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Abstract: The use of multimodal sensors to describe activities of daily living in a noninvasive way is
a promising research field in continuous development. In this work, we propose the use of ambient
audio sensors to recognise events which are generated from the activities of daily living carried out by
the inhabitants of a home. An edge–fog computing approach is proposed to integrate the recognition
of audio events with smart boards where the data are collected. To this end, we compiled a balanced
dataset which was collected and labelled in controlled conditions. A spectral representation of sounds
was computed using convolutional network inputs to recognise ambient sounds with encouraging
results. Next, fuzzy processing of audio event streams was included in the IoT boards by means of
temporal restrictions defined by protoforms to filter the raw audio event recognition, which are key
in removing false positives in real-time event recognition.

Keywords: activity recognition; audio recognition; fuzzy protoforms

1. Introduction

Activity recognition (AR) has become an active research topic [1] focused on detecting
human behaviours in smart environments [2]. Sensing human activity has been adopted
in smart homes [3] with the aim of improving quality of life, allowing people to stay
independent in their own homes for as long as possible [4].

In initial approaches, there was a predominance of binary sensors used to describe
daily human activities within smart environments in a noninvasive manner. Next, a new
generation of devices emerged to integrate a richer perspective in sensing smart objects
and people’s activities. Among them, the following types of sensors stand out: (i) wearable
devices, which have been used to analyse activities and gestures[5]; (ii) location devices,
which at present reach extremely high accuracy in indoor contexts [6]; (iii) vision sensors
(visible-light or thermal-infrared sensors) in video and image sequences [7]; (iv) audio
sensors [8] that recognise events based on audio information. This has been followed by
a new trend of multimodal sensors that has enabled the use of general-purpose sensing
technologies to monitor activities.

AR approaches are mainly grouped into two categories: knowledge-driven
approaches [9] and data-driven approaches [10]. A number of previous AR studies have
focused on classifying activities where the beginning and end of the activities, and therefore,
the key features are known beforehand, which is referred to as explicit segmentation [11] or
offline evaluation, as they do not provide real-time capabilities in AR. However, including
real-time capabilities is a key requirement in AR in order to provide responses to real-world
conditions [12], enabling adequate assistance services. In real-time AR, where the beginning
and end of the events are unknown, approaches based on sliding windows to segment
the data stream are required [11]. In addition, in the context of multimodal sensors, the
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use of deep learning models has shown promising performance in processing multimedia
data [12].

In this work, we focus on the recognition of daily events by means of ambient sound
devices and using deep learning models integrated with smart boards. The contribution of
this work can be summarised as follows:

• Collecting a dataset of audio samples of events related to activities of daily living
which are generated within indoor spaces;

• Integrating a fog–edge architecture with the IoT boards where the audio samples are
collected to provide real-time recognition of audio events;

• Evaluating the performance of deep learning models for offline and real-time recogni-
tion of ambient daily living events in naturalistic conditions;

• A straightforward fuzzy processing of audio event streams is described by means
of temporal restrictions which are modeled on linguistic protoforms to improve the
audio recognition.

The remainder of the paper is organised as follows: In Section 1, we review related
works and methodologies; in Section 2, we describe the devices, architecture, and methodol-
ogy of the approach; in Section 3, we present the results of a case study of event recognition;
in Section 4, we detail our conclusions and ongoing work.

Related Works

The integration of technology into smart environments to support our daily lives
in an immersive and ubiquitous way was introduced by ubiquitous computing as the
age of calm technology, when technology recedes into the background of our lives [13]. From
this visionary perspective at the beginning of the 1990s to our present Internet of Things,
two key characteristics have been exploited over the last 30 years: (i) immersiveness or
low invasiveness of integrated devices (both on our bodies and in our environment) and
(ii) smart connected devices which provide interpretable outcomes from the information
collected by sensors.

