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Abstract: Studies on the prediction of student success in distance learning have explored mainly
demographics factors and student interactions with the virtual learning environments. However, it is
remarkable that a very limited number of studies use information about the assignments submitted
by students as influential factor to predict their academic achievement. This paper aims to explore
the real importance of assignment information for solving students’ performance prediction in
distance learning and evaluate the beneficial effect of including this information. We investigate
and compare this factor and its potential from two information representation approaches: the
traditional representation based on single instances and a more flexible representation based on
Multiple Instance Learning (MIL), focus on handle weakly labeled data. A comparative study is
carried out using the Open University Learning Analytics dataset, one of the most important public
datasets in education provided by one of the greatest online universities of United Kingdom. The
study includes a wide set of different types of machine learning algorithms addressed from the two
data representation commented, showing that algorithms using only information about assignments
with a representation based on MIL can outperform more than 20% the accuracy with respect to a
representation based on single instance learning. Thus, it is concluded that applying an appropriate
representation that eliminates the sparseness of data allows to show the relevance of a factor, such
as the assignments submitted, not widely used to date to predict students’ academic performance.
Moreover, a comparison with previous works on the same dataset and problem shows that predictive
models based on MIL using only assignments information obtain competitive results compared to
previous studies that include other factors to predict students performance.

Keywords: Multiple Instance Learning; educational data mining; OULAD; virtual learning system;
predicting performance

1. Introduction

The popularization of Internet access and the advances in the exploration of digital
resources have led to a growing interest in distance education. This education has as
main advantages the accessibility (students can follow a course from anywhere in the
world) and the flexibility (students can fit their learning around their daily routine) [1].
The current distance studies could not be understood without a digital platform that
provides fundamental features like the publication of the contents of the course, a channel
to maintain professor-students communication or the tools to keep a control of the student
evolution. These systems, called Virtual Learning Environments (VLEs), include course
content delivery instruments, quiz modules and assignment submission components,
among other functionalities [2]. In addition, VLEs are very useful to control the student
involvement in the course, since all his/her activity is recorded in log files that can be
analyzed [3].

Even though the history of distance courses is too recent, they have experimented
a high expansion, with Massive Open Online Course (MOOCs) as the most popular
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example. This new format is opening a widespread investigation, due to its differences
with respect to traditional face-to-face higher education. Among these features, an open
environment regardless of the location of students stands out, as well as a higher number
of enrollments [4]. This also implies an important growth in the number of dropouts
and academic failures [5]. In this context, the prediction of student success according to
their work collected by VLE’s system has become an essential task to be able to discover
the main features that describe to the students that pass satisfactorily a course. Thus,
some works analyze the impact of the chosen learning platform [6,7], others study the
effectiveness of the student-instructor interaction in this engagement [8], while other works
have focused on the dynamic adaptation of the e-learning system to the current level of
knowledge of each student, based on the interaction with the exercises of the course [9] or
prior knowledge and other social factors of students [10].

In this context, this work explores a little used factor to predict student success in dis-
tance learning analyzing how this information should be treated to extract all its potential.
Specifically, the factor proposed is assignment information, understood as the tasks submit-
ted by the students throughout the online course. The use of information about assignments
is not extended as essential factor to determine the students’ performance [1,4,11]. Pre-
liminary, it could be estimated that delivered assignments may help predict the student
performance more effectively than the number of accesses or clicks on the course resources,
that it is the most used factor. Probably, the lower use of assignments information may be
due to a combination of the little number of users who complete assignments, in relation
to the total enrollments, and the substantial variation across courses in the assignments
scheduled. In this context, our work proposes to use assignments information from a
flexible data representation perspective based on Multiple Instance Learning (MIL). This
learning framework introduced by Dietterich et al. [12] is considered an extension of
supervised traditional learning focused on weakly labeled data. MIL could make a bet-
ter use of the information provided by submitted assignments to predict the impact of
students’ achievement.

