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Abstract: Chinese characters in ancient books have many corrupted characters, and there are cases in
which objects are mixed in the process of extracting the characters into images. To use this incomplete
image as accurate data, we use image completion technology, which removes unnecessary objects
and restores corrupted images. In this paper, we propose a variational autoencoder with classification
(VAE-C) model. This model is characterized by using classification areas and a class activation map
(CAM). Through the classification area, the data distribution is disentangled, and then the node to
be adjusted is tracked using CAM. Through the latent variable, with which the determined node
value is reduced, an image from which unnecessary objects have been removed is created. The
VAE-C model can be utilized not only to eliminate unnecessary objects but also to restore corrupted
images. By comparing the performance of removing unnecessary objects with mask regions with
convolutional neural networks (Mask R-CNN), one of the prevalent object detection technologies,
and also comparing the image restoration performance with the partial convolution model (PConv)
and the gated convolution model (GConv), which are image inpainting technologies, our model is
proven to perform excellently in terms of removing objects and restoring corrupted areas.

Keywords: variational autoencoder; class activation map; object removal; image

1. Introduction

As the technology for handling images has gradually developed, techniques for image
completion have emerged [1–4]. The techniques for image completion include object
removal technology for erasing unnecessary objects in an image and image restoration
technology for restoring corrupted images. The object detection technology is used to
remove specific objects present in images [5,6]. The object detection technology classifies
objects in an image and detects their location [7–12]. It is possible to delete an object by
using a function to find a specific object or to remove unnecessary objects by leaving only
the object. This method is suitable for use with simple images where the background of the
image is not complex. Concerning the removal of objects in an image, not only the object
detection technology but also image inpainting technologies have been developed [2–4].
This technology works by directly masking unnecessary objects in an image using a
masking tool and naturally filling the removed area using an inpainting model; this has
the advantage that it can be used even in images with complex backgrounds, and it is able
to naturally fill corrupted areas and thus can also be used to restore corrupted images.

The Chinese character image data covered in this paper comprise images extracted
from ancient books. Ancient books have many corrupted characters due to poor storage
conditions, and the gap between letters is not constant, and so unnecessary objects are
often included in the process of extracting letters. Because these incomplete Chinese
character images are difficult to use as data, image completion technology is required to
make them usable images. Chinese characters can be transformed into characters with
different meanings if the shape changes even slightly. Therefore, when restoring Chinese
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character images, it is important to restore them to the correct shape. Image inpainting
technologies are used to restore corrupted images to ensure high-quality images; however,
if the corrupted area accounts for a large part of the overall image, it is difficult to restore it
to the correct shape, which is not suitable for restoring corrupted Chinese character images.
It is also not appropriate to use image inpainting technologies to remove unnecessary
objects within Chinese character images. Chinese character images are black and white and
very simple images; therefore, image inpainting technologies, which involve separately
masking unnecessary objects using a masking tool, is not efficient. The object detection
technology used to remove objects easily removes unnecessary objects from simple images
such as Chinese character images. However, the unnecessary objects present in Chinese
character images are part of other Chinese characters, and so they have very similar
characteristics to necessary objects, reducing the ability to detect unnecessary objects. The
variational autoencoder with classification (VAE-C) model proposed in this paper can
remove unnecessary objects without separately masking them and without performance
degradation, even if the necessary and unnecessary objects are similar. Furthermore, this
model can accurately restore Chinese characters so that they are not altered when restoring
corrupted characters.

In addition, the noise in extracted Chinese character image was removed using fuzzy
binarization [13,14]. The fuzzy binarization method minimizes information loss compared
to the normal binarization method [1,2].

The VAE-C model is a generative model based on the VAE [15] that generates artificial
data using a probability distribution learning method. The VAE has the strength of being
advantageous in terms of generating new data in which features of input data are inter-
polated. Using the fact that images with the interpolated features can be outputted, we
changed the VAE so that data with desired features could be outputted. The latent variable
used as the input value of the decoder area that generates the data can control the desired
features by adjusting the node values. This method is similar to the conditional generative
models [16–18], but there is a difference in not using additional latent variables.

