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Abstract: MonoMR is a system that synthesizes pseudo-2.5D content from monocular videos for
mixed reality (MR) head-mounted displays (HMDs). Unlike conventional systems that require
multiple cameras, the MonoMR system can be used by casual end-users to generate MR content
from a single camera only. In order to synthesize the content, the system detects people in the
video sequence via a deep neural network, and then the detected person’s pseudo-3D position is
estimated by our proposed novel algorithm through a homography matrix. Finally, the person’s
texture is extracted using a background subtraction algorithm and is placed on an estimated 3D
position. The synthesized content can be played in MR HMD, and users can freely change their
viewpoint and the content’s position. In order to evaluate the efficiency and interactive potential of
MonoMR, we conducted performance evaluations and a user study with 12 participants. Moreover,
we demonstrated the feasibility and usability of the MonoMR system to generate pseudo-2.5D content
using three example application scenarios.

Keywords: augmented reality; computer vision; human-computer interaction

1. Introduction

Mixed reality (MR) head-mounted devices (HMDs) are display devices that can
overlay virtual content in the real world, and a user can watch it on a free viewpoint.
Specifically, compared with 2D media, such as photos and videos, 3D content synthesized
from real-world objects has higher immersiveness. Hence, many methods for synthesizing
MR content from real-world objects have been proposed [1,2], and several systems are
already commercialized [3,4]. A common method in creating MR content is to place multiple
monocular RGB or depth cameras around an object, synchronously capture the images,
and then reconstruct 3D shapes of the object from the captured images. The content
synthesized using this method is accurate and impressive and is utilized in various industry
fields, such as sports broadcasting and entertainment. However, since most previous
systems based on this method require multiple cameras and synchronization devices,
configuring the system is complex, and the operating environment is restricted [2,5,6]. Thus,
these factors make it difficult for end-users to use these systems. In addition, estimating the
intrinsic and extrinsic parameters of the cameras from prerecorded videos is a challenging
task. Some methods try to estimate the parameters using landmarks in images [7]. However,
this limits the types of video that the method can process.

Nowadays, we can record monocular videos through smartphones and digital cam-
eras, and a large number of various monocular videos, such as sports, entertainment,
and daily life, have been uploaded to the Internet. If there is an easy way for end-users
to create MR content from these videos, various MR content can be provided without
any special equipment. Moreover, the created content can be shared freely, similar to the
present video-sharing websites on the Internet. To explore the usability and feasibility of
MR content made from monocular content, we propose MonoMR, a system for synthesiz-
ing MR content from monocular videos. MonoMR is an end-to-end system (Figure 1) that
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uses simple yet effective methods, different from the previous complex systems. In order
to create MR content, first, the system detects people from a monocular video through a
deep neural network (DNN), then calculates the homography matrix between real-world
and image distances using an interactive user interface, and estimates pseudo-3D positions
of the detected people. Next, person textures are extracted and placed at the estimated
positions. Finally, the MR content is synthesized on these elements. The content synthe-
sized by the proposed system is played on Microsoft HoloLens; the user can freely place
the content in the actual world and view it from a free viewpoint. The paper’s outline is
summarized as follows:

e We propose MonoMR, a system to synthesize MR content from single or multiple
monocular videos.

*  We evaluate the quantitative performance of our system.

*  We assess the impact of the synthesized content through a user study.

*  We develop suitable sample applications using the proposed system.
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Figure 1. MonoMR enables users to easily synthesize pseudo-2.5D mixed reality content from monocular videos uploaded

on the Internet or taken with common imaging equipment such as smartphones and cameras. With the MonoMR system,

the user can create and experience immersive mixed reality content from various monocular videos, such as (a) sports

broadcasting videos and (b) entertainment videos. (c) The synthesized content can be displayed in the real world through a

mixed reality head-mounted display.

2. Related Work

Our proposed system is related to monocular video-based content synthesis, free-
viewpoint video systems, and human analysis. In this section, we briefly discuss these
related works.

2.1. Monocular Video Based Content Synthesis

Algorithms for enhancing 3D information from monocular images and methods that
utilize monocular images as Augmented Reality (AR) or MR content have been explored.
The algorithm proposed by Ballan et al. [8] creates an optimal viewpoint path among two
monocular videos and an interpolated video between the videos based on the optimal
path; therefore, users can recognize the spatial information with a change in the viewpoint
of the video. Algorithms [9,10] have also been proposed to recover 3D information from
monocular videos, construct meshes, reconstruct videos based on recovered information,
and freely convert viewpoints.

