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Abstract: Augmented reality is one of the fastest growing fields, receiving increased funding for the
last few years as people realise the potential benefits of rendering virtual information in the real
world. Most of today’s augmented reality marker-based applications use local feature detection
and tracking techniques. The disadvantage of applying these techniques is that the markers must
be modified to match the unique classified algorithms or they suffer from low detection accuracy.
Machine learning is an ideal solution to overcome the current drawbacks of image processing in
augmented reality applications. However, traditional data annotation requires extensive time and
labour, as it is usually done manually. This study incorporates machine learning to detect and track
augmented reality marker targets in an application using deep neural networks. We firstly implement
the auto-generated dataset tool, which is used for the machine learning dataset preparation. The final
iOS prototype application incorporates object detection, object tracking and augmented reality. The
machine learning model is trained to recognise the differences between targets using one of YOLO’s
most well-known object detection methods. The final product makes use of a valuable toolkit for
developing augmented reality applications called ARKit.

Keywords: augmented reality; artificial intelligence; synthetic data annotation; deep learning; object
detection; YOLOV3; iOS application; ARKit

1. Introduction

Augmented reality (AR) is described as a sub-field of computer vision that allows the
physical environment to be immersed in and overlaid with computer-generated informa-
tion to create an interactive space. Its main principle is to replace parts of natural objects
with virtual information in real time [1,2]. AR also intends to present users with virtual
content while simultaneously keeping them in the real-world environment. In general, AR
is defined as a system that includes the following characteristics [3]:

Capability to combine the natural and virtual worlds;
. Present a natural and virtual interactive environment in real-time;
Ability to view virtual information in three-dimensional spaces.

The idea of AR existed many years ago, and the first prototype of a workable AR
device was introduced in the 1960s by Ivan Sutherland [4], as shown in Figure 1. This
prototype is one of the first head-mount displays (HMD) that allowed users to view 3D
computer-generated graphics via its display optics. Later, during the peak of the Vietnam
War, the US Army introduced a night vision device (GEN 1,2,3-NVD). The GEN system
was designed to be mounted to weapons [5], allowing soldiers to view targets in levels of
light approaching total darkness, together with range estimation (as shown in Figure 1).

Virtual reality (VR) and mixed reality (MR) are frequently mentioned, but how do
they relate to AR? Figure 2 presents the MR continuum, which depicts MR as the merging
of the virtual and natural worlds along with the digital information continuum. The VR
environment is entirely generated by computer graphics, which disconnect users from
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the real world and transfer them to an artificial digital environment. These immersive
experiences are usually applied to training, education and video games. AR lies between
reality, or the natural world, and VR to integrate virtual information into the actual physical
world’s live view. It provides a unique experience by merging the actual environment
with digital information, allowing users to engage and absorb knowledge in a much more
efficient manner [6,7].

25 Yards 10 Yards

Figure 1. The head-mount displays (HMD) introduced by Ivan Sutherland’s research team were the
first HMD prototype (left). The night vision device introduced by the US Army during the Vietnam
War allows the viewing of targets in low light and range estimation (right).

Reality — ) Augmented Reality (AR) =) Virtual Reality (VR)

Interact with real objects or the real Computer-generated contents overlay The environment is fully generated by
world the real world computer graphics

Mixed Reality (MR)

Figure 2. Milgram and Kishino’s Mixed Reality Continuum.

While VR became more popular with investors during the 1970s and 1980s, AR was
forgotten due to hardware limitations and the lack of potential application ideas. However,
we do not need to wait long for AR to reappear again due to the significant growth of
the technology in the early 1990s [8,9]. Boeing researcher Tom Caudell introduced the
term “Augmented Reality” in his research on mounting cables in airplanes [10]. In the
late 1990s, the Columbia University Computer Science research group demonstrated the
prototype of an interaction wearable device [11]. Since the expansion of the smartphone
market in the beginning of the 21st century, AR concepts have been gaining more public
attention, increasing the number of supported technologies and research. Google was one
of the first competitors to introduce to the public their own designed AR equipment, called
“Google Glass” (Figure 3a). The Google Glass is intended to be a mini wearable HMD
that allows the users to experience AR via the glass optics. In 2016, Microsoft introduced
the HoloLens [12], which enables users to experience AR and interact with the virtual
environment with their own hands (Figure 3b). Apple went one step further in 2017 by
re-configuring their iPhone processing chip and introducing the software development kit
(SDK), “ARKit”, to enable AR experiences on mobile devices (Figure 3c). Simultaneously,
Google also launched their SDK, called “AR Core”, for their Android devices. The battle
between the major companies is becoming more intense; Apple continues upgrading its
hardware while Google optimises its SDK.
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(b) HoloLens