However, it is difficult to find which node may correspond to the feature to be con-
trolled, and it is much more difficult for the relevant node to obtain a distribution of the
features in a disentangled state. Nodes with an entangled distribution present the problem
that they cannot be controlled as desired even if the numerical value is adjusted. This
problem was resolved by adding a classification area and utilizing the method of the class
activation map (CAM). In terms of VAE-C, we caused the desired feature to be settled
as a disentangled distribution in the latent variable by adding a classification area to the
VAE model. To find a node with the greatest influence to target features from the nodes
that have disentangled distribution, we use the CAM method. By lowering the value of
nodes found in this way and outputting the image, it becomes possible to generate an
image in which the desired features are offset. With the VAE-C, it is not only possible to
remove unnecessary objects in the image, but it can also be used as a function to restore
corrupted images.

2. Materials and Methods
2.1. Materials

The VAE-C model takes advantage of the model’s structure and learning methods
used by the VAE. The difference is that a classification area is added to the latent variable
area for supervised learning. CAM, one of the key technologies of VAE-C, is also used in
the classification area and is used to track nodes. Figure 1 shows the overall process to help
understand the process of data processing.
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Figure 1. The overview system diagram of the variational autoencoder with classification (VAE-C). VAE-C has two core
technologies: disentangled distribution and target node value control.

2.1.1. Variational Autoencoder

The variant autoencoder (VAE), the model underlying VAE-C, is a type of generative
model that uses latent variables [15]. As with the autoencoder model, the VAE is composed
of an encoder model and a decoder model.

However, there is a difference between the VAE and the autoencoder, Firstly, the
encoder model outputs the mean µ and variance σ on the latent variable distribution as a
result value. The mean µ and variance σ outputted in this way are used as parameters of
the normal distribution equation to form one normal distribution [19]. Randomly sampled
values from the formed distribution are used as latent variables. The reason for using this
type of structure is to learn p(x)—the probability distribution of real data x.

p(x) = p(x|z) (1)

p(x) = Ez∼pθ(z)
[ p(x|z)] (2)

p(x) = Ez∼pθ(z|x)[ p(x|z)] ≈ Ez∼qϕ(z|x)[ p(x|z)] (3)

Equation (1) presents the equation used to calculate the probability of x by using the
latent variable z. It has the role, similar to a decoder, of receiving the latent variable z
as an input value and reconstructing it into real data x. Equation (2) adds the fact that
the latent variable x has a certain probability distribution pθ(z) to Equation (1). In the
VAE, the latent variable z is outputted with the form of a probability distribution from the
encoder, so Equation (2) is applied. Equation (3) is an equation showing the use of variation
inference. The latent variable z is encoded from the real data x to form the probability
distribution pθ(z|x). The probability distribution constructed in this way is utilized as
qϕ(z|x) simplified into the normal distribution form. Variation inference is a method of
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further simplifying the complex distribution (intractable posterior) in this way and then
inducing it into the actual distribution.

Lv = Eqϕ(z|x)[log{p(x|z)}]− DKL(qϕ(z|x) || p(z)) (4)

The loss function of VAE takes the same form as Equation (4) using the induction
formula [15], playing the role of bringing the normal distribution qϕ(z|x) closer to the real
data distribution pθ(z|x) by Kullback–Leibler divergence (DKL) [20].

The fact that the latent variable is extracted by sampling from the normal distribu-
tion works as an obstacle in training the model through backpropagation. To solve this,
reparameterization was used. Using ε ∼ N(0, 1) randomly sampled from the Gaus-
sian distribution, the latent variable was expressed in the form of a function that can be
differentiated, as shown in Equation (5).

z = µ+ σ × ε (5)

Using a method of learning the probability distribution of data, the VAE has the
advantages that the distribution of the data has continuity and that it is able to generate
the data in a form that is interpolated between data. These advantages laid the foundation
for new artificial data to be generated by adjusting the features of the desired data.

2.1.2. Class Activation Map

The class activation map (CAM) has the function of informing us through visualization
which features were viewed and judged in the image when the convolutional neural
network (CNN) model classified image data [21,22]. Although many studies have already
been conducted on how the feature maps of CNN are expressed [23–25], CAM has a
difference in that it visually shows which features are viewed as important when classifying
an image. The result of CAM is expressed with position information in the actual image.
When classifying the data, the areas with high influence are expressed in red, while the
areas with low influence are expressed in blue. Here, the extent of influence refers to the
value of the relevant nodes.