Langlotz et al. proposed a smartphone-based AR system [11]. In this system, the user
manually specifies the moving person of the video, and the system synthesizes the AR
content by extracting the designated person portion from the video and synthesizing it on
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other videos. The learning support system proposed by Mohr et al. [12] extracts features
from a monocular video, and the features are transformed based on the previously defined
three-dimensional (3D) model and projected to the real world with the AR content.

2.2. Free-Viewpoint Video System

Since the method of capturing a real-world object using multiple cameras and con-
verting the object into a 3D object produces a high-quality result, systems utilizing this
method are mainstream in free-viewpoint video systems. Initially, Kanade et al. pro-
posed a virtualized reality system [13], in which 51 monocular cameras are arranged
in a dome-shaped structure. In this system, a target object can be converted into free-
viewpoint content, and since the system has scalability, this system was used for early
free-viewpoint sports broadcasting [14]. This multi-view method is applied to various
free-viewpoint systems [5,15-18], and since these systems consist of RGB cameras, they
are less restrictive to the environment. In addition, free-viewpoint sports broadcasting
systems, such as Intel True View [4] and Canon’s free-viewpoint video system [3], based
on this method are actively commercialized by various companies. However, the systems
based on this method require many cameras, synchronization devices, and a large amount
of computation. Consequently, utilizing these systems by individuals or small groups is
still challenging.

Studies on generating highly detailed free-viewpoint video using depth cameras
have been conducted. The introduction of commercial depth cameras, such as RealSense
(https://software.intel.com/en-us/realsense, accessed on 24 August 2021) and Kinect
(https:/ /developer.microsoft.com/en-us/windows/kinect, accessed on 24 August 2021),
facilitates these studies. Accordingly, the systems [6,19-21] that generate high-quality
free-viewpoint video through depth cameras have been proposed. Collet et al. proposed a
system [1] that generates free-view video with 106 RGB and depth cameras and compresses
the video for real-time free-viewpoint video streaming. Based on this research, Orts-
Escolano et al. presented the Holoportation [2] system that enables real-time telepresence
on MR HMDs. However, operating this method outdoors is difficult because most depth
cameras are not suited for natural light; thus, the capturing environment is restricted to
indoor environments. Furthermore, since the systems still require many cameras and
synchronization devices, the end user’s accessibility is still limited.

Various methods for generating a free-viewpoint video from a monocular video have
been proposed. However, it’s still challenging because estimating the depth from a single
camera is not easy, and the visual information captured by the monocular camera is
limited. One of the early proposed systems, Tour into the picture (a system proposed by
Horry et al. [22]), transforms artwork into a 3D scene using a perspective transformation
based on user interaction. Recently, DNNs [23,24] have been proposed to estimate a
monocular image’s depth information, which is an essential basis in generating stereoscopic
content from monocular videos. As one of the state-of-the-art technologies, Rematis et al.
proposed a free-viewpoint soccer video system [25] by restoring the player’s position and
3D mesh from a single soccer broadcasting video using multiple DNNs.

Research on how to view the generated free-viewpoint videos has been conducted.
Before the development of the HMD, the user controls the viewpoint of the generated
free-viewpoint videos through the primary input interface, such as a keyboard, mouse,
and joystick. In order to improve the usability of these non-intuitive methods, interactive
systems that control the viewpoint using markers [26] and multi-touch gestures [27] have
been proposed. With the advancement of HMD technology, Inamoto proposed an early-
type interactive MR system [28] that displays a free-viewpoint video in the real-world using
a video see-through HMD, and the system proposed by Rematas et al. [25] can intuitively
change the viewpoint in a free-viewpoint video using a MR HMD.
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2.3. Human Analysis

Because deep learning technology has been rapidly developed recently, human analy-
sis problems, which are difficult to solve using conventional image processing algorithms,
have been addressed. Person detection [29,30] and pose estimation [31,32] provide an
important basis in recording free-viewpoint videos from monocular videos. Semantic
segmentation that utilizes deep learning, such as mask R-CNN [33], estimates not only the
person’s pose but also the segmentation mask at the pixel level. However, it requires a very
time-consuming calculation.