Figure 3. Augmented reality (AR) devices allow users to experience AR (a) or interact with the virtual world (b). The software

development kit helps the developer implement AR-related applications on mobile devices more quickly and easily (c).

However, there are still many challenging issues that are waiting to be discovered and
improved in AR related fields. One of the major difficulties is that there are several AR
markers on the market, each with its own unique encoded information algorithm [13-17],
such as template (Figure 4a), bar-code (Figure 4b) or pictorial bar-code (Figure 4c) markers.
They usually require the users to modify their original material contents in some way;, either
partially or completely. Another problem is the marker identification process, which utilises
the standard computer vision-based feature extraction approaches, such as scale-invariant
feature transformations or histograms of oriented gradients [18], for classification tasks.
These mathematical methods are vulnerable to unanticipated real-world lighting [19],
marker orientation [20] and unexpected noises [21]. The deep learning (DL) using a
convolutional neural network inspires optimism for overcoming the classic computer
vision difficulties in the AR marker identification process [22]. Later advances in the field
of DL have attained human-level accuracy in object recognition [23], as well as in real-time
data processing [24], making the notion of combining AR and DL more possible than ever.
Another inspiration is that the Apple bionic computing processing unit is becoming more
powerful (Figure 4d). Since the introduction of the A1l chip into the iPhone X model,
the new neural engine accelerator’s combination produces ML calculations that are nine
times faster. This means that we can quickly implement a DL-AR-based application in this
mobile platform. However, DL typically requires massive training data sets, and could be
non-beneficial, which can reduce the accuracy rate [25]. Another disadvantage of DL is
the requirement of a substantial amount of time, as the data annotation processes are often
done manually [26].
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Figure 4. Augmented reality markers typically display unclear information and demand users to change the original picture
in some way, either partially or completely (a—c). (d) depicts the performance of machine learning inference across several
phone models using InceptionV3. (a) Template marker; (b) Bar-code marker; (c) Pictorial bar-code marker.

2. Proposed Idea

We aim to use machine learning techniques to enhance augmented reality experiences
by developing a robust deep learning vision-based application. The proposed method
can classify any images as AR markers without the need for users to modify the con-
tents. This process also requires a minimal amount of time to commercialise the marker
as quickly as possible. Figure 5 summarizes the proposed idea. We call the proposed
system “Synthetic data annotation system for Augmented Reality Machine learning-based
application” or SARM. To present our proposed system in more detail, we divide the
practical implementation into three different modules:

Module 1—Synthetic data annotation is a critical step during the deep learning neu-
ral network training process (as shown in Figure 6). The fundamental idea of this module
is to use the available visual rendering software to apply domain-specific procedures to
the raw data and produce new data in various formats and circumstances. We render the
images as closely as possible to an accurate world perception with minimal effort. We be-
lieve that this new approach is faster than the manual data annotation, which may generate
up to 20 training dataset pictures per second on a graphics rendering unit (as shown in
Table 1). It also provides us with an amazing chance to modify the training dataset more
quickly for an extra training item or to increase the quality of the deep learning model.

Module 2—Deep neural network training provides the learning capability for the
system to determine the potential marker from the scene. Many different convolutional
neural networks (CNN), including image classification and object detection models such
as AlexNet, ResNet, or YOLO (You Only Look Once), were successfully implemented and
produce outstanding results. This uses a suitable deep learning model to train with the
previous module’s dataset and evaluate the training and test outputs.
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Figure 5. The proposed method summarisation where the machine learning module is incorporated with the augmented

reality module.
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Figure 6. The raw images (left) are processed through the graphic rendering unit and the augmentation algorithms to

Data annotation

output the class name and coordinates for further deep learning neural network training (right).