The reason why the position information can be expressed in this way is that the
model is in the form of full convolution networks. The CNN has taken the form of a fully
connected layer as the last layer to classify data. Even though topological information is
preserved by convolution, since the feature map would be flattened when passing through
the fully connected layer, the information regarding the position is lost. Therefore, in order
to represent accurate positions, it is essential for the solutions that all layers can be designed
in the form of convolution. Global average pooling (GAP) was used as a solution. GAP
is one of the pooling layers of CNN and uses a method of extracting one mean value and
targeting all nodes in the feature map [26]. Since the form of the extracted nodes is identical
to the flattened form, it is possible to classify them with the same process as in the fully
connected layer.

2.2. Methodology
2.2.1. Disentanglement

Generative models such as VAE can output image results whose specific features
are altered by adjusting the node values present in the latent variable [15,17,18]. The
characteristic of these generative models is that they learn the probability distribution of
the data. Learning the probability distribution of data helps to create a more natural output
when reconstructing data. Each node of the latent variable has each feature of the data
in the form of a probability distribution, and the distribution of these nodes is mixed to
produce the results. However, the distribution of the latent variable, including the features
of data, is entangled. If data features are organized in an entanglement, the desired feature
cannot be accurately controlled, even if the node value is adjusted.
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There are two things to be considered in order to adjust the desired features in an
image by using VAE. First, the distribution of the latent variable must be disentangled so
that the node value can be controlled. This is necessary to accurately control the desired
features. This method is similar to the one used in the conditional generative models [17,18]
and information maximizing generative adversarial nets (InfoGAN) [27].

Second, it must be determined which node contains the feature that is desired to be
controlled in the mean of the latent variable distribution. The numbers of nodes belonging
to the mean of the latent variable distribution can be designed by the user, but too few
nodes can make it difficult to reconstruct the data. Accordingly, a measure is necessary
which allows us to clearly determine which node must be controlled of the many nodes
existing in the mean of the latent variable distribution.

The VAE-C model suggested in this paper is a model focusing on resolving the two
considerations as mentioned above. In order to make the latent variable distribution
disentangled, a classification area is added to the mean of the latent variable distribution.
The classification model can classify the inputted data by supervised learning. When
classifying the data, the model requires features that serve as the basis for classification [21]
and these features are created through the supervised learning where models classify data.
Therefore, in order for the latent variable used to reconstruct the data in the VAE to obtain
the disentangled distribution, a classification area should be added. For a classification
area, labeled data which are created from the completion classifier, are needed to carry out
supervised learning. Figure 2 shows that the distribution of the latent variable means is
disentangled by adding classification areas and conducting supervised learning.
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The distribution of data across x-nodes is disentangled; an entangled distribution is disentangled by
adding the classification area.

2.2.2. Tracking Nodes Using Class Activation Map

If the desired features in the latent variables are made into a disentangled distribution,
it must be determined which node has the information of these features. To find the
corresponding node, the class activation map (CAM) technique [21,22] is utilized. By
applying this technology, it is possible to find which node has the most influence when the
model performs classification.
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Figure 3 shows the process of seeking the node with the greatest influence in the latent
variable by using the CAM method, in the process of removing unnecessary objects in the
image using the VAE-C model.

Sc = ∑k Wc
k ∑x,y fk(x, y) = ∑x,y ∑k Wc

kfk(x, y) (6)
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Figure 3. The process by which the variational autoencoder with classification (VAE-C) model
removes unnecessary objects in the image: (a) The process of changing the node value in the latent
variable to eliminate unnecessary objects. (b) The process of finding the node with the greatest
influence among the nodes in the latent variable by using the class activation map (CAM) method.
(c) The actual CAM image outputted using Chinese character images. The black area represents an
area with value of less than 20%. The red arrow points to the node with the highest value.

Equation (6) represents how to calculate the score Sc, which becomes a measure for
classifing data when CAM is applied to the model. It should be noted that the value of
multiplying all the nodes fk(x, y) in the feature map by a single weight Wc

k and adding
them all is identical to the value of multiplied by weight Wc

k after adding all the nodes
fk(x, y) in the feature map. Eventually, the feature map is treated in the same manner as a
single node and used to calculate the score Sc. Using this property, it is possible to find the
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most influential node in the form of a dense layer, just like finding the most influential area
in the form of a feature map.