Another method is to detect the pose of a person in the image, which is applied to the
previously generated 3D human body model. The initial human body model [34] requires
a separate network in recognizing the person’s pose in the image, and an improved
method [35] can fit the 3D body model to the person in the image. Pavlakos et al. [7]
proposed a system that can determine the silhouette information of the human body in the
image and generates a mesh model based on this acquired information.

In this work, we propose the MonoMR, a simple yet effective system to generate MR
content. Compared to existing complex systems, the proposed system can generate MR
content from various videos with minimal user interaction; hence end-users without expert
knowledge can easily use it. Furthermore, since our approach has a high generalization
capability, various types of video (e.g., sports, daily life, surveillance, and more) can be
converted to immersive MR content.

3. MonoMR System

As shown in Figure 2, the MonoMR system consists of a personal computer-based
scene synthesizer to synthesize content and a HoloLens-based client player to play the
content. This section describes how the scene synthesizer generates MR content from
monocular videos, and the client player displays the generated scene.

MonoMR
Scene synthesizer Content player MR HMD
Monoeslanyl I fi b Content loader =
video file T mage irame gra
: ! o
| Person detection Mixed Reality Toolkit |
Monocular | _ | |
3 I
Person tracking H
i
3D position estimation i
|
!
i o
_ _Image stream__ Background subtraction ! ‘ Unity 3D ‘
i
Content stream l i
,,,,,,,,,,,, !
Interaction stream ‘ Texture extraction : ‘ C# ‘

Figure 2. Configuration diagram of the MonoMR system.

3.1. Person Detection and Tracking

As the first step of the scene synthesizer, people in video frames are detected. This
procedure was a very challenging problem in computer vision until a few years ago.
However, recent dramatic advances in DNNs allow accurate person detection and their
body keypoints in a monocular image. We use OpenPose [32], one of the state-of-the-art
person detectors to detect persons and body keypoints from video frames.

Our system provides normal mode (656 x 368) and precision mode (1312 x 736)
according to the input resolution of the network. In the normal mode, the network detects
normal-sized human bodies. However, small people in the video cannot be detected
because of the low input resolution. In precision mode, the network accurately detects
small-sized human bodies with slow inference speed. Then, the bounding boxes are defined
based on the detected keypoints.
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Even if the system uses a state-of-the-art person detector, the results may contain false
positives and false negatives depending on the quality of the video. In order to detect
persons robustly, each detected person should be continuously tracked in subsequent
frames. In tracking an object, the system should solve the X € R?>*k assignment problem.
Therefore, the following equation is minimized using the Kuhn-Munkres algorithm [36].

M N
E=) 3 IX" = X{y]l-Conn @
m n

1 Person m assigned to person n
Cmn = .
0 Otherwise.

Here, X is a set of k-joints and M and N are the number of detected people in time
t and t — 1. After the assignment procedure, the moving average filter is applied to the
coordinates of each object’s bounding box to remove the jitter of each tracking object’s
trajectory. Moreover, the filter can estimate the undetected person’s position based on
previously observed values.

3.2. Pseudo-3D Position Estimation

In order to capture the depth information of humans in the real world, multi-view
stereo vision, depth cameras, and DNNs have been used in existing systems. However,
these systems require a complicated configuration or special equipment and are difficult to
use. In this study, we propose a simple depth estimation method using the homography
matrix [37], calculated based on the detected person’s ankle position and minimal user
interaction, as illustrated in Figure 3. The system receives the four vertices and approximate
distance of the real world between the vertices in the first frame of a video from users. Then,
a homography matrix H for mapping the image coordinate system 7, j into the real-world
x, z coordinate system is calculated. Then, the pseudo-3D position on the real world X;(x, z)
is calculated using the following equation.

Xi(x,z) = H- A(X}) (2

where A is the average position of ankles i, j in the X; set. The moving average filter is
applied to the calculated pseudo-3D position to remove the noise.

3.3. Extracting Person Texture Using Background Subtraction

A segmentation procedure is performed to extract the texture of the detected person
in the video. Graph cuts [38] and mask R-CNN [33] are the standard algorithms for the
segmentation, however these algorithms have high computational complexity. We propose
a simple method to extract the person’s texture using a background subtraction algorithm
for efficient texture extraction.