As described above, ambient binary sensors have been proposed to describe daily
activities in indoor spaces [14] with the goal of deploying immersive sensors, providing en-
couraging results with accurately labelled datasets [15] under data-driven approaches [10].
Nowadays, the burgeoning growth of devices is promoting multimodal sensors which
typically integrate video, audio, and wearable sensors [16], and other IoT devices with
increasing high-capacity computing. The new trends are converging toward synthetic
sensors [17], which are deployed to sense everything in a given room, enabling the use of
general-purpose sensing technologies in order to monitor activities by means of sensor
fusion. In this context, audio processing by smart microphones for the labelling of audible
events is opening up a promising research field within AR [8].

On the architecture of components for learning and communication of devices, the
paradigms of edge computing [18] or fog computing [19] have located the data and services
within the devices where sensors are integrated, providing virtualised resources and engaged
location-based services at the edge of the mobile networks under a new perspective of the Internet
of Things (IoT) to develop collaborative smart objects which interact with each other and
cooperate with their neighbours to reach common goals [20].

In the machine learning models for AR, describing sensor information under data-
driven approaches has depended on the type of sensors, whether inertial [5] or binary
sensors [15], where integrated methodologies to exploit spatial–temporal features have been
proposed [21]. Additionally, deep learning (DL) has also been shown as a suitable approach
in AR to discover and extract features from sensors [22]. DL is related to multimodal sensor
recognition, such as vision and audio, where obtaining hierarchical features to reduce
complexity is key. Regarding vision sensors, the use of thermal vision is proposed to
guarantee privacy while preventing dangers such as falling by means of convolutional
neural networks (CNNs) [23].
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In the field of audio recognition, the combination of CNNs [24] with the use of
spectrogram for sound representation [25] has been proven to generate encouraging results
in sound recognition, which can be used for environmental sound classification [26–28] and
music signal analysis [29,30]. Specifically, both the use of log-Mel spectrogram (LM) and
Mel-frequency cepstral coefficient (MFCC) has been proposed for robust representation in
sound classification [31].

In the given field of environmental sound recognition in indoor spaces, we highlight
several approaches. In [32], the recognition of events, such as a bouncing ball or cricket, was
carried out by means of spectral representation of sound with frame-level features, which
was learned using Markov models. In [33], two classes of sounds (i.e., tapping and washing
hands) were recognised using spectral and histogram of sounds by SVM in naturalistic
conditions within a geriatric residence. In part of the study by [8], 3D spatial directional
microphones allowed high-quality multidirectional audio to be captured to detect events
and the location of sounds in an environment. For this purpose, Mel-frequency cepstral
coefficients are computed as spatial features which are related to events using Gaussian
and hidden Markov models. In [34], 30 events were collected to recognise the 7 rooms or
spaces where the inhabitant carried out activities (bathroom, bedroom, house entrance,
kitchen, office, outdoor, and workshop). In this work, log-Mel spectrograms were also
evaluated for sound event classification, together with a DL model (VGG-16) pretrained
with YouTube audios, with encouraging results but where accuracy was demonstrated to
differ notably between controlled conditions and real-life contexts.

Moreover, fuzzy logic has been demonstrated to provide suitable sensor representation
from the first AR methods [35] to recent works [21]. In addition, fusing and aggregating het-
erogeneous data from sensors have become key in edge–fog distributed architectures [36].
In concrete terms, the representation of temporal features by means of fuzzy logic has in-
creased performance in several contexts of AR [10,37]. In addition, fuzzy logic has provided
an interpretable representation of outcomes for low-level processing of sensor data [38]
and has improved accuracy in uncertain and inaccurate sensor data [39]. Protoforms and
fuzzy logic were proposed by Zadeh [40] as a useful knowledge model for reasoning [41]
and summarisation [42] of data under uncertainty. The use of protoforms [43] and fuzzy
rules to infer knowledge has provided suitable representations [44].

Based on the works and the approaches reviewed in this section, in this work, we
present a dataset focused on daily living events in indoor environments to enhance AR
using smart IoT boards. The proposed audio recognition model was based on spectral
information of audio samples, together with learning from CNNs, which provides high-
performance recognition with automatic spatial feature extraction. The audio predictions
from DL models were filtered using fuzzy protoforms to provide a coherent recognition
of daily audio events which define temporal restrictions. In addition, a case scenario in
naturalistic conditions was evaluated to analyse the impact of the recognition of daily
events in real time.