In the field of educational data mining there are not many public datasets due to the
sensitivity of the data being worked with. This makes it difficult to compare different
proposals since the data used by each study are usually so different to be compared.
In this context, it is of great relevance the Open University Learning Analytics Dataset
(OULAD) [13] availability, one of the few existing public datasets in the field. OULAD
collects a large number of student data from an important distance university during
two academic years, including demographic data, student interactions with the VLE and
assignments submitted. Many works have used it to predict students’ performance but
mainly centered in clicks activity, as it is discussed in related work section. This work uses
OULAD to obtain assignments information, adapt the representation to the MIL paradigm
and store it in ARFF format to work with a popular framework for data mining called Weka.
Thus, following the open access philosophy, these files have been made public online for
the scientific community that wants to continue the line of this study.

Summarizing, this work carries out an exhaustive study to determine the relevance
that information about assignments has to predict the student’s performance. Specifically,
this work addresses the following research questions:

1. How should the information about assignments be represented? Previous works in
distance learning use a classical representation based on single instances. However,
each course has different type and number of assignments, and these are submitted
by few students, which suggests a high sparsity in the data. Representation should be
adapted to this environment so that machine learning algorithms can perform well.
We propose to use an optimized representation based on MIL able to adapt to the
specific information available for each student.

2. Are machine learning algorithms affected by the way that assignments are repre-
sented? It is analyzed a wide set of machine learning algorithms using two different
representations of assignments information: representation based on single instances
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(it is used in previous studies) and based on MIL (the representation that it has been
proposed in the previous step). A significant performance difference between the
same algorithms using both representations shows the relevance of an appropriate
representation so that assignments can be considered a very influential factor for
predicting students’ performance.

3. Is information about assignments a relevant feature to predict the student perfor-
mance? The accuracy in predicting student performance using MIL is compared with
previous studies that use different factors such as demographic features and inter-
actions on VLEs to address the same problem. Algorithms using only information
about submitted assignments reach competitive results achieving better accuracy in
relation to the previous works that predict academic performance using other factors
provided in the same dataset. This justifies the relevance of assignments to predict
students’ performance, if it is represented appropriately.

This paper is organized in following sections. Section 2 presents a briefly introduction
to MIL and other concepts of background for this study. In Section 3, a review of related
work for solving students’ success prediction tasks in distance education is presented.
Moreover, this section briefly introduces MIL and its application to the educational en-
vironment. Section 4 addresses an in-depth analysis of problem representation and the
available information. In Section 5, it is presented the experimentation carried out and the
obtained results. Finally, Section 6 draws some conclusions and proposes some ideas for
future work.

2. Background

This section presents a basic background of concepts to understand the rest of the
work. On the one hand, a brief introduction to MIL is carried out. On the other hand, it
is presented the description of the algorithms that will be used in the comparative study
from the traditional and MIL perspectives.

2.1. Multiple Instance Learning

Multiple Instance Learning (MIL) was introduced by Dietterich et al. [12] to represent
complicated objects [14]. Its inherent capacity to represent ambiguous information allows
an efficient representation of different types of objects, such as alternative representations
or different views of the same object [15], compound objects formed by several parts [16]
or evolving objects composed of samples taken at different time intervals [17].

The main characteristic of MIL is its input space representation: patterns are repre-
sented as bags which can contain a variable number of instances. In a supervised learning
environment based on multi-instance, each bag or pattern has a label, however there is no
information about the instance label. Thus, the hypothesis that relates each instance with
each bag depends on the type of representation used. One of the most used is known as
standard MI assumption, defined by Dietterich et al. [12]. This hypothesis determines that a
bag represents a specific concept whether at least one of its instances represents the desired
concept to learn, and the bag does not represent the concept whether none of its instances
represent it. However, with the application of MIL to more domains, different assumptions
have been proposed [18]. Formally, in a traditional machine learning setting, an object M
can be represented by a feature vector V(M) associated with a label f (M), (V(M), f (M)).
However, in multiple instance learning setting, each object M may have a variable num-
ber n of instances m1, m2, . . . , mn, and each instance has an associated features vector
V(mi), thus the complete training object M is represented as ({V(m1), V(m2), . . . , V(mn)})
associated with a label f (M), ({V(m1), V(m2), . . . , V(mn)}, f (M)).