Table 1. Time requirements for the manual and synthetic data generation.

Task Synthetic Data Annotation Manual Data Annotation
Collecting 30 raw images 30 min 30 min
Collecting 60 backgrounds 60 min 60 min
Preparing 10 k of trainable images 15 min 350 h

Module 3—Machine learning and augmented reality incorporation allows the sys-
tem to combine object prediction and to project the 2D coordinates to the natural world
3D coordinates in the augmented reality scene (as shown in Figure 7). The system then
renders the virtual information, such as a 3D model, on the top of the predicted marker
based on its identity.

In short, the proposed system contributes the following:

1—The capability to generate any dataset with any images with minimal effort.
The users can easily and quickly use the system to create and modify any deep neural
network datasets with their specific requirements.

2—The capability to identify different augmented reality markers without modi-
fying the original content. The proposed system only uses a deep neural network to
distinguish the differences between image targets; therefore, changing image content is no
longer needed.

3—A superior augmented reality marker method that can be used in both research
and commercial applications. The pre-trained deep neural network model can handle
video sequences at a rate of about 25 frames per second, making it appropriate for aug-
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mented reality experiences on mobile/web platforms. We believe this is a viable low-cost
platform with applications in a variety of fields, including education and gaming.

Figure 7. Machine learning and augmented reality incorporation module where the object detection algorithm using the

deep neural network (left) can easily find the marker in the scene and produce the augmented reality experience (right).

3. Synthetic Data Generation

Developing accurate object detection requires high-quality training data and can be
a challenging task in a real-world environment, especially when developing a classifier
where the data and environments are uncommon; one example is book images that are used
as target markers for AR applications. Therefore, very little data exist that we can use for
training the deep neural network model in this instance. In these rare scenarios, synthetic
data appear to be a helpful method for generating high-quality and diverse training data
in a minimal amount of time. To generate the synthetic dataset, we firstly need to collect
all possible images used as the target markers in the AR application. Identification of all
possible natural environment situations, such as lighting, orientation and backgrounds,
is the most significant task and this helps to improve the quality of the training dataset.
For example, if the application will be used primarily by students and teachers, then the
backgrounds should be indoors, and the lighting should be warm and moderately bright.
Once all of the necessary environmental components are identified, they can be imported
into a game engine, such as Unity, to generate the image dataset used for deep neural
network training and testing purposes, as shown in Figure 8.

Image targets. We integrated approximately 22 different rectangular-shaped images
in this study. Each of these images has a different design, and some of them have a
very similar colour. This setup is believed to help us qualify how good the dataset is in
terms of identifying the similarity objects. The images were from four different categories:
(1) trading/business cards; (2) posters; (3) children’s educational books; and (4) food
advertisements. The details of target markers are presented in Table 2 and Figure 9.
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Figure 8. The synthetic dataset generated process is started with different images of a training class (panel a) that are
augmented on top of the diverse backgrounds (panel b). Several different image processing filters such as orientations
and light illusions from various views are applied to the virtual scene (panel c) to generate the output images (panel d) that
can present a wide range of real-world situations.

Virtual environments. The performance of the deep neural network model is often
susceptible to the background, orientation and lighting conditions. Hence, the training
dataset must include backgrounds and external conditions similar to what is expected
in future application use. The following aspects are used during the proposed synthetic
images generated procedure:

e The number of distinct AR markers appearing in each scene is chosen at random from
the pool of trainable classes.

¢ The likelihood of seeing one or more AR markers in the same scene is set at 50%.

*  The AR marker’s scaling range is set randomly from 20% to 40% of the scene area.

¢  The AR marker’s rotation angle is set randomly from 0° to 360° in respect of the scene
z-axis.

* A variety of lighting sources generated by the random camera views to present
different real-world illumination effects.