2. Materials and Methods

In this section, we describe the proposal of devices, architecture, and methods for
ambient sound recognition of daily events by means of smart boards and CNNs. First,
in Section 2.1, we present the IoT board and audio sensors in an edge–fog architecture
for collecting and labelling environmental sounds. Second, in Section 2.2, a DL model for
ambient sound recognition of daily events is presented using a Mel-frequency spectrogram
and CNNs. Third, in order to filter the raw audio event recognition, fuzzy processing of
audio event streams is included in the IoT boards by means of temporal restrictions defined
by protoforms, which is detailed in Section 2.2.

2.1. Materials: Devices and Architecture

In this section, we describe the materials and devices proposed for sound recognition
of daily living events in smart environments. In the context of the Internet of Things
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and ubiquitous computing, the integration of devices into the spaces where the data are
collected is characterised by immersiveness and low invasiveness. Here, an edge–fog
computing approach was implemented.

First, we proposed the use of audio sensors connected to smart boards to collect and
recognise sound events. The selected smart board was Raspberry Pi [45], which enables
computing capabilities for machine learning, including deep learning models [46]. The
audio sensors integrated were low-cost microphones with a USB connector, providing plug-
and-play connectivity with Raspberry Pi under Raspbian Operating System. In Figure 1,
we show both connected devices deployed in a bathroom.

Figure 1. (Left) Raspberry Pi B+ with USB microphone which sets up the IoT device for collecting
and recognizing ambient sound events; (Right) mobile application for labelling of events together
with NFC tag to facilitate data collection and labelling.

The aim of integrating audio sensors into smart boards for the recognition of daily
events was to (i) collect sound samples for training purposes, (ii) train deep learning models
from labelled sound samples, and (iii) recognise audio events to evaluate the trained models
in a real-time context. The programming language used to code the application embedded
into the Raspberry Pi was Python [47], and the deep learning models were implemented
on Python with Keras, an open source library for neural networks [48]. The remote services
for labelling of data and spreading the recognised output of audio events in real time
were developed under MQTT, which provided a publish/subscribe protocol for wireless
sensor networks [49]. This approach was inspired by the paradigms of fog and edge
computing [50].

Second, for the purpose of collecting and labelling sound samples from smart en-
vironments, the Raspberry Pi collected sound samples of a given duration in the smart
board in real time. In addition, the Raspberry Pi board was subscribed to an MQTT topic,
where the start and end of each event were published to label a given sound event from a
mobile application. Between the start and end of the time interval, the board stored the
sound samples, associating each instance with a label. The mobile application for labelling
sound samples was developed in Android [51], providing a mobile tool to label the events
in a handheld device. In order to facilitate the task of labelling while the daily tasks are
performed, NFC tags were placed on the objects and furniture involved in the events, such
as doors or taps. The NFC tags automatically activated labelling in the mobile application
when touched by the user, sending the start and end of a sound label under MQTT. In
Figure 1, we show the NFC tags and the mobile application for labelling sound events.

Third, the recognition model of sound events was trained with the labelled data,
computing real-time recognition of ambient sounds. For this purpose, the deep learning
model for sound recognition, which is described in Section 2.2, had been previously trained
and stored in the Raspberry Pi. The model received the segments of audio samples from
the audio sensor as input and classified them according to the target labels. The prediction
for each target was published by MQTT in real time to be reachable by other smart devices
or AR models.

Fourth, fuzzy filtering of raw audio event prediction was carried out by means of
temporal restrictions using linguistic protoforms in an interpretable way. This enabled
us to filter predictions which did not match with protoforms defined by fuzzy temporal
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windows and fuzzy quantifiers. The architecture of components of the proposed approach
is described in Figure 2.

Figure 2. Architecture of components for ambient sound recognition of daily living events. The
real-time prediction of sound events was carried out in smart boards under an edge–fog comput-
ing approach.