2.2. Supervised Data Mining Techniques for Predicting Students’ Performance

Predicting students’ performance has been addressed from a wide range of popular
methods within the field of supervised data mining [2]. There is a special attention to those
models that are explainable, since they allow to identify the most determining factors in
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the result, i.e., student demographic information, VLE activity, etc. Thus, most popular
methods for predicting students’ performance are those based on decision trees [11]. These
methods offer one of the most intuitive solutions: nodes in the decision tree involve specific
predictive factors, and leaf nodes give a classification that applies to all students that
reach that leaf. With similar points, rule-based methods offer a solution composed by
an antecedent that presents several logical expressions and a consequent that gives the
outcome for students covered by the rule. Bayesian methods and logistic regression are
among most popular methods too, since they offer predictions based on likelihood of
classes where it is possible to determinate the influence of each factor in the result. Support
vector machines (SVM) are relatively popular as well, with an approach based on finding
the maximum-margin hyperplane in the factor space that gives the separation between
types of students. Artificial Neural Networks (ANN) are non-linear models composed of
units organized in layers that transmit and transform an input, i.e., the student information,
to the end of the network to provide a prediction. These models are less popular [11]
because of their lack of explainability, although, on the other side, they tend to be more
accurate in their predictions.

3. Related Work

Although VLEs have been used in traditional education for several years, their appli-
cation to distance education has important particularities. Thus, distance education usually
has higher number of enrolled students, more diverse demographic characteristics and,
in general, a lower motivation level. These characteristics cause more academic failures
and higher dropout rates. In this context, the task of predicting student success in distance
education is particularly challenging [3,4].

This section presents a review of previous works and more specifically works that
use OULAD. As it has been commented in introduction section, this dataset has had a
notable relevance in EDM. In addition, it is addressed a review of the application of MIL
framework in education.

3.1. Predicting Student Success in Distance Higher Education

Predicting student’ performance in higher education is a problem that has attracted
great attention [1,11,19]. Due to the rise of the VLE, online activities and the increase in
log data generated by these environments that can be processed with machine learning
techniques in order to detect at-risk students, measure the effectiveness of the e-learning
system or give an idea of the success of the academic institution. In this context, several
student background factors, previous academic record, or activity during the course can be
selected to measure his/her engagement, and therefore, the chances of success in the course.
According to [19], the most influential factors are the prior academic achievement (44%) and
the demographic information (25%). In [11], these factors are also the most common, but
they also include e-learning activities (25%) in the top-3 ranking. The e-learning category
includes different statistics like number of logins, assignments or quizzes done. However,
the number of clicks on the course resources is the most used factor by far in this category.

Recent proposals for predicting students’ performance in distance higher education
include several works such as [20]. This work combines demographic, assignments and
clicks information with information about interaction with video of the recorded classes.
The case of [21] also explores three-based methods combining assignments submission and
clicks information. In [22], clicks information is explored, but from a frequency perspective
rather than number of clicks during the course. In [23], it is explored a novel proposal based
on graphical visualization of the logit leaf model that combines demographic, number
of clicks and submitted assignments. The case of weakly labeled data in the student
record is also addressed from an active learning perspective [24], from a semi-supervised
learning approach [25] and from number of clicks. However, all these proposals work with
sensible data that can not been published, and each one considers distinct demographic or
assignments attributes, so it is difficult to compare proposals and results.
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This study uses for evaluating results the OULA dataset or OULAD [13]. It is one
of the few existing open datasets about learning analytic and educational data mining.
Moreover, it is collected from a real case of study, specifically at the Open University
(https://www.open.ac.uk/, accessed on 23 October 2021), the largest institution of distance
education in United Kingdown and one of the most important worldwide, with around
170,000 students per year and a wide range of degrees, as well as free courses under its plat-
form Open Learn (https://www.open.edu/openlearn/, accessed on 23 October 2021). The
dataset contains information of 32,593 students and 7 courses in their different semesters.
It is focused on students, aggregating their demographic data, information about their
course enrollments, number of daily accesses done to course resources (clickstream), and
records about assignments submitted to the VLE (referred as their assessments) during
a course. Due to the characteristics of this dataset and the large amount of information,
some literature works have referenced it as MOOC data [26–29]. Specific dataset details
are addressed in-depth in Section 4.