These variations provide a wide range of real-life scenarios and external influences
that might increase marker detection accuracy. The GPU acceleration allows us to generate
over 40,000 high-definition pictures with bounding box coordinates in less than six hours.
Human error in data labelling and noise can be minimised by applying this new approach.
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Figure 9. The target marker figures. First row: aut, coragunk, tangela, marill, pokemon, match mattax, liverpool fc. Second
row: milkshake, pokemon online, book food page, book santa page, aut last page. Third row: bread, ships, aut fifth page,
aut first page, aut fourth page, chocolate. Last row: aut second page, aut third page, book cover page, book first page.

Table 2. Details of target markers and their label name, width, height and number of generated
samples in the dataset.

Label Name Width Height Total Synthetic Sample Generated
aut 9 cm 5.5 cm 3890
aut fifth page 2l cm 21 cm 3309
aut first page 2l cm 21 cm 3179
aut fourth page 2l cm 21 cm 3319
aut last page 21 cm 21 cm 3324
aut second page 21 cm 21 cm 3285
aut third page 21 cm 21 cm 3427
book cover 21 cm 21 cm 3205
book first page 2l cm 21 cm 3192
book food page 21 cm 21 cm 3853
tangela 6 cm 8.5 cm 2514
ships 35cm 60 cm 2258
pokemon online 8.5 cm 6 cm 3869
pokemon 6 cm 8.5 cm 2542
milkshake 7 cm 11 cm 2308
match attax 6 cm 8.5 cm 2518
marill 6 cm 8.5 cm 2552
liverpool fc 6 cm 8.5 cm 2356
coragunk 6 cm 8.5 cm 2558
chocolate 13 cm 17 cm 2763
bread 13 cm 17 cm 2870

book santa page 21 cm 21 cm 3877
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Data labelling. YOLO is the deep neural network that we use in this study and is described
in detail in Section 4. In YOLO, the bounding box has four values, [object_id, x_centre,
y_centre, width, height], as shown in Figure 10. [object_id] represents the number cor-
responding to the object index in the class names list. [x_centre, y_centre] represents the
centre point coordinate of the bounding box, which is normalised to between 0 and 1 by
dividing by the width and height of the image. [width, height] represents the width and
height of the bounding box, which is normalised to between 0 and 1 by dividing by the
width and height of the image.

(1500,0)

40.5533 0.1782 0.374 0.2511

30.580.3595 0.4646 0.3088

14 0.564 0.6524 0.38866 0.3311

e - (1500,2250)
(0,2250)

1500 px

Figure 10. Examples of formats representing coordinates of a bounding box in YOLO training.

4. Object Detection

Object detection using a convolutional neural network can be categorised into two dif-
ferent types: region nomination and regression. Region nominations, such as R-CNN [27],
SPP-Net [28], Fast R-CNN [29], and Faster R-CNN [30], use step-by-step detection strategy
algorithms. They first extract the proposal regions from the image using selective search
and then classify the image within the proposal regions. The output accuracies of these
models are consistently above 80%. However, the frame per second (FPS) rate reduces
dramatically. Only 7 FPS is possible for Faster R-CNN, which is one of the fastest models
but is still far from the real-time FPS standard. On the other hand, the YOLO model can
reach 45 FPS, which is suitable for real-time detection tasks, especially for AR applica-
tions. YOLO [31] uses the regression method to predict the object bounding box and class
name instead of using the proposed region method. However, due to the simpler network
architecture, the detection accuracy reduces when the frame rate increases.

YOLOV3 deep neural network model. The main principle of YOLO is using the entire
image as the input to the network and directly returning the bounding box coordinates and
corresponding class name. YOLOv3 [32] is the next generation of YOLOv2 [33] and contains
significant improvements. YOLOv2 uses Darknet-19 as its backbone and an additional 11
object detection layers. However, YOLOV2 struggles with detecting small objects, whereas
YOLOv3 provides a state-of-the-art performance by using residual blocks, skip connections
and upsampling, as shown in Figure 11. It uses Darknet-53 as the backbone, which is
reported to be more efficient than Darknet-19, ResNet-101 and ResNet-152 [34].
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Figure 11. YOLOv3 neural network architecture.