2.2. Deep Learning Model for Ambient Sound Recognition of Daily Events

In this section, we describe a classifier model for ambient sound recognition of daily
events based on spectral representation and DL models. First, as detailed previously, the
translation from unidimensional digital audio samples to bidimensional spatial representa-
tion based on spectrogram features (a picture of sound) provides encouraging results in
ambient audio classification [25].

In this work, a window size of 3 s was defined to segment and collect the ambient
audio samples, as it provides a suitable time interval for audio recognition [26]. The
collection frequency of the of the ambient audio sensor was set to 44.1 kHz.

Next, we extracted two representations of the spectrum of each sound, which were
evaluated as input by different CNNs:

• Log-mel spectrogram (LM) was calculated for time–frequency representation of audio
signals using a log power spectrum on a nonlinear Mel scale of frequency. When
defining the length of the fast Fourier transform window to 2048, it produces images
sized 128 × 130.

• Log-scaled Mel-Frequency cepstral coefficients (MFCCs) with 13 components from
the raw audio signals, which computes the spectrum of sound using a linear cosine
transform of a log power spectrum on a nonlinear Mel scale of frequency [52]. As
traditional MFCCs use between 8 and 13 cepstral coefficients [53], we proposed
13 features to provide the most representative information of audio samples. Based on
this configuration, the resulting MFCC spectrogram of positive frequencies developed
images sized 13 × 130.

In Figure 3, we provide MFCCs of the audio samples collected from daily living events,
which were used as inputs subsequently to be classified with the corresponding sound
labels using a CNN.

CNNs are described as feature extractors and classifiers with encouraging results in
image recognition [54]. The use of different CNN models with several layers of feature
extraction [26,31] has been proposed for ambient audio recognition purposes according to
the representation of the spectrum of the sounds. Therefore, in this work, two CNN models
were evaluated: (i) a CNN model with five convolutional layers for MFCC processing,
where a unique average pooling is included after convolutions due to reduced input space
13× 130× 1 and (ii) a CNN model with 5 convolutional layers and a max pooling reduction
whose configurations are shown in Table 1.
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Figure 3. Example of raw audio signals at 44.1 kHz, log-Mel spectrogram (LM), and Mel-frequency
cepstral coefficient (MFCC) of the ambient audio events: cutlery, blind, alarm clock, and door bell.

Table 1. Network Architecture from models CNN + MFCC and CNN + LM.

Network Architecture from Model CNN + MFCC

Input 13 × 130 × 1
Conv(3 × 3) 11 × 128 × 16
Conv(3 × 3) 9 × 126 × 16
Conv(3 × 3) 7 × 124 × 32
Conv(3 × 3) 5 × 122 × 64
Conv(3 × 3) 3 × 120 × 128
Conv(3 × 3) 1 × 118 × 256

GlobalAvgPool2D 256
Dense 1024
Dense 15

Network Architecture from Model CNN + LM

Input 128 × 130 × 1
Conv(2 × 2) 127 × 129 × 16

Max-Pool(2 × 2) 63 × 64 × 16
Conv(2 × 2) 62 × 63 × 32

Max-Pool(2 × 2) 31 × 31 × 32
Conv(2 × 2) 30 × 30 × 64

Max-Pool(2 × 2) 15 × 15 × 64
Conv(2 × 2) 14 × 14 × 128
Conv(2 × 2) 13 × 13 × 128

Flatten 21,632
Dense 1024
Dense 1024
Dense 15

The models were implemented with Keras under Python to enable integration with
Raspberry Pi in real time, using an edge-computing approach which publishes the events
detected without exposing sensitive audio sensor data from homes, guaranteeing the
privacy of the inhabitant.

Fuzzy Protoforms to Describe Daily Events from Audio Recognition Streams

In this section, we describe the formal representation of audio streams computed under
a linguistic representation [36]. The aim of fuzzy processing is to include a filtering process
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of audio classification in real-time conditions in order to provide temporal restrictions and
criteria to identify a given event.