An open dataset with these characteristics implies the possibility of having a common
framework where different authors can compare their studies with previous works. In this
context, although it is a recent dataset (published in 2017), it has reached a high relevance
in the field, counting with more than 20 works to date that use it to study the problem of
predicting the academic performance. Table 1 summarizes the main characteristics of these
previous proposals, taking into account the purpose of the study, the criteria used and the
algorithm proposed (or the main one among proposals).

Considering the factors used to carry out the prediction tasks in OULAD, it can be ob-
served slight differences in the most used factors with respect to the previous general work.
Thus, a 39% of studies use the number of accesses to resources (clickstreams) [26,29–35],
while a 25% of studies combine this information with demographic data from the
students [27,28,32,36–39]. Focusing solely on assignment information, only one study [40]
uses exclusively this factor. Concretely, it considers assignments as an important factor to
predict the student’s performance. However, this study has important limitations, like the
fact of analyzing only two courses of a total of seven available. The other studies that use
assignment information, a 30% of works, use this factor together with the rest of sources
sources [3,39,41–43]. Thus, the real relevance of this factor in the final prediction cannot
be analyzed.

Regarding the purpose of the different works, under the main task of predicting
student performance, it can be found that the majority of studies pretend to predict whether
the student will pass or fail a course [3,27,30–32,37–45]. Other approaches focus on the
dropout rate [26,29,32,33], while others follow an early prediction study [33,35,36,46]. It is
also notable that most studies distinguish among courses or even presentations to make
these predictions.

With regard to the algorithms used, it can be appreciated that different supervised
learning techniques have been used, mainly trees-based methods [28,30,31,33,36,40,44,46],
although Bayesian methods have also been applied [38], as well as support vector ma-
chines [27], generative methods based on sequences [26,32] and neural networks or deep
learning [3,34,35,39,41–43,45].

This work explores how only information on assignments improves the prediction of
academic achievement. The purpose is to show that less data can be used more efficiently
to obtain competitive results. For this aim, a study is carried out including all OULAD
courses, as well as all specific characteristics of assignments in each course with different
representations. The study is conducted over a set of different machine learning algorithms
belonging to different paradigms in order to provide a comparison as representative
as possible.

https://www.open.ac.uk/
https://www.open.edu/openlearn/


Appl. Sci. 2021, 11, 10145 6 of 26

Table 1. Comparison between proposals that use OULAD.

Work Algorithm Criteria Prediction

[28] Decision Tree
Demographic data. Number of
clicks per day. Assignments data.

Final outcome. All
courses together.

[40] Decision Tree Assignments data. Final outcome: Fail vs. all. In
courses CCC and FFF.

[44] Decision Tree Demographic data.
Final outcome, excluding
Withdraw. In course AAA,
per presentation.

[30,31] J48 Number of clicks per resource.
Final outcome binarized in
Pass+Distinction/Fail+Withdraw.
All courses separately.

[33] J48 Number of clicks per resource.
Engagement to the course: a
combination of the first
assignment score, course final
result and total number of clicks.

[47] Random Forest
Demographic data. Number of
clicks per day. Assignments score.

Final outcome binarized in
Pass+Distinction/Fail+Withdraw.
All courses together. At different
percentages of course length

[36,46] XGBoost
Demographic data. Statistics over
of clicks until the first assignment
of the course.

Deadline compliance. In courses
BBB, DDD, EEE, FFF, only
last presentation

[38] Naive Bayes
Demographic data. Total number
of clicks, only in web
page resource.

Final outcome, only Pass or Fail.
All courses together.

[27] Support Vector
Machine

Demographic data. Number of
clicks per day.

Final outcome binarized in
Pass+Distinction/Fail+Withdraw.
All courses together.

[29] Gaussian Mixture
Model

Number of clicks and number of
sessions per resource and
time-interval.

Final outcome: Withdraw vs. all.
Course BBB. At different intervals
of the course.