The main difference between YOLOV3 and its ancestors is the prediction of three
different scale levels. Each of the input images is downsampled by 32, 16 and 8, respectively.
The detection is first made at the 82nd layer after the downsampling process of the original
input from the previous 81 layers. The 81st layer has a stride of 32, meaning that if we
have an image of 416 x 416, then the resultant feature map would be 13 x 13 x depth.
Then the feature map from 79th layer upsampled by two to dimensions of 26 x 26 x depth
is depth concatenated with the feature map from the 61st layer. The combination feature
maps are subjected to a few convolutional layers before reaching the 94th layer, where the
second detection occurs. The same procedure is executed again, where the feature map at
the 94th layer is subjected to a few convolutional layers and depth concatenated with the
feature map from the 36th layer. The final detection occurs at the 106th layer, yielding the
feature map of 52 x 52 x depth. Detections at three different scale levels help to address
the limitations around detecting small objects in YOLOv2. The 82nd prediction layer is
responsible for detecting large-scale objects. The last prediction layer is responsible for
detecting the small-scale objects, whereas the 94th prediction layer is suitable for medium-
scale objects. The predictions are made by applying 1 x 1 detection kernels to the feature
map, as shown in Figure 12. At the tensor procedure level, the YOLOv3 network divides
the input image into an S x S grid of cells. Each cell is responsible for predicting bounding
boxes B and class probabilities C of the potential objects whose centres are inside the grid
cell. Each bounding box has five attributes: four bounding box coordinates (tx, ty, t;, tw)
and an object confidence score P,. The confidence score represents the probability of a box
containing an object and usually falls between 0 and 1.

[ =

Bounding box Object
coordinates score Class score

_—— t & & & » [EREIEEES EL

Bounding box attributes

Feature map

Image grid where the red grid is
responsible for detecting the object

Figure 12. YOLOv3 detection procedure at tensor level.
In YOLOV3, the loss function L can be calculated using the following equation:
L = Errotpoyes — Ermrconfidence — Error iassess (1)

where the Errory,yes is the bounding box coordinate regression, which can be defined
as follows:
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2
Errorboxes - /\coordlmzte Z Z lob] |:( - t;c)z + (ty - t/y) + (tw - tgv)2 + (th - t;z)z ’ (2)
i=0j=0

where S2 = S x S cells, N is the number of bounding boxes in each predicted cell with
the corresponding coordinates (ty, ty, tj,, tw), and Acoorginate 1S the coordinate error weight.
The Errot o fidence 1S used to calculate the loss of confidence of the existing object in the
bounding box, which can be defined as follows:

N
Er707 o fidence = Z YOI th] [cilog(ci) + (1 —c})log(1 —¢;)]+
i=0j=0

N
confldence Z Z lconfzdence[ ;log(ci) + (1 - C;)Zog(l - Ci)}/
i=0j=0

®)

where ¢ is the number of classes, Acofidence 1S the confidence error weight. The final
Error s can be calculated using the following equation:

sz
Erroreigsses = Z l;')b] IZ [pf(c)log(pi(c)) + (1 - pf(c))log(l - pi(c))] . 4)
i=0 ceclasses

Mean average precision. In most computer vision-based deep neural networks, we use
the mean average precision metric (mAP) to evaluate the trained model. Firstly, let us find
out what precision means. The precision measures how accurate the model prediction can be
by counting the number of correct predictions over the total predictions, described as follows:

.. TP
Precision = TP+ Fp TEP’ ®)

where TP is true positives, meaning that the positive predictions are correct. FP represents
false positives, meaning that the positive predictions are incorrect. The mAP, on the other
hand, does not take the average of those precision values; it uses the Intersection Over
Union metric (IOU). The IOU metric determines whether the prediction is correct. It
measures overlap between the predicted bounding box and the ground truth bounding
box over the union of their area, as described in Figure 13:

Ground truth
Overlapped area Predicted box
Intersection over Union (IoU) = =
Unlon area Predicted box
Ground truth

Figure 13. The Intersection Over Union can be calculated by dividing the area of overlap between
the bounding boxes by the area of the union.