VAE-C uses the CAM method to seek the node corresponding to the desired feature
and then is able to control the image result to be outputted by modifying the value of
the relevant node. This model can control the degree of removal with a value rather than
simply removing the feature.

2.3. Model Construction

The model structure of VAE-C is very similar to that of VAE. In the VAE, if the
classification area is added to the mean µ of the latent variable distribution, it becomes
the VAE-C model. It is more efficient to connect the classification area to the mean µ
corresponding to the center of the latent variable than to directly connect to the latent
variable z. Using values randomly sampled from the normal distribution of the latent
variable z acts as an obstructive factor to supervised learning. The encoder and decoder
models are organized using the convolution technique so that they can learn the topological
information of the data. In the VAE-C model, the convolution technique [28–31] plays
a very significant role in separating features independently. Table 1 shows in detail the
values of layers in the model structure.

Table 1. Layer values for the VAE-C model. Conv: convoluted; Deconv: deconvoluted.

No Type Kernel Stride Outputs

1 Conv 3 × 3 1 × 1 16
2 Conv 3 × 3 2 × 2 32
3 Conv 3 × 3 2 × 2 64
4 Conv 3 × 3 2 × 2 128
5 Conv 3 × 3 2 × 2 256
6 Dense 128

Reparameterization

7 Dense 128
8 Deconv 3 × 3 2 × 2 256
9 Deconv 3 × 3 2 × 2 128

10 Deconv 3 × 3 2 × 2 64
11 Deconv 3 × 3 2 × 2 32
12 Deconv 3 × 3 1 × 1 1

The fully connected layer model [32–34] has a structure in which one node has barely
any independent features because one node affects all the other nodes in the next layers.
The overall structure of the VAE-C model is shown in Figure 4.
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Scl = Sofmax

(
∑
k

Wc
kxk

)
. (7)

Lc = −∑
c

tc log(Scl)− (1− tc) log(1− Scl) (8)

The learning of VAE-C can be done by adding the learning of the classification area to
the learning method used in the VAE [15]. The cost function of classification uses binary
cross entropy loss, as shown in Equation (8). Passing through softmax, the weight Wc

k
and the mean nodes xk of the calculated latent variable distribution are randomized to
utilize cross entropy. Equation (7) represents the process of calculating the probability
value Scl. VAE learning with Equation (4) and classification learning with Equation (8) are
performed alternately, and the encoder model learns to extract the feature maps, satisfying
both purposes.

2.4. Chinese Character Images Dataset

The data covered in the paper comprise Chinese character image data. These Chinese
character images are data obtained from ancient books, which are extracted in the form
of a bounder box through object detection techniques [8,9]. Chinese character image data
have two characteristics: the first characteristic is that there are many corrupted Chinese
characters because ancient books are not kept well. To take advantage of the corrupted
Chinese character images, the technology used to restore images is essential. There are
some precautions which must be taken when restoring corrupted Chinese character images.
Chinese characters become other Chinese characters with different meanings due to small
differences in shape; thus, it is important to restore the exact shape, not just converting
the image to a high-definition image. Figure 5 shows examples of Chinese characters with
similar shapes but different meanings.
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Figure 5. Examples of Chinese characters whose shapes are similar but not identical. (a) Chinese
character images; (b) represents the Unicode of the image.

The second characteristic is that there are cases in which some of the other Chinese
characters are mixed into the Chinese character images extracted in the form of a bounding
box (bbox) because the spacing between the characters in the ancient books is not constant.
The technology used to remove unnecessary objects is essential to remove parts of other
Chinese characters that are unnecessary within each Chinese character image. There is also
a method of extracting letters into the mask area, but the method of extracting letters into
the bbox area was used to rule out the possibility of incorrect extraction. Figure 6 shows an
example of the Chinese character images extracted from ancient books.

Before using Chinese character images as input data, a pretreatment process is un-
dertaken to eliminate noise. Eliminating noise makes it possible for the model to learn
about the objects in the image more accurately. The fuzzy binarization method was used
to eliminate noise; as the fuzzy binarization method dynamically selects thresholds while
considering different types of objects, there is less information loss than in the normal
binarization method when noise is eliminated. Figure 7 shows a comparison of images
before applying the fuzzy binarization method with images after applying it.
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the fuzzy binarization method applied; (b) image with the fuzzy binarization method applied.