[37]
Dynamic Incremental
Semi-Supervised
Fuzzy C-Means

Demographic data. Number of
clicks per resource. Assignments
average score and number
of submissions.

Final outcome binarized in
Pass+Distinction/Fail+Withdraw.
Course DDD.

[26] Time Series Forest
Number of clicks per resource and
day, only in 3 resources.

Final outcome: Withdraw vs. all.
All courses and
presentations separately.

[32] Markov Chains
Number of clicks per week in
planned and
non-planned activities.

Final outcome: Withdraw vs. all.
Course FFF, one presentation.

[3] Artificial Neural
Network (ANN)

Demographic data. Number of
clicks per assignment. Assignment
score.

Regression of final score. Course
DDD, by presentations.

[41] Deep Artificial
Neural Network

Demographic data. Number of
clicks. Assignments data.

Final outcome: Fail vs. all. In all
courses. At different quarties
of course.

[42] Joint Neural Network
Model

Demographic data. Number of
clicks per resource and day.

Final outcome, only Pass or Fail.
Courses BBB, CCC, FFF,
one presentation.

[39] Recurrent Neural
Network

Demographic data. Number of
clicks per week and resource.
Assignment data.

Final outcome binarized in
Pass+Distinction/Fail+Withdraw.
All courses together. At
different weeks.

[43] Convolutional and
recurrent deep model

Demographic data. Number of
clicks. Assignment score.

Final score discretized in six
ranges. Course AAA.

[45]
Up-sampling based
on Adversarial
Network + ANN

Number of clicks per resource and
course quartiles.

Final outcome, only Pass or Fail.
All courses together.

[34] LSTM Number of clicks per week of 25
first weeks. Final outcome: Withdraw vs. all.

[35] LSTM Number of clicks per week. Final outcome, only Pass or Fail.
All courses together.

3.2. MIL in Educational Data Mining

MIL has been used in a wide range of application domains, including classification,
regression, ranking and clustering tasks [14]. This framework has experienced a growing
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interest to represent problems because of its characteristics in data representation. MIL
can naturally adapt to complex problems and it allows to work with weakly labeled data.
Prediction of the student’s performance from VLE logs has also been addressed with this
learning approach [16]. This previous research is set in a different context of traditional
e-learning courses. Thus, it is taught in combination with face-to-face classes and it uses
different factors in the study. However, it can be considered as an example of MIL efficiency
to represent educational data mining problems. From another perspective in [48], it is
shown a tool to discover relevant e-activities for learners using MIL.

4. Materials and Methods

In this section, information on assignments in Open University Learning Analytics
Dataset (OULAD) [13] is analyzed. It is an anonymized, public and open dataset supported
by Open University of United Kingdom. It maintains information about courses, students
and their interactions with VLE.

In this section, the original structure of OULAD is analyzed first; secondly, the problem
of predicting student’s performance from the activity associated to his/her submitted
assignments is discussed and, finally, it is addressed the representation based on MIL and
the main differences with respect to traditional representation.

4.1. Information Analysis of OULAD

The original source of OULAD has been published by Kuzilek et al. at (https://
analyse.kmi.open.ac.uk/open_dataset, accessed on 23 October 2021). It contains 7 distance
learning courses (called modules), all of them taught at the Open University in several
semesters during the years 2013 and 2014 (called presentations). The courses consider
different domains and difficulties. Thus, courses AAA, BBB and GGG belong to Social
Sciences domain and courses CCC, DDD, EEE and FFF to Science, Technology, Engineering
and Mathematics (STEM). Concerning to difficulty levels, AAA is a level-3 course, GGG is a
preparatory course, and the rest are level-1 courses [36]. Each course has several resources
on the VLE used to present the contents of the course, one or more assignments that mark
the milestones of the course and a final exam. In total, it contains records of 32,593 students.
There is demographic information, such as their gender, region or age band. There is
information related to their enrollment in the courses, such us number of previous attempts
or the final mark obtained in the course. Also, there is information related to their activity
during the courses. This information includes interactions with the resources in the VLE,
number of clicks, and the submitted assignments during the course.