In each case, we usually set up a default threshold value. If the IoU value is higher
than the threshold value, the prediction is defined as TP, otherwise FP. The recall value is
calculated in Equation (6) by using TP, FP and the false negatives FN.

TP

Tecall - m . (6)
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The average precision AP can then be defined by finding the area under the precision-
recall curve, as shown in the following equation:

1
AP = / Precision(recall)dr. (7)
0
The final mAP can be calculated as:

1 c=n
AP =—-) AP
m n ; Ccr (8)

where AP, is the AP value of the class ¢ and 7 is the number of classes. The YOLO model
also uses mAP50 or mean average precision 50. This metric calculates the m AP value from
50% to 90% of the IoU value and increases every iteration by 5%, then takes the average of
all of them together.

Training parameters. The original YOLOv3 was evaluated on the Microsoft COCO
(Common Objects in Context) dataset [35]. We keep most of the training parameters as
described in the original YOLO paper [32]. However, we replaced the training data with
our synthetic data during the training process, as described in Section 3. We trained the
network for 80 iterations using 80% of the dataset for training and the rest for validation.
The batch size of 16 and sub-division of 8 matched the training hardware requirement for
Nvidia RTX 2080 Super. However, we used Pytorch [36] as the training framework instead
of Darknet due to its Core ML conversion capability for implementing iOS applications.
The full details of the training parameters are presented in Table 3.

Table 3. Training parameters and their values for the deep neural network.

Hyper Parameter Value
Activation Linear, Leaky
Backbone Darknet-53
Batch size 8

Decay 0.0005
Epochs 80
Filter size 64, 128, 256, 512, 1024
Learning rate (final) 0.2
Learning rate (initial) 0.01
Momentum 0.937

Number of classes 22

Optimiser SGD
Sub-division 4

5. Augmented Reality Application Implementation

Our i0S application was built using Xcode and Swift 5.0 and developed for iOS 14.0 or
above. The application was tested on the iPhone X and iPhone XR, but it should also work
on other recent iPhone models that support ARKit 4.0 and have the Bionic A1l chip or
later built-in. Our iOS application source code is openly available at https://drive.google.
com/file/d/1HPnggCnhE2gqcth9Tiuuk2FxvMEu3qdw /view?usp=sharing, accessed on
24 June 2021.

Importing the pre-trained deep neural network model to XCode. The deep neural
network we trained (as discussed in Section 4) can be easily imported to XCode by con-
verting to the Apple CoreML format using the Open Neural Network Exchange (ONNX).
The ONNX is an open cross-platform deep learning model that helps developers move
their trained models into different training frameworks. The converter then takes the
pre-trained PyTorch model (.pth) as the input, and instead of running on the actual neural
net, it will identify torch.onnx._export as the built-in PyTorch API to export to an ONNX
formatted model. Exporting the ONNX format from PyTorch is essentially tracing the
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network, and the system internally runs the network on ‘dummy data’ to generate the
graph. For this reason, the system needs a blank image with a similar size to the ex-
pected input: convert —size 416 x 416 xc:white png24:dummy.jpg. The ONNX can then
be converted to the CoreML model format by using the built-in convert—onnx—to—coreml
package, as shown in the example below (Listing 1):

Listing 1: Python code to convert Pytorch model to CoreML.

import sys

from onnx import onnx_pb

from onnx_coreml import~convert
model_in = "input.onnx"
model_out = "output.coreml"

model_file = open(model_in, ‘rb’)

model_proto = onnx_pb.ModelProto ()
model_proto.ParseFromString (model_file.read ())

coreml_model = convert(model_proto, image_input_names=['0"],
image_output_names=["186"])

coreml_model . save (model_out)

The CoreML model then can be imported by dragging and dropping the model file
into the XCode project. XCode will generate a new Swift class for the new imported model
and we can use the model by creating an instance of this class.

iOS application structure. The class diagram in Figure 14 presents the relationship
between different Swift classes and how they fit and work together under the application
system. The diagram is divided into three parts: (1) ViewController; (2) Yolo; and (3)
AlteredImage. The ViewController class is the main controller of the application that holds
the ARSCNView. This class is responsible for rendering the virtual objects and updating
the application states. Every instruction is executed on the main Ul thread as the system
does not capture the camera’s input frame in this class. Hence, there is no main thread
blocking issue due to the video feedback execution.