Given that most videos constantly change foreground and background, the fore-
ground objects extracted with the vanilla background subtraction algorithm based on
image difference do not have sufficient quality. We use a k-nearest neighbor (KNN)-based
background subtraction method [39], one of the Gaussian mixture model (GMM)-based
methods. GMM-based algorithms are robust to repeated, slow motion, and constantly
changing lighting conditions. Thus, these algorithms can be used in most videos that have
constantly changing foregrounds and backgrounds. Notably, the KNN-based background
subtraction algorithm automatically updates the parameters in real-time and selects only
the components required by each pixel. Therefore, the processing time of the KNN-based
algorithm is reduced compared with the existing GMM algorithms, even with better quality.
In addition, the background image without foreground objects can be acquired with this
algorithm, and this image can be utilized in the generated content.
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Figure 3. Proposed method for estimating the pseudo-3D position of a person in the image. The ankle
position detected in the image coordinate system (i, j) is mapped using a homography matrix to
estimate the real-world coordinate system (x, z).

The foreground image extracted by the KNN method may contain noises and holes.
In order to remove them, morphological operations are applied to the foreground image.
After noise removal, only the moving objects’ textures are extracted by masking with the
bounding boxes. Figure 4 shows the results of the background subtraction procedure.

Figure 4. Results of the texture extraction procedure. (a) Input image, (b) foreground mask, (c) fore-
ground segments, and (d) background image.
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3.4. Texture Size Correction Using Weak-Perspective Projection and Content Synthesis

If the extracted texture is directly applied to the scene, then the size of the same person
is different according to the position of the perspective. To minimize this perspective
distortion, we use a weak-perspective projection-based correction method. First, the pixel
per meter in the real world at the corresponding position of the person is calculated from
the homography matrix H and the position of the image coordinate system X;(i, j). Then,
the texture size is recalculated, and the distortion is corrected as shown in Figure 5.

Short distance Medium Distance Long distance

w/o correction w/ correction w/o correction w/ correction w/o correction w/ correction

Figure 5. Result of the texture size correction.

Finally, the corrected textures are placed in the 3D world based on the pseudo-3D
position of each texture, the extracted background image or a custom image is set to the
ground texture, and then the MR content is synthesized.

3.5. Billboard Rendering

The MR content is synthesized by extracting the textures from image frames of a
monocular video. Therefore, the camera’s viewpoint is fixed, and we cannot obtain the
information not captured in the original video (e.g., an information loss on the part not
facing the camera), and the user notices the unnaturalness when the viewpoints of the
camera and user are different (See Figure 6a).

Dt WD ~

Figure 6. Result of billboard rendering. (a) Billboard rendering disabled and (b) billboard render-
ing enabled.

In order to address this problem, the system has a function that applies billboard
rendering [40] to every texture, as shown in Figure 6b. Billboard rendering is a simple
technique in which the textures are rotated toward the user’s viewpoint, thereby reducing
the unnaturalness of placing 2D textures in a 3D space. With this function, even if the user
changes their viewpoint from the original camera’s viewpoint, they notice less unnaturalness.

3.6. Playing Synthesized Content on MR HMDs

The generated content is played using a client player application. The client player is based
on Unity and Mixed Reality Toolkit (https://github.com /Microsoft/MixedReality Toolkit-Unity,
accessed on 24 August 2021) and runs on the HoloLens MR HMD. The content is displayed
in the real world, and users can control the playback, pause, and billboard rendering
functions and activation/deactivation through buttons.
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Given that the content consists of a minimal number of polygons, rendering and
producing multiple textures and polygons in 30 fps even using a standalone MR HMD,
which has limited processing power, is possible. The user can enjoy the MR content while
changing their position and viewpoints freely, and the content can be placed or resized in
the real world through user gestures, as shown in Figure 7.

===
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Figure 7. Display of the generated content in the real world.

4. Performance Evaluation

In this section, we performed performance assessments on the depth estimation
accuracy, quality of textures, and processing speed, factors that directly affect generated
content’s quality.

4.1. Accuracy of Depth Estimation

First, we evaluated the depth accuracy of the proposed method. We perform perfor-
mance evaluations based on two capturing scenarios (small space and large space).

In the case of a small space, the subject freely walked in a square, with a space of
approximately 1.7 m in width and approximately 3 m in height, and a Kinect was used
to obtain the ground truth data. Five subjects (two female) were the participants in the
preparation of the ground truth set. We obtained 600 frames of full HD images and depth
information for each subject. The mean absolute error between ground truth and estimated
results is 24.57 cm, and the results for each subject are shown in Figure 8.