An overview of the course structure can be seen in Figure 1. Students can register
in several courses during a semester. Moreover, courses are repeated in different years
(they have different editions). The content of a course is usually available in VLE a cou-
ple of weeks before the official course start. The course assignments are defined as their
assessments whose purpose is to have a control of the student’s evolution. During the pre-
sentation of the course, students’ knowledge is evaluated by means of assignments which
define milestones. Two types of assignments are considered: Tutor Marked Assessment
(TMA) and Computer Marked Assessment (CMA). If the student decides to submit an
assignment, the VLE collects information about the date of submission and the obtained
mark. By contrast, if a student doesn’t submit the assignment, no record is stored. At the
end of a presentation, a student enrolled in a certain course takes a final exam and achieves
a final mark. This mark can take 3 different values: pass, distinction or fail. Additionally, if
the student doesn’t carry out this exam, it will be considered that he/she doesn’t finish the
course and the final mark is set as withdrawn.

https://analyse.kmi.open.ac.uk/open_dataset
https://analyse.kmi.open.ac.uk/open_dataset
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Figure 1. Typical course structured [13].

Table 2 shows a summary of available information for each course considering the
number of times that the course has been offered, the average number of students per
course and its standard deviation (considering the different times that it has been offered),
the number of assignments by course, the average number of assignments submitted by
students, and the percentage of students that fail or drop out the course relative to the total
enrolled students. Assignments are divided between TMA and CMA types, as it has been
commented previously.

Table 2. Information of each course.

Course Calls
Enrollments Assignments Submissions

No-Pass Rate
Avg SD TMA CMA TMA CMA

AAA 2 374.00 12.73 5 0 4.47 – 29%
BBB 4 1977.25 338.34 6 5 4.47 4.12 53%
CCC 2 2217.00 397.39 4 4 2.89 2.91 62%
DDD 4 1568.00 354.18 6 7 4.63 5.02 58%
EEE 3 978.00 255.18 4 0 3.43 – 44%
FFF 4 1940.50 446.52 5 7 3.96 6.04 53%
GGG 3 844.67 102.00 3 6 2.69 5.15 40%

As we can see, there are significant differences between courses: they have been
offered at different times during the considered academic years and the number of enrolled
students also differs. There are also differences in terms of number and type of assignments,
as well as the average number of submissions per student. Figure 2 shows the difference
between courses. Figure 2a shows the average number of enrollments in a course versus the
average pass rate. Figure 2b shows the number of assignments available by course versus
the average submitted assignments per student. It can be observed that the number of
assignments is different in each course and there are courses where the average percentage
of submitted assignments is approximately 90% (as AAA course) while in other ones, as
DDD course, this rate only reaches a 40% of submitted assignments. However, there is a
tendency that seems to indicate that the more assignments are submitted, the more students
pass the course. Thus, AAA course has a 71% of students that pass while DDD course has
only a 42%.
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Figure 2. Information about enrolled students and submitted assignments.
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4.2. Problem Representation Based on Assignment Information

In this study, prediction of student’s performance to determine whether he/she will
pass a course is focused on the information of submitted assignments. Table 3 shows the
specific information provided by OULAD for assignments submitted by a student in each
course: assignment_type is a categorical value specifying the two types of assignments
considered (TMA and CMA). Each assignment has a weight (assignment_weight) and a
score (assignment_score). Normally, the weighted sum of all assignments in each course
is 100. The score is a numerical value in the range from 0 to 100. Assessement_advanced
considers the number of days between the submission of the assignment by the student and
its deadline. This is not a direct attribute in OULA dataset, but it can be calculated as the
difference between the deadline date and the day on which student submitted it. Finally, it
is considered assignment_banked that indicates if the assignment has been transferred from
a previous enrollment in that course.

Table 3. Available information of each assignment.

Attribute Description

assignment_type Type of assignment: TMA or CMA.

assignment_weight A number in range [0, 100] that represents the weight of the as-
signment in the course.

assignment_advance The number of days in advance with which the student submitted
the assignment.

assignment_score The score of the student in the assignment in range [0, 100].

assignment_banked A boolean flag that indicates if the assignment has been trans-
ferred from a previous presentation.