The Yolo class is where the actual deep neural network predicts the incoming frame
from the camera. We set the prediction time interval to 0.03 s, which means that the system
will start running the prediction process every 30 milliseconds if no prediction process
is currently running. This set-up helps to reduce the system workload by classifying
a single frame for every given interval of time instead of for all of the frames. Each
predicted frame is converted to MLMultiArray and fed into the deep neural network
model. The advantage of working directly with MLMultiArray’s memory is that this
speeds up the CoreML prediction performance significantly. Every process within this class
is run on the background thread to avoid blocking the main UI thread. After the bounding
box of the input frame is found, the system starts searching for the closest rectangle in
the 3D world that matches the predicted bounding box. The Intersection Over Union
metric (IOU) is used to measure the similarity between the predicted bounding box and
the rectangle in the natural scene. The IOU can be written as:

_|BBox [ Rect|

IOU(BBox, Rect) = [BBoxJ Rect|

,0.5 < IOU(BBox, Rect) < 1.
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+ update(anchor: ARAnchor, node: SCHNode) SCNNode
- resetimageTrackingTimeout()

Figure 14. The class diagram of the iOS application.

After finding the matched rectangle in the natural scene, the AlteredImage class will
keep a copy of the rectangle as the reference image and create a 3D plane of the rectangle
with its exact dimension in the real world. The virtual object is retrieved based on the
predicted identification and rendered in the scene using SCNNode class. Each virtual
object node is grouped under one root node, meaning all nodes are defined relative to
the transformation or orientation of the same root node. We also set the reference image
tracking time interval to 0.03 s so that the system will start searching for the saved reference
image every 30 milliseconds, and it will begin the actual YOLO prediction process if the
reference image cannot be found via the AlteredImageDelegate protocol. Hence, this
reduces the workload for the neural engine. ARKit 4 itself does not read any 3D formats,
it instead uses the rendering engine to read and render the 3D object onto the scene.
The rendering engine only accepts four 3D model formats: (1) Collada’s Digital Asset
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Exchange .dae; (2) Pixar’s Zipped Universal Scene Description .usdz; (3) Native Scene
Format .scn; and (4) Reality Composer Format .rcproject or .reality. However, we can also
use the Reality Composer built-in convert tool to convert other 3D object formats to one of
the above-supported formats.

6. Results

Synthetic dataset performance on YOLOv3. We conducted different experiments
to evaluate our proposed method. All of the experiments used Python 3.8 to train the
algorithm on the Linux system with Intel i7-9700F 3.0 GHZ CPU and Nvidia RTX 2080
Super (8 GB memory). We trained our synthetic data with two different YOLO models:
YOLOV3 416 for 20 h and YOLOV3 tiny for 13 h. The training loss results are shown in
Figure 15, and the mean average precision values (mAP and mAP50) are presented in
Figure 16. The results indicate that the YOLOv3 model yields more than 80% in mAP and
more than 55% in mAP50 when utilising our synthetic dataset.
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Figure 15. The loss curve during training of YOLOv3.
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Figure 16. YOLOv3 training mean average precision (mAP) and mean average precision
50 (mAP50) curves.

Comparison with other dataset. We also compare our synthetic dataset with MS-
COCO [35], using the same YOLO family model, presented in Table 4. MS-COCO is a
famous dataset for testing the performance of many object detection models. However,
the data are collected and labelled manually. We would like to find out the performance of
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the COCO dataset and our synthetic dataset when they are feeding into the same YOLO
models. This experiment is believed to present a general picture of the difference in
performance between two different types of dataset generation techniques. Our dataset
produces higher performance values while maintaining the same detection time at 0.01 s,
which is equivalent to a real-time detection standard. Significantly, the mAP and mAP50
values almost doubled when we used our dataset for deep neural network training. These
results indicate that our proposed method is effective and can minimise outliers and noise
that could cause a reduction in prediction performance.