3. Results
3.1. Variation of Output Value as Node Value Changes

The output image of the VAE-C model is generated based on the learned data. There-
fore, although they are the same letter images, when there are multiple types of data, the
method is advantageous for generating good results. The data used in the experiment were
Chinese letters used in ‘The Building and Application of Database of Various Traditional
Chinese Character Shapes Dictionary in Korea’ project. Figure 8 shows the results of
removing unnecessary objects and restoring corrupted images by using the VAE-C model.
By reducing node values with a high influence from unnecessary objects or corrupted areas
within the latent variable, we can see the outputted result of a clean image. This means
that the relevant feature was well induced in a disentanglement, and that the node with
that feature was well detected.
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an unnecessary object as an input value and outputting the result of removing noise, (b) treating the
corrupted Chinese letter image as an input value and outputting the restored result.

In terms of removing unnecessary objects from simple images such as Chinese char-
acter images, there are many examples using object detection technology [5,6]. However,
when it is difficult to distinguish a necessary object from an unnecessary object, such as
the case of Chinese letter data, the performance of noise removal using object detection
technology begins to decrease. An image inpainting technique has also been used to
remove unnecessary objects; the technology, which aims to naturally fill in the removed
area, involves the process of masking unnecessary objects directly using a tool. Because
Chinese characters are simple images in black and white, objects are already removed
naturally during masking. Therefore, it is inefficient to use image inpainting techniques to
remove objects within Chinese character images.

When noise was removed or a corrupted image was restored using the VAE-C model,
we evaluated the images with the similarity comparison scale in order to investigate how
similar they were to the actual images. We used the peak signal-to-noise ratio (PSNR),
mean square error (MSE) [35–37], and structural similarity index measure (SSIM) [38] as
the similarity comparison scale. Figure 9 indicates the degree to which unnecessary objects
are removed when reducing node values, and Figure 10 indicates the degree to which
images are restored.

The peak signal-to-noise ratio (PSNR) represents the power of noise to the maximum
power that a signal can have. PSNR is a measure representing how little noise is in
the generated image compared to the original image, which has been used often as a
tool to measure whether two images are similar. The value increases as the noise of the
image outputted by the model is reduced compared to the actual image. Considering the
PSNR comparison graph shown in Figure 9, we can see that the value increases when the
unnecessary object is removed. The difference in PSNR between when the node value
was not decreased and when the node value was decreased by 12 is about 1 db. Figure 10
shows that the lower the node value, the more the image is restored, whereas the PSNR
comparison graph shows little quantitative change when the node value is reduced. The
reason for this is that, due to the model characteristics, frequent noise occurs in the process
of restoring the image after connoting it as a latent variable.
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The structural similarity index measure (SSIM) [38] is a tool used to measure the
similarity of an original image to the distortion caused by compression and conversion.
SSIM relies on the principle that structural information of images is derived when actually
comparing two images. The higher the number, the more similar two images are. When
examining the SSIM comparison graph in Figure 9, we can see that if an unnecessary object
is removed, the value increases, similar to PSNR. The difference in SSIM when the node
value decreased by 12 is about 14% compared to when the node value was not decreased.
Figure 10 also shows that the SSIM value for corrupted image restoration increases. Unlike
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PSNR, since SSIM does not judge similarity via image noise but uses image structure
information, even in the event of image restoration, judging similarity is much easier. The
difference in SSIM is about 6% when the node value was decreased by 12 compared to
when the node value was not decreased.
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The mean square error (MSE) refers to the difference between the pixel values of two
images. The similarity is judged by investigating how much average difference occurs
between the expected value and actual result. The smaller the MSE value, the higher the
similarity between the two images. Considering the MSE comparison graph shown in
Figure 9, we can see that when the unnecessary object was removed, the value decreased.
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The difference in the MSE between when the node value was not decreased and when the
node value was decreased by 12 is about 2.6. Figure 10 shows that for an image restoration
that is corrupted, there is little change in the graph, as is the case for the PSNR result. This
phenomenon is caused by frequent noise, as mentioned earlier.

This experimental result highlights the advantages of the VAE-C model. It is possible
to adjust node values to control how much unnecessary objects are removed and how
much corrupted images are restored. It is a function that does not exist in image inpainting
technologies and object detection technology.