The stream of audio recognition from a smart audio sensor sj is composed of a set
of predictions sj = {mj

i}, where each prediction is represented by mj
i = {v

j
i , tj

i}, where vj
i

represents a given audio from a recognised event, and tj
i the time-stamp for the sensor j in

a given time ti.
From the sensor streams, we defined protoforms which integrate an interpretable, rich,

and expressive approach that models the expert knowledge in the stream linguistically.
The protoform is in the shape of the following:

QkVrTj

where are Qk Vr Tj are identifiers of the following linguistic terms:

• Vr defines a crisp term, whose value is directly related to a recognised event r.
• Tj defines a fuzzy temporal window (FTW) j where the audio event Vr is aggregated.

The FTWs are described according to the distance from the current time t∗ to a given
timestamp ti as ∆ti = t∗ − ti using the membership function µTj(∆ti)

, which defines a
degree of relevance between [0, 1] for the time elapsed ∆ti between the point of time ti
current time t∗.

• We defined an aggregation function of Vr over Tj which computes a unique aggrega-
tion degree of the occurrence of the event Vr within a temporal window Tj. Therefore,
the following t-norm and t-conorm are defined to aggregate a linguistic term and
temporal window:

Vr ∩ Tj(s̄l
i) = Vr(sl

i) ∩ Tj(∆ti) ∈ [0, 1]

Vr ∪ Tj(s̄l
i) =

⋃
s̄l

i∈Sl

Vr ∩ Tj(s̄l
i) ∈ [0, 1]

where we use Fuzzy weighted average (FWA) [55] to compute the degree of the
linguistic term in the temporal window. In this way, the t-norm computes the temporal
degree for each point of time of the temporal window, and the co-norm aggregates these
computed degrees in the whole temporal window in a unique representative degree.

• Qk is a fuzzy quantifier k that filters and transforms the aggregation degree of the
audio event Vr within the FTW Tj. The set of quantifiers defined in this domain are
represented by the fuzzy sets shown [56]. The quantifier applies a transformation
µQK : [0, 1]→ [0, 1] to the aggregated degree of µQK (Ak ∪ Tj(Sr)) [57].

In this work, a given protoform was defined for each event or audio class to be
recognised. The protoform defines temporal restrictions using the relevance of the term
(quantifier) in the temporal window (FTW) under conditions of relative normality. For
example, the phrase many vacuum cleaner sounds for half a minute determines a protoform in
which the term many defines the quantifier, and the term half a minute defines the temporal
window. The degree of the protoforms, which is computed between 0 and 1, determines the
degree of truth of the recognition of the audio event. Applying these temporal restrictions
enabled the removal of false positives in AR, which is key in analysing the normality of
behaviours in daily life.

3. Results

In this section, we present the results of the approach. First, a collection of ambient
sounds from daily living events in the home is presented, together with the evaluation
of the proposed methodology in offline and real-time conditions in different case studies.
The data were collected in a home with four rooms (living room, bedroom, kitchen, and
bathroom) for an inhabitant who lives there as their usual residence.

First, we created a dataset of ambient sounds from daily living events in the home.
The selected activities/events to be recognised in the case study are detailed in Table 2. For
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each label, a balanced dataset of 100 sound samples with a duration of 3 s was collected
in naturalistic conditions. For the labelling of events, the mobile application described in
Section 2.1 was integrated to determine the start and end of each event.

Table 2. Sound events and descriptions developed in the context of daily activities.

Class Description
Vaccum cleaner Audio sample of vacuuming

Tank Audio sample of flushing toilet
Cutlery + pans Audio sample of cutlery and pans

Alarm clock Audio sample of alarm clock sound
Shower Audio sample of shower

Extractor Audio sample of an extractor fan
Kitchen tap Audio sample of a kitchen tap

Bathroom tap Audio sample of a bathroom tap
Printer Audio sample of a printer operating

Microwave Audio sample of a microwave operating
Blind Audio sample of a window blind being moved
Door Audio sample of a door being opened or closed

Phone Audio sample of a phone ringing
Doorbell Audio sample of a doorbell ringing

In the first evaluation, a cross-validation method was carried out to analyse the
capabilities of the audio recognition model in offline conditions over the collected and
balanced dataset with an explicit segmentation of the audio samples with a window
size of 3 s. Next, the approach was evaluated in real time over four scenarios in which
audio samples were collected from ambient microphones while the inhabitant carried out
activities of daily living in naturalistic conditions. The case studies have a duration of
2220 s, with a total of 760 samples analysed.

