper can be interpreted as
being more robust to the past data than LSTM.

5.3. Analysis Based on Different Deep Learning Network

In this test, we fix the features and choose another model, ConvLSTM. Only the PM, 5
and PM; features are selected as input features of the ConvLSTM, and the time lag is set
to 6 h for the training. The MAPE of ConvLSTM with only PM; 5 and PM;, and with 6 h
of time lag is 34.4%, which is lower than those of the GRU and LSTM networks. We can
refer to Figure 1b to see why the predictive performance is better when using a model
reflecting the spatial information. In (b), Moran’s I for PM; 5 is 0.538, which shows a
relatively significant spatial correlation. Since PM; 5 has high spatial autocorrelation, we
expect that the predictive performance is better when considering spatial information.

5.4. Review of Predictions by Feature and Network Selection

We also train ConvLSTM with three features, including temperature, humidity, and
PMj; 5, which are selected in the temporal predictive modeling in Section 5.2. The MAPE of
ConvLSTM with the three features and 6 h of time lag is 21.9%. After reselecting the features,
we can see that predictive performance is better. PM; 5 and PM are very similar features.
As seen in Section 5.2, the spatial overlap may also reduce the prediction performance.
Since the spatial information of each feature is different, the spatial correlation of the
prediction result may also be different. Therefore, in the spatiotemporal prediction deep
learning modeling process involving spatial factors, it is worth exploring how significantly
the spatial information of a feature can affect the prediction.

We attempted to interpret the prediction results for each case as we stepped through
the changes of features, time lags, and deep learning models. The proposed system enables
deep learning modeling with spatiotemporal data and supports interpreting the causes
for the results. During the modeling process, we investigate the prediction results of deep
learning models, improve our understanding of the data, and explore the deep learning
models faster. In particular, during the process of analyzing the prediction results of the
deep learning model with spatiotemporal data, efficient feature selection can be performed
by comparing not only the correlations between variables, but also the spatial and temporal
correlations.

6. Discussions

In this paper, we propose an approach to select the appropriate features and deep
learning model by analyzing correlations, spatial correlations, and temporal correlations for
spatiotemporal data prediction. We evaluate our system with spatiotemporal air pollution
data to generate the prediction model. We take the past data (t1, ..., t,_1) as input and
predict the current data at ¢, as an output. The prediction results are compared in the
map visualizations. The evaluation in Section 5 is intended to perform the deep learning
modeling procedure to improve the prediction results through the system. Note that we
show the modeling procedure rather than the best results in this paper. The limitations of
our approach are in the following.

For feature selection, our system provides the Pearson correlations between variables,
temporal autocorrelation with the time lag, and spatial autocorrelation with LISA visual-
ization. However, the extension to spatial filtering and feature extraction during the data
analysis can enhance the quality of feature selection. Although our approach can be useful
for identifying and predicting global trends in the overall data, our system tends to neglect
the local characteristics. For example, we can filter the areas by considering geographic
characteristics and environmental conditions. In the case of PMj; 5, the frequency of occur-
rence may vary according to the density of factories in neighboring areas, and the diffusion
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of PM; 5 may be changed by mountains or high-rise buildings in nearby areas [55]. We
plan to add spatial filtering and apply feature extraction techniques, such as PCA, LDA,
and t-SNE.

From a deep learning perspective, we trained the data using LSTM, GRU, and Con-
vLSTM and compared the predictive performance with the spatiotemporal relationship.
According to recent research [44—47,55], various network structures extended from the
RNN structure were investigated as a technique for predicting spatiotemporal data. Al-
though not included in this study, DCRNN (diffusion convolutional recurrent neural
network) [56] can be used to predict spatiotemporal data, using directed graph data. This
paper utilizes data obtained from irregular discrete stations, rather than grid or known
topological data. Such discrete data may be distorted in the connection between features
in the process of converting them into a graph structure. When converting from discrete
data to the graph structure, the relationship between features determines the weight of the
graph. However, it is difficult for us to find the relationship between features from discrete
data. After studying the feature selection technique with the feature extraction techniques,
we plan to investigate to transform the extracted feature into a directional graph form and
apply it to the DCRNN in the future.

The purpose of this study is to examine whether prediction performance degradation
is due to feature selection or spatiotemporal correlation. Therefore, we train the data
with fixed deep learning hyperparameters such as batch size, loss function, and optimizer.
However, setting up appropriate hyperparameters in deep learning is a critical factor
in improving predictive performance. Therefore, we need to analyze the influence of
hyperparameters on spatiotemporal prediction in the future.

We apply the nearest, linear, and cubic interpolation to spatially interpolate and
compare the predictions of the deep learning models as postprocessing. However, these
techniques do not work correctly for irregularly distributed stations. To overcome this
problem, we can consider applying the RBF network, which is a kind of artificial neural
network. The RBF network is calculated using the radial basis function as an activation
function and is applied for functional approximations, time series prediction, and classi-
fications [42]. The RBF network can be added ahead of the ConvLSTM neural network
as additional layers. This model has the benefit of being able to discard postprocessing
for the visualization. We do not need to create image data sets from the spatiotemporal
data measured from discrete stations. Therefore, we plan to apply the RBF network to the
ConvLSTM neural network in the future.

7. Conclusions

In this paper, we proposed a visualization system that can analyze deep learning
models. We proposed an approach to select the appropriate features and deep learning
model by analyzing correlations, spatial correlations, and temporal correlations for spa-
tiotemporal data prediction. We analyzed deep learning based prediction model with an
air pollutant data set, which represents an irregularly distributed spatiotemporal data set.
Our system allows us to explain the reason for the low performance of a deep learning
model in the aspect of spatial and temporal correlations. We believe that our approach
supports us in understanding the parameter settings and improving deep learning models
for spatiotemporal data. It is possible to extend our system to include more deep learn-
ing models and explain the predicted results, which is crucial in deep learning research.
However, our model has some limitations, including the lack of feature extraction and the
hyper parameter setting of deep learning networks. To overcome this problem, we plan to
add spatial filtering, apply feature extraction techniques, including PCA, LDA, and t-SNE,
and apply a DCRNN architecture by transforming the extracted feature into a directional
graph form. We also plan to apply the RBF network to the ConvLSTM neural network in
the future.
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