3.2. Image Restoration Performance Comparison

We compare the VAE-C model with image inpainting technologies. Image inpainting
technologies are mainly used in a model for restoring corrupted images [2–4]. We randomly
create a corrupted image using the mask algorithm provided by the partial convolution
model (PConv) [3] and restored the corrupted image with each model. All of these ex-
periments were conducted in the same environment, and the learning time was 3 s per
10 epoch based on 1 image for Graphics Processing Unit (GPU); the results of all models
were the same. When outputting the result images, the VAE-C models may take more time
than the other two models because they have a process to control the target node value.

Figure 11 shows the qualitative results of the restoration of the corrupted image
that arbitrarily damaged the Chinese character images using each model. The image
inpainting (PConv) model [3] and the gated convolution (GConv) model [2] show that
some areas have not been restored or are over-injected compared to the VAE-C model,
which is different from the original image. This result shows that it is not appropriate to use
the image inpainting technologies PConv model and the GConv model for the restoration
of corrupted Chinese character images. At this time, the GConv model was used without
setting the user-guided option.
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model (PConv) (b) [3], gated convolution model (GConv) (c) [4], and VAE-C model (d).

To further compare the corrupted image restoration performance of the two models—
image inpainting and VAE-C—the same experiment was conducted with the Places2
dataset [39], celebrity faces attributes (CelebA) [40] dataset, and Canadian Institute for
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Advanced Research (Cifar-10) dataset. The Places2 and CelebA datasets are frequently
used to compare image restoration performance. The Places2 dataset, a repository of
10 million scene photographs labeled with scene semantic categories, comprises a large
and diverse list of the types of environments encountered in the world [39]. CelebA is a
large-scale face attributes dataset with more than 200,000 celebrity images, each with 40
attribute annotations [40]. Cifar-10 is a multi-class dataset consisting of 60,000 32× 32 color
images in 10 classes [41]. A Cifar-10 dataset with a relatively low-resolution image will
serve to show what results will be obtained when the model is tested with a low-resolution
image. Figure 12 shows the qualitative results of this experiment. PSNR, SSIM, and MSE
scales were used to determine whether the VAE-C model was the best model to restore a
corrupted image. Figures compared to each model can be found in Table 2.
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Figure 12. Using the Places2 dataset [39], CelebA (celebrity faces attributes) face dataset [40], and Cifar-10 (Canadian
Institute For Advanced Research-10) dataset [41], the results of restoring corrupted images (a) with the inpainting model
(b,c) and the VAE-C model (d) are shown. The bottom Cifar-10 dataset represents the result of using a low-resolution image,
(e) is ground-truth. The red area shows some areas enlarged to see the restored results in more detail.

The VAE-C model gives better results for all datasets compared to the PConv and
GConv models. On average, the VAE-C models showed better values with an MSE of 3.3,
PSNR of 2.1, and SSIM of 5.8 compared to the PConv model, and an MSE of 7.6, PSNR of
3.4, and SSIM of 9.4 compared to the GConv model. Image inpainting technologies and the
VAE-C model have the characteristic in common that corrupted images can be restored.
However, the restored image which has the most similar form to the original image is that
produced by the VAE-C model.
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Table 2. A table comparing the degree of restoration of corrupted areas when restored using PConv,
GConv, and VAE-C models with Places2, CelebA (celebrity faces attributes) face, Cifar-10, and
Chinese character images dataset. MSE: mean square error; PSNR: peak signal-to-noise ratio; SSIM:
structural similarity index measure.

Dataset Methods MSE ↓ PSNR ↑ SSIM [38] ↑

Places2 [39]
Pconv 9.43 38.38 db 94.85%
Gconv 13.06 36.97 db 91.70%
VAE-C 8.23 38.97 db 98.21%

CelebA [40]
Pconv 17.99 35.81 db 90.20%
Gconv 21.6 34.79 db 86.46%
VAE-C 11.21 37.63 db 98.84%

Cifar-10
Pconv 3.87 42.24 db 99.59%
Gconv 29.89 33.37 db 83.58%
VAE-C 2.48 44.17 db 99.81%

Chinese character
Pconv 6.71 39.87 db 93.75%
Gconv 10.17 38.06 db 90.07%
VAE-C 2.6 43.97 db 99.32%

3.3. Object Removal Performance Comparison

Chinese character datasets were used to test the efficacy of object removal. The
Places2, CelebA, and Cifar-10 datasets, which were tested earlier, are complex images,
unlike Chinese character data, which are black and white images. The image inpainting
method is used to remove complex image objects, and this technology uses the method
of forcibly damaging and restoring the area of the object that is intended to be removed
within the image. This paper conducted an experiment to remove objects without the
process of forcibly damaging the area of the object within the image with simple images
such as Chinese character images.