The dataset of audio samples collected in this work and the labels of the scenes
are available in the following repository (Repository: https://github.com/AuroraPR/
Ambiental-Sound-Recognition (last access 15 July 2021), which includes the implementa-
tion of the proposed methods with Python and Keras.

3.1. Offline Case Study Evaluation

In this section, we describe the results provided by the deep learning models based
on CNN and LM and MFCC representation for ambient sound recognition with the data
collected and a public dataset in an offline context using 10-fold cross-validation.

• Ad hoc ambient audio dataset. In this case, the dataset includes audio samples which
have been collected in a single home and were labelled with an explicit segmentation
of 3 s for events occurred in controlled conditions using the approach described in
Section 2.1. All classes described in Table 2 are included in the dataset.

• Audioset dataset (Repository: https://research.google.com/audioset/ (last access
15 July 2021)). This public dataset provides videos from YouTube and labelling in
the segment where a given sound occurs. From the categories of the dataset, we
selected 12 events related to our classes which are included in the dataset: “Toilet
flush”, “Conversation”, “Dishes, pots, and pans”, “Alarm clock”, “Water”, “Water
tap”, “Printer”, “Microwave oven”, “Doorbell”, “Door”, “Telephone ringing” and
“Silence”. The sounds collected from Audioset correspond to a balanced dataset with
60 files for each class which includes an explicit segmentation of the sound events.

For each dataset, we present a comparison of the confusion matrices for each fold in
the cross-validation that was computed. First, in Figure 4 we present the performance of
the DL models in ambient sound recognition of daily events for the ad hoc dataset. Second,
in Figure 5, we present the performance of the DL models in the Audioset dataset. In

https://github.com/AuroraPR/Ambiental-Sound-Recognition
https://github.com/AuroraPR/Ambiental-Sound-Recognition
https://research.google.com/audioset/
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Table 3, we describe the metrics of f1 score, precision, and recall for both DL models, and
the evaluated datasets.

As can be observed, the performance of the ad hoc ambient audio dataset has excellent
results for both CNN models in controlled conditions, CNN + MFCC showing the best
results. However, the performance in sound recognition of daily events with the Audioset
dataset is highly deficient. This is due to the fact that the audio samples from YouTube
videos include noise overlapping with other sounds and audio generation from heteroge-
neous sources. For interested readers, the Audioset samples are available in the repository
of this work.

Figure 4. Confusion matrices in ad hoc ambient audio dataset. (Left) CNN + MFCC; (Right) CNN +
LM.

Figure 5. Confusion matrices in Audioset dataset: (Left) CNN + MFCC; (Right) CNN + LM.

Table 3. Classification metrics from offline case study evaluation.

Accuracy Precision Recall F1-Score
CNN + MFCC model (ad hoc dataset) 0.99 0.99 0.99 0.99
CNN + LM model (ad hoc dataset) 0.96 0.96 0.96 0.96
CNN + MFCC model (Audioset) 0.23 0.25 0.23 0.23
CNN + LM model (Audioset) 0.29 0.36 0.29 0.32

As we can observe, the collection of an ad hoc ambient audio dataset is strongly
recommended given the weak sampling from heterogeneous sources. From the ad hoc
ambient audio dataset, we have collected the number of trainable parameters, learning
time, millions of instructions (up to 40 epochs) and evaluation time in a Raspberry Pi 3B
whose core frequency is 400 MHz, presented in Table 4.

Based on these results, in the next section, we describe the evaluation in real-time
conditions using the best configuration with the ad hoc ambient audio dataset and the
model based on CNN + MFCC which also requires fewer computational resources for
audio recognition learning and evaluation.
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Table 4. Trainable parameters, learning time, millions of instructions (MI), and evaluation time.