(em) Mean Absolute z-Axis Error (Short Range)

40

35 + 34.71

30

2 +24415 +26'05 *24.57

20 + 19.93
18.02

N S2 S3 S4 S5 avg.

Figure 8. Mean absolute error of depth estimation for each subject in a short-range space.

In the case of a large space, it’s not easy to acquire the accurate ground truth from
a real-world scene. Therefore, we rendered some synthetic ground truth composed of
3000 frames of images and the depth information using computer graphics. The mean
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absolute error between ground truth and estimated results is 76.04 cm, and the results for
each distance section are shown in Figure 9.

(em) Mean Absolute z-Axis Error (Long Range)
140

120 + 1192 + 122,69
100
+ 87.29
80 76.04

60

40 3831
33.38

20

55.39

0

0~5m 5~10m 10~15m 15~20m 20~25m 25~30m avg.

Figure 9. Mean absolute error of depth estimation for each distance section in a long-range space.

At a distance of less than 20 m, depth errors were less than 1 m. As shown in Figure 9,
the error increased as the model moved away from the camera because as the distance of
the ground truth image increases, the number of pixels that represent the same distance
decreases. Thus, the error increases as the quantization error increases.

4.2. Accuracy of Texture Extraction

We evaluated the accuracy of the person texture extraction method applied to MonoMR.
We created ground truth data for 500 images through the mask R-CNN [33], one of the
state-of-the-art algorithms of segmentation, and measured the mask intersection over union
(IoU). Consequently, the obtained average mask IoU is 0.72 (sd = 0.05). Figure 10 is the visu-
alization result of extracting texture through the mask R-CNN and the proposed method.

Figure 10. Visualization results of texture extraction methods. (a) Mask R-CNN (blue region), (b) ours
(red region), and (c) overlapped two methods (purple region is the intersection area).

The mask image obtained through our method generally does not have significant
artifacts. However, compared with the mask obtained through the mask R-CNN, the results
of our method may contain noise such as shadow and missing body parts. Nevertheless,
given that the proposed method has more advantages than the mask R-CNN regarding
processing speed, we applied the background extraction-based texture extraction method
in this study to enhance the possibility of real-time processing.
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4.3. Processing Speed

We measured the processing time of MonoMR to synthesize the content. All experi-
ments were conducted on a desktop with a Core i7 processor (4-core, 8-thread), 16 GB RAM,
and GTX 1080 with 6 GB memory. We used the video sequence (full HD resolution) of
ISSIA-CNR [41] (soccer video dataset) as the synthesizing target and measured the average
processing time to generate the content from 500 frames of the video. The results are shown
in Table 1.

The system consumed approximately 179 ms per frame to generate the content in
normal mode; hence, we can confirm that the proposed system generates images at a
processing speed of approximately 5 fps (the precise mode for detecting small people has
a performance of two frames per second). In addition, the processing speed of the mask
R-CNN and proposed texture extraction method was measured, and the results are listed
in Table 2. The proposed method extracts textures at a very high speed compared with
mask R-CNN, and it can increase the possibility of real-time processing. Based on these
results, we confirmed that MonoMR could generate MR content at a relatively fast speed
because all the procedures are not mainly composed of DNNs but use a combination of
common image processing algorithms.

Table 1. Processing time for each procedure.

Procedure Time (ms)
' Person dete.ct'lon 137.83,/406.94
with normal/precision modes
Person tracking 0.07
PseudoTSD position 0.03
estimation
Texture extraction 4143
with background subtraction ’
_ Total processing time 179.36/448.47
with normal / precision modes
Table 2. Processing time of two texture extraction methods.
Procedure Time (ms)
Texture extraction 41.43
with background subtraction (Ours)
Texture extraction 2545

with mask R-CNN

5. Small-Scale User Study

In order to measure the effectiveness of the synthesized content, we conducted a user
study with a two-by-three design with the two independent factors content types and
display types. Twelve participants (three females; mean age = 26, SD = 9.23) volunteered in
our experiment, and they had no experience using MR and Virtual Reality (VR) devices.

5.1. Experiment Design
We attempted to confirm the effectiveness of the content by qualitatively evaluating
the following items:

*  Depth perception: How much of a stereoscopic degree the user feels in the content.
e  Immersiveness: How immersed is the user in the content.
e Attractiveness: How interested is the user in the content.