In simple images, such as Chinese character images, object detection techniques are
sometimes used to remove unnecessary objects that exist within the images [5,6]. However,
there is a problem in that the performance of object detection technology is degraded
because the unnecessary objects present within the Chinese character images have similar
characteristics to the desired object. Figure 13 compares the qualitative results of removing
unnecessary objects in the image using VAE-C models and the object detection technology
mask regions with convolutional neural networks (Mask R-CNN) [10]. The result of
removing unnecessary objects using Mask R-CNN shows that all unnecessary objects were
not removed or that the required objects were corrupted. In contrast, the VAE-C model
neatly removed only unnecessary objects.
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Table 3 shows the degree to which Mask R-CNN and VAE-C models removed unnec-
essary objects using a similarity comparison scale. The VAE-C model performed well with
a PSNR of 5.2, SSIM of 9.7, and MSE of 8.8 compared to Mask R-CNN. This result shows
numerically that the VAE-C model is more efficient than the Mask R-CNN for eliminating
unnecessary objects.

Table 3. Object removal performance of two models—VAE-C and Mask R-CNN model—compared
using Chinese character images.

MSE ↓ PSNR ↑ SSIM ↑
VAE-C 5.3 41.7 db 92.2%

Mask R-CNN 14.1 36.5 db 82.5%

4. Discussion

We proposed a VAE-C model that effectively removes objects and restores images
more accurately than existing image completion models. However, the images outputted by
the model have a lower quality than the actual images. Figure 14 qualitatively shows that
the images outputted by the VAE-C model are of inferior quality compared to the actual
images. This problem occurs because noise is generated in the process of implicating the
image as a latent layer and then restoring it again. To address this, research should be done
to add the skip connection technique, which increases image quality, to the VAE-C model.
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We also expanded our framework to change the background environment of the image
by disentangling the distribution of features responsible for the background environment.
The VAE-C model can control the features if the distribution of features is disentangled.
The method of control is completely consistent with the method mentioned above. The
distribution of features corresponding to the background environment are simply disen-
tangled. Figure 15 shows the result of changing the background of the image from night to
day and from winter to spring.
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We also expanded our framework to change the background environment of the im-
age by disentangling the distribution of features responsible for the background environ-
ment. The VAE-C model can control the features if the distribution of features is disentan-
gled. The method of control is completely consistent with the method mentioned above. 
The distribution of features corresponding to the background environment are simply 
disentangled. Figure 15 shows the result of changing the background of the image from 
night to day and from winter to spring. 

 
Figure 15. Result of changing the background environment of images using the VAE-C model. It can be observed that the 
lower the node value, the greater the change in the background environment. 

 

Figure 15. Result of changing the background environment of images using the VAE-C model. It can be observed that the
lower the node value, the greater the change in the background environment.

5. Conclusions

In this paper, a VAE-C model for image completion is proposed to turn Chinese char-
acter images, which are incomplete data, into clean images so that they can be utilized as
data. To determine the image completion performance of the VAE-C model, a comparative
experiment was conducted using Mask R-CNN object detection technology and PConv
and GConv image inpainting technologies. The VAE-C model showed a PSNR of 5.2, SSIM
of 9.7, and MSE of 8.8 compared to Mask R-CNN. On average, the VAE-C models also
showed better values—with an MSE of 3.3, PSNR of 2.1, and SSIM of 5.8—than the PConv
model and the GConv model. The latter had an MSE of 7.6, PSNR of 3.4, and SSIM of
9.4. The experimental results showed that the VAE-C model had better image completion
performance compared to other models. In addition to image completion functions such
as object removal and image restoration, the VAE-C model can be used for more diverse
purposes, such as changing the background environment of an image. In the future, it
will be necessary to study the design of the VAE-C model with added skip connections to
produce noise-free, high-quality results with the VAE-C model.
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