Trainable
Parameters

Learning
Time

Millions of Instructions
(MI)

Evaluation
Time

Model CNN
+ MFCC

1.7 M 96 min 230.4× 103 MI 2.53 s

Model CNN
+ LM

23.3 M 207 min 496.8× 103 MI 2.81 s

3.2. Real-Time Case Study Evaluation

Next, we present the results for the evaluation of four scenes at a home in naturalistic
conditions using the CNN + MFCC model which performed learning under the ad hoc
ambient audio dataset. The six scenes comprised the following sequences of activities:

• (Scene 1) The inhabitant arrived home, went to the kitchen and started talking, then
started using cutlery, then turned on the extractor fan for a long while, then turned on
the tap, turned on the microwave, and was called on the phone.

• (Scene 2) The inhabitant arrived home, went to the living room and started talking,
then started vacuuming, then opened and closed the window blinds and then was
called on the phone.

• (Scene 3) The inhabitant arrived home, went to the bedroom and started talking, then
started vacuuming, then the alarm clock went off for a long while, then printed some
documents, and finally, the individual opened and closed the window blinds.

• (Scene 4) The inhabitant went to the fourth bathroom and started talking, then turned
on the tap, then took a shower for a long while, then vacuumed and, finally, flushed
the toilet.

• (Scene 5) The inhabitant was talking in the kitchen, then started vacuuming, then
talked again and started using cutlery, then opened and closed the window blinds,
then turned on the tap and, finally, used the microwave.

• (Scene 6) The inhabitant was in the bathroom vacuuming and started talking, then he
took a shower for a long while, then was called on the phone and afterward turned
on the tap; finally, the individual left the room closing the door.

In this context, a new label is necessary to recognise idle as an event class, which
corresponds to the absence of target events, including silence and other ambient sounds
produced by the inhabitant. The addition of the idle label is key for AR learning in real-time
conditions [11,15]. For evaluation purposes, idle activity has been included using a scene
cross-validation, where each scene is learned with idle audio samples from other scenes,
together with the offline dataset of target events.

In Table 5, we detail the performance of the CNN + MFCC ambient sound recognition
model, comparing the ground truth against the inferred classification by means of F1-score,
accuracy, precision, and recall for each scene.

Table 5. Classification metrics from real-time case study evaluation for each scene.

Accuracy Precision Recall F1-Score
Scene 1 0.95 0.97 0.95 0.96
Scene 2 0.99 0.99 0.98 0.98
Scene 3 0.97 0.98 0.97 0.98
Scene 4 0.96 0.97 0.96 0.96
Scene 5 0.91 0.93 0.91 0.92
Scene 6 0.92 0.92 0.90 0.91

3.3. Fuzzy Protoforms and Fuzzy Rules

In this section, we describe the linguistic protoforms which define temporal restrictions
from the raw audio prediction in order to provide a coherent recognition of daily audio
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events. The FTWs and fuzzy quantifiers were defined with membership functions defined
by TS and TL functions (listed in Abbreviations). In Tables 6 and 7, we describe the
membership functions for quantifiers and FTWs, together with the protoforms for each
audio event, which define the temporal restrictions for normality.

Table 6. Membership functions for FTWs and quantifiers defined for the protoform Vr Tj Qk.

Description in Natural Language Type µT

some Qk TR(sl
i) [0.25, 1]

most Qk TR(sl
i) [0.5, 1]

for a short time Tj TS(∆ti) [−6 s, −3 s, 3 s, 6 s]
for a while Tj TS(∆ti) [−12 s, −6 s, 6 s, 12 s]

Table 7. Quantifiers and FTWs which define the protoforms corresponding to temporal restrictions
for audio recognition.