We used two types of content, sports broadcasting (soccer) and entertainment (danc-
ing), for the experiment. The comparison conditions are as follows:
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e  C1: Monocular videos displayed on a flat-panel display.
*  (C2: Monocular videos displayed on a MR HMD.
¢  (C3: Synthesized content displayed on a MR HMD.

Each subject experienced each comparison condition in a random order, and the evalu-
ation was performed using a 5-point Likert-based questionnaire sheet (where 1 = Strongly
Disagree to 5 = Strongly Agree). The detailed questions are listed in Figure 11.

Category Question

Depth Q1. It was easy to recognize a visual-depth of the sports content.

perception | Q2. It was easy to recognize a visual-depth of the entertainment content.

Q3. It was easy to immerse in the sports content.

Immersiveness ’ B -
Q4. It was easy to immerse in the entertainment content.

Attractiveness | Q5. It was attractive to watch the content with this system.

Figure 11. Questions used in the user study.

5.2. Results
5.2.1. Depth Perception

First, we performed the Friedman test [42] for multiple comparisons to assess the
differences between the group means in the experimental results. As presented in Table 3,
the test result shows a significant difference in the subject’s assessment depending on the
method. We conducted the Wilcoxon signed-rank test [43] as post hoc analysis to identify
which factors have a significant difference, and the result is illustrated in Figure 12. In order
to verify whether the randomization controls order effects, the two-way ANOVA test [44]
was used to check whether there were significant differences in assessment results between
the ordering groups. The ANOVA test shows p-value = 0.163 for sports broadcasting and
p-value = 0.589 for entertainment content, which means that the randomization works well
because no significant differences were detected across the ordering conditions.

Depth perception
[ Monocular video + 2D display ' Monocular video + MR HMD 0O Synthesized Content + MR HMD

sk sk ok

| T T | £33
1 1
’ T
4.5
X
4
8
235
2
=
< 3
a
2.5
2 I
1.5 |
1 L |
0.5
p = 0.001 =***
0
Sports broadcasting content Entertainment content

Figure 12. Evaluation of the depth perception for each condition.

Table 3. Friedman test table of subjective score with the depth perception.

Source Sum Sq. d.f. Mean Sq. Chi Sq.
Method (*) 315.65 2 157.82 46.87
Content 3.56 1 3.56 2.95

*p < 0.05.
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Based on the post hoc test result, the user can recognize the spatial information through
the proposed method C3 more easily than C1 and C2 (p < 0.001). Hence, we assumed that
the content generated by the proposed system allows the subjects to perceive the depth
information of the content based on positive feedback. This result showed that the user
could feel an improved stereoscopic effect on the content created by the proposed system
compared with other experimental conditions.

5.2.2. Immersiveness

The results of the Friedman test and Wilcoxon post hoc analyses are shown in Table 4
and Figure 13, respectively. We can observe a significant difference in the results of the
method. The ANOVA test shows p-value = 0.605 and 0.389 for sports broadcasting and
entertainment content, respectively, which means that the randomization is valid.

Immersiveness
1 Monocular video + 2D display ) Monocular video + MR HMD O Synthesized Content + MR HMD

Hokok Hokk

 _ %%% 1 KK
’ L
4.5 % |
sk Hok
x

o
[ IS

w

Likert scores

2.5

05 P < 0.00] = +**
p < 0.01=**

Sports broadcasting content Entertainment content
Figure 13. Evaluation of the immersiveness for each condition.

Table 4. Friedman test table of the subjective score with the immersiveness.

Source Sum Sq. d.f. Mean Sq. Chi Sq.
Method (*) 166.54 2 83.27 2417
Content 0.13 1 0.13 0.1
% p < 0.05.

Specifically, a meaningful difference also exists between C3 and other conditions and
between C2 and C1. The users responded that C2 was more immersive than C1(p < 0.01)
because the size of the virtual screen of C2 was more significant than the physical screen
of C1. The subjects evaluated the proposed method (C3) as the most immersive method
(p < 0.001). We assumed that the content generated by MonoMR could be watched at
a free-viewpoint, and this feature affects the immersiveness of users. Based on these
results, we confirmed that the proposed system could increase the immersiveness of
monocular content.

5.2.3. Attractiveness

Attractiveness was comprehensively evaluated regardless of the content type. The
Friedman test and Wilcoxon post hoc analysis results are shown in Table 5 and Figure 14,
respectively. The ANOVA test shows p-value = 0.319, and the ordering groups do not affect
assessment results.
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Figure 14. Evaluation of the attractiveness for each condition.