Images prediction under different lighting conditions. The first experiment shows
that the YOLOv3 416 and tiny are the most suitable models used for mobile devices. We
compared their performance under the following natural lighting conditions:

¢ Normal indoor light;
e  Low light or dark background;
¢ Direct artificial light or high-contrast lighting.

The experiment outputs are shown in Figure 17. The models can detect objects very well
under good lighting conditions with an average precision of 80%. YOLOv3 416 could classify
objects under poor lighting conditions; however, YOLOv3 tiny could not (Figure 17b).

ANYTV3Z MaN
aNYIDIDNY
NI AGnLs

ANYIVIZ MaN |
aNvDINY
NI AGNLS

(b)

‘aNyDIONY
, NiAanis
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’ s
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Figure 17. The input real-time images (left column) and detection results under different lighting conditions for the
YOLOv3 model (middle column) and YOLOvV3 tiny model (right column). (a) Indoor lighting; (b) Low lighting; (c) High

contrast lighting.
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Table 4. Comparison of the accuracy results and detection time for different datasets using YOLO models.

Model Dataset Precision Recall mAP mAP50 Time (GPU/CPU) (s)
YOLOv3 416 Ours 98.73% 99.31% 99.5% 60.5% 0.01/2.738
YOLOVS3 tiny Ours 97.64% 97.98% 98.9% 57.7% 0.003/1.006
YOLOvV3 416 MS-COCO - - 55.3% 31.0% 0.01/4.587
YOLOvV3 608 MS-COCO - - 57.9% 33.0% 0.012/5.821

YOLOv2 MS-COCO - - 44.0% 21.6% -

Augmented Reality Experiences on iOS Devices

Augmented reality application. We successfully implemented the trained YOLOV3
and YOLOv3 tiny models using our proposed synthetic dataset on an iOS device (Figure 18).
We tested the application’s performance on the iPhone X model, which has 3 GB of RAM
and the Apple-designed A1l Bionic chip. The results showed that the iOS application
could detect the markers under different lighting conditions at an average rate of 60 frames
per second (FPS). The added animations work efficiently at an average rate of above 50
FPS. However, due to the limitations of the hardware, the frame rate drops to 30 FPS after
30 min of running continuously. This is a known issue with current iOS devices where the
neural engine (ANE) inside the CPU is responsible for machine learning tasks. The CPU
will have thermal throttling after an extended time period using the ANE and forces the
system to slow down CPU performance to protect the device’s components. Therefore, it
could lead to low augmented reality experiences and detection accuracy rate.

Figure 18. The prototype iOS application shows that the proposed method can predict the augmented reality markers under
different lighting conditions and successfully render the corresponding virtual models.
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7. Discussion and Conclusions

This paper presents a new method for incorporating machine learning to detect and
track augmented reality applications” marker targets using deep neural networks. The deep
neural network module used YOLOvV3 as the main object detection model and ARKit as
the primary software tool for developing the application prototype. Our method achieved
over an 80% accuracy rate with an average of 60 frames per second for real-time detection
on a mobile device. The results also indicated that the detection process is effective in
poor lighting conditions with an acceptable detection accuracy rate. This means that we
can use a synthetic dataset to produce a similar result for object detection tasks, which
requires less time and labour. Moreover, our approach could be helpful in education, where
textbook figure contents need to remain unchanged, and high detection accuracy is required.
However, due to the limitations of the current hardware, the proposed method is only in the
prototype stage, and there are several technical issues to be improved. The major limitation
of this paper comes from the mobile device hardware. Due to the limitation of current
supported hardware and software, the performance of augmented reality and deep neural
network prediction will drop after a period of time. However, we anticipate that future
hardware and software architectural designs could readily solve this difficulty. In future
research, we would like to focus on hybrid methods for different mobile operating systems
and extend them to 3D objects rather than flat 2D surfaces. For detailed information, see
the Supplementary Materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11136006/s1.
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