Event Quantifier FTW

Vaccum cleaner most for a short time
Tank most for a short time
Conversation some for a while
Cutlery + pans most for a short time
Alarm clock most for a short time
Shower some for a while
Extractor some for a while
Kitchen tap most for a short time
Bathroom tap most for a short time
Printer most for a short time
Microwave some for a while
Blind most for a short time
Door most for a short time
Phone most for a short time
Doorbell most for a short time
Idle some for a while

The impact of filtering the raw audio events from the recognition model was evaluated
for the real-time scenarios (offline evaluation was not possible due to not providing a
stream of daily events). Beyond the encouraging results described in the previous section,
in these scenes, we identified the recognition of scarce audio events which are not related
to the correct occurrence of events. In Figure 6, we demonstrate the ground truth and
raw audio events predicted in a timeline for the four scenes, including the detection of
false-positive events. In Table 8, we describe the false positives and negatives computed
from the time interval detection of home events using (i) raw processing and (ii) fuzzy
temporal restrictions. Computing the false positives and negatives of time intervals has
been described as a relevant metric for detecting events in activity recognition regardless
of their duration [10]. The evaluation of these audio events in temporal windows using
protoforms, which determine a minimal restriction for recognition, has enabled filtering
the most spurious occurrences, as well as defining a degree of adherence between 0
and 1 to the protoform. The use of fuzzy temporal restrictions provides an encouraging
method, reducing false positives from the raw audio recognition from 24 occurrences to
2 occurrences while including only 2 false negatives.
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Figure 6. Timeline of the six scenes of the case study: (Up) ground truth of the scene; (Middle) raw audio recognition from
spectral and CNN models; (Bottom) fuzzy filtering of audio recognition with protoforms. In red circles are the isolated false
positives or false negatives which describe incoherent event recognition.
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Table 8. False positives (FP) and negatives (FN) computed from the time interval detection of home
events using raw processing and fuzzy temporal restrictions.

Raw Fuzzy

FP FN FP FN

Printer 6 0 0 0
vacuum cleaner 2 0 0 1
blind 3 0 0 0
door bell 1 0 0 0
Kitchen tap 6 0 0 0
microwave 1 0 0 0
shower 2 0 1 0
tap wc 3 0 1 0
door 0 0 0 1
Total 24 0 2 2 ]

3.4. Limitations of the Work

The activity recognition methods and devices proposed in this work present encourag-
ing performance in offline and real-time recognition of ambient audio events. A balanced
dataset with 100 samples per label is sufficient to work in controlled and naturalistic
conditions; however, translating the results to deployments “in the wild” [34] would
require a larger dataset and additional data preprocessing methods, such as clustering
and augmentation. Evaluation with Audioset provided highly deficient results due to
noise, overlapping with other sounds, and audio generation from heterogeneous sources.
Evaluating audio events in different domains will require extensive datasets and complex
processing for domain adaptation methods [58].

4. Conclusions and Ongoing Work

In this work, we evaluated the capabilities of audio recognition models based on
spectral information and deep learning to identify ambient events related to the daily
activities of inhabitants in a home. To this end, an edge–fog computing approach with
smart boards was presented, which enabled the evaluation and recognition of audio
samples within the devices while preserving the privacy of the users. Fuzzy processing of
audio event streams was included in the IoT boards to filter the raw prediction of audio
events by means of temporal restrictions defined by protoforms. The fuzzy processing of
audio recognition proved crucial in real-time scenarios to avoid false positives and provide
a coherent recognition of daily events detected from protoforms which are directly defined
in linguistic terms.

In ongoing research, we aim to integrate a fusion of heterogeneous sensors, such as
wearable and binary sensors, to increase the sensing capabilities of audio recognition with
other daily activity events. In addition, fuzzy rules could enhance the knowledge-based
definition of activities with steady processing from raw data, integrating the data collected
from different sensors.
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FWA Vr ∪ Tk(sj) = 1

∑ Tk(∆tj
i )

∑
mj

i∈sj

Vr(v
j
i)× Tk(∆tj

i) ∈ [0, 1]

TS TS(x)[l1, l2, l3, l4] =



0 x ≤ 0

(x− l1)/(l2 − l1) l1 ≤ x ≤ l2
1 l2 ≤ x ≤ l3
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0 l4 ≤ x
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