Table 5. Friedman test table of the subjective score with the attractiveness.

Source Sum Sq. d.f. Mean Sq. Chi Sq.
Method (*) 166.54 2 83.27 2417
% p < 0.05.

Subjects responded that C2 was more interesting than C1 (p < 0.01). Based on the
users’ verbal feedback, we confirmed that the reason is that the video player’s size in MR
HMD can be freely adjusted according to the context of the content.

The subjects reported that C3 provided the most exciting experience among the
methods (p < 0.001). Apart from the questionnaire, we asked the subjects which factor
most increased the attractiveness of the synthesized content. Seven subjects answered the
improved depth perception, and five subjects answered the advantage of free viewpoint.

6. Applications

In order to demonstrate the applications of MonoMR, we synthesized prototype
content from various monocular videos. Because the proposed system can generate content
from monocular videos with small environmental constraints, it can be applied to various
fields, as shown in Figure 15.

6.1. Immersive Sports Broadcasting

Sports broadcasting is one of the areas where free-viewpoint video systems are most
actively applied. Users who watch sports broadcasts want to watch the game from a differ-
ent viewpoint; hence, systems such as Eye Vision (http://diva.library.cmu.edu/Kanade/
kanadeeye.html, accessed on 24 August 2021) have been applied to sports broadcasting to
meet these demands. However, most of the existing methods are difficult to set up because
these methods require many cameras to be placed around the target and are complicated
to use for users who are not experts.

Because the MonoMR system can easily synthesize the MR content from a single
monocular camera, the user can create sports content from 2D videos, view the content
with a free-viewpoint, and recognize the 3D positions of players intuitively (Figure 15a).
In addition, given that the system can generate a single scene from multiple monocular
videos, capturing a large stadium, which is difficult to capture using a single camera, is
possible by dividing the capture area into multiple cameras and merging the videos into a
single content.
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Figure 15. Application examples of the proposed system. (a) Sports broadcasting and (b) entertain-
ment content provide improved stereoscopic effect and an immersive feeling to users than original
monocular videos. (c) Surveillance systems based on MonoMR allow users to easily recognize
situations and spatial information of multiple cameras.

6.2. Dynamic Entertainment Content

Entertainment content, such as performance and theater, is also one of the areas where
the proposed system can be utilized. In the case of performance and theater content in
DVD and Blu-ray media, the videos have been recorded from various viewpoints. Hence,
it allows the user to select and enjoy scenes from a specific viewpoint. As described in the
experiment section, the entertainment content created by our system is more attractive than
a monocular video displayed on a flat-panel display. Therefore, with our system, the user
can enjoy the content while freely changing their viewpoint (Figure 15b).

6.3. Effective Surveillance System

The existing surveillance systems display videos through a single display with di-
vided windows or multiple displays. However, these methods are complex for a user to
observe the plurality of screens simultaneously. Mainly, recognizing the place displayed
on the monitor is not intuitive. In order to address this problem, a system [45] has been
proposed where multiple camera images are synthesized into a single 360-degree image
and displayed to a VR HMD. However, the entire scene cannot be recognized within a
limited field of view of the HMD, and it’s hard to recognize the depth of the target object.

Constructing an efficient surveillance system with the MonoMR is possible because the
proposed system can synthesize a single scene from several monocular cameras. We syn-
thesized the four surveillance videos of CMUSRD [46] into a single scene using MonoMR
as the demo application of the surveillance system (Figure 15c). The user can intuitively
perceive a place where a specific target is located. In addition, even if the target moves
from the camera viewpoint to another camera’s viewpoint, the user can track the moving
target intuitively. Since the system can synthesize content from various kinds of videos,
there are many other potential applications besides the ones proposed.

7. Discussion

We present the MonoMR system that generates the pseudo-2.5D MR content from
monocular camera videos. The system can render MR content from a large number
of previously captured videos of various types. Our system does not require special
imaging equipment, such as multiple monocular cameras or depth cameras, similar to
most conventional systems and complicated settings, such as the synchronization among
the cameras. In addition, because the proposed system can generate MR content using a
single monocular camera with minimal user interaction, this has higher usability than any
previously proposed systems. Therefore, users without expert knowledge can easily create
MR content.
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Our system consists of not only a DNN but also uses typical image processing algo-
rithms. Based on the experimental results, we confirmed that our proposed method has
reasonable performance for depth information estimation and texture extraction required
for producing MR content from monocular videos. In addition, the proposed method is pro-
cessed relatively high speed, except for the DNN process. Therefore, if a high-performance
GPU is used and parallel optimization for image processing is applied, the proposed
system can reach real-time performance.

We conducted the small user study, and the results show the feasibility of converting
existing monocular videos into more exciting and immersive content with the proposed
system. Although the MonoMR system has good performance and usability, we describe
some technical challenges and limitations of the system based on the conducted experiment
and system implementation.

Limited camera posture. MonoMR does not use a global motion compensation algo-
rithm and the camera posture estimation method using specific landmarks [7,47] because of
high computation and low generalization capacity. Therefore, the input video’s viewpoint,
which is converted into MR content, should be fixed.

Pseudo-3D position. The system estimates the person’s x and z positions based on
the correlation between the ankle position of the human and the ground. However, if the
subject moves on the y-axis, such as jumping and tumbling, it’s difficult to estimate the
correct 3D position. To address this problem, we will attempt to apply the global depth
estimation DNN [23,24] to our system.

Texture quality. MonoMR extracts textures using a background subtraction algorithm
to increase the entire processing speed. As can be observed from the previous experiments,
MonoMR extracts person textures with acceptable quality. However, if the texture quality
reduces due to a detection failure of the human detector or drastic illumination changes in
the capturing environment (Figure 16), then some artifacts could be observed.

¥

Figure 16. Artifacts of the extracted textures and content caused by abrupt illumination change,
non-detection of body parts, and overlapping people.

Mask R-CNN, the current state-of-the-art algorithm, shows excellent quality; however,
as mentioned in Section 4.2, it has drastically reduced the system’s entire processing speed.
Therefore, this method has not been applied in this study. If a segmentation network with
good accuracy and performance is proposed, then we will consider applying the network
to our system.

2D texture. The system displays 2D textures instead of 3D mesh models. Hence, it’s
difficult for the human vision to recognize that the generated model is planar if the user
views the content at a certain distance [48]. However, if the user views the content at a short-
range, then they feel the unnaturalness. Therefore, we are considering applying methods
to recover the information not captured by the camera, such as generative adversarial
nets [49] and 3D mesh recovery network [50], as future work.

Large content size. The content consists of the human textures and location data of
each frame. The size of the content is large because it does not use any compression method
for the real-time operation in low I/O performance of the standalone HMD (e.g., the size of
the 30 s of soccer content is approximately 200 MB). We expect that if the HMD’s network
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bandwidth and I/O performance are increased and the texture compression method is
applied, then real-time streaming could be applied without difficulty.

Small-scale user study. We conducted the user study with a small subject group.
Because of the small number of subjects in the experiment, the statistical power is insuf-
ficient to prove significance. A post hoc power analysis revealed that the effect size and
statistical power observed in the user study are 0.74 and 0.75, respectively. Therefore, more
than 14 participants would be required to obtain statistical power at the recommended
0.80 level [51]. We plan to conduct a user study with a large number of participants and
perform accurate statistical analysis to prove the usability of the system.

Despite the limitations, MonoMR is a potentially powerful system in which anyone
can easily convert monocular videos into immersive and exciting MR content. To the best
of our knowledge, no system that can convert videos of various genres captured using a
single monocular camera into MR content has been proposed yet. In addition, it will be
possible for a DNN to be developed and applied to the system to produce better quality
content when the hardware limitations have been addressed.

8. Conclusions

This paper presents MonoMR, the system synthesizing the pseudo-2.5D MR content
from monocular videos for MR HMD. Our approach can generate MR content from only a
single monocular camera or many different videos uploaded on the Internet. In addition,
the system requires only minimal user interaction during content creation, and end-users
without expertise can easily use this system. Users can enjoy the synthesized content at a
free-viewpoint through MR HMD and freely arrange and adjust contents via hand gestures.

We confirmed that the generated content is more immersive and attractive than the
original monocular video through user studies. Based on these evaluations, we believe
that the proposed system converts a lot of existing monocular content into MR HMD
optimized content. We hope that the proposed system will contribute to the distribution of
MR content regarding the increase in content demands owing to the commercialization
and expansion of MR HMD.
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