This study presents the traditional representation based on single instance and pro-
poses a representation based on multiple instances learning to solve the problems of
traditional representation. Since OULAD is presented in form of several CSV tables, it
has been converted to ARFF format [49] using both mentioned representations. This
process has implied the load of the dataset in a MySQL database and a slight restruc-
turing of the data schema to ensure that it is maintained the Codd’s normal form and
data are not duplicated. Finally, from the database and through automated scripts, the
different ARFF files with relationships considered have been generated. These datasets
have been published in open access mode in the web repository associated with this paper
(http://www.uco.es/kdis/mildistanceeducation/, accessed on 23 October 2021). Thus,
a reproducible experimentation is facilitated to allow new advances in the area. The
following sections define the representations proposed to solve the problem.

4.2.1. Representation Based on Single Instance Learning

As it has been commented, each student can submit a different number of assignments.
Actually, assignments are not necessary to pass the course, although they are recommended
to get a better understanding of the course. This information should be kept in an appro-
priate way so that it can influence in the prediction of student’s academic achievement.
That is, with the aim of predicting whether a student passes (with or without distinction)
or does not pass (aggregating the failure and the dropout) a course.

The traditional supervised learning representation, used in previous studies with this
dataset, is characterized by representing each student enrolled in a course during a semester
as a pattern or vector of characteristics. Each pattern keeps the student’s activity by means
of a fixed number of attributes. According to the information specified in the Table 3, each
assignment is represented by five attributes. Thus, each student is an pattern composed
of 5× X attributes, being X the total of programmed assignments during that course and
the final mark (student passes or fails the course). Moreover, the student’s participation in

http://www.uco.es/kdis/mildistanceeducation/
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a course is specified by means of his/her identification, the course identification and the
presentation identification that represents the edition of the course.

An illustrative example of problem representation can be seen in Figure 3. Here,
we can see two students who belong to course AAA. Course AAA has 5 assignments.
Therefore, it is necessary 25 attributes (5× 5 = 25) to represent information about student’s
assignments. One student submitted only two of the five assignments while the other one
submitted all of them. As we can see, in traditional supervised learning, both students
have the same number of attributes. Thus, if a student doesn’t submit an assignment,
the attributes related to this submission will have an empty value, but they have to be
presented. This representation forces you to fill all attributes related to the non-submitted
assignments, so there is a potential increase of the computational and storage resources
needed for courses with a representative number of assignments.
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Figure 3. Representation example based on simple instance of two students in course AAA.

The equivalent representation of the commented example in ARFF format to be
processed by machine learning algorithms using Weka framework can be seen in Table 4.
In this case, it is necessary to define the 25 attributes in the header of the file. The instances
are defined one per line following the @data label. Each instance represents one student
and each attribute is separated by comma in the same order that were defined in the
header. Thus, although a student does not submit an assignment, the information related
to that assignment has to be filled in the instance. Other problem in this approach is
that representation depends on the course. Thus, whether the previous example of AAA
course is compared with an example of DDD course shown in Table 5, as DDD course has
13 assignments instead of 5, the dataset would have 65 attributes instead of 25 attributes.
As we can see, the representation becomes more inefficient in cases of students that submit
a low number of assignments. Moreover, there is a limitation of working with different
courses because the representation is not uniform between courses. It depends of the
assignments by course.

Table 4. Fragment of ARFF header for simple instance representation in course AAA.

Code Attributes

@relation assignments-course-AAA

@attribute 1-assignment_type { TMA, CMA }
@attribute 1-assignment_weight numeric
...

@attribute 5-assignment_score numeric
@attribute 5-assignment_banked numeric

@attribute final_result { pass, no_pass }

@data

5 × assignment_type
5 × assignment_weight
5 × assignment_advance
5 × assignment_score
5 × assignment_banked
Total: 25 attributes

4.2.2. Representation Based on Multiple Instance Learning

MIL allows a flexible representation that adapts itself to the specific information
available for each student according to his/her work in the course. In MIL representation,
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each pattern is called bag and represents a student enrolled in a course during one semester.
Each bag represents the student’s activity. Thus, the bag is composed of a variable number
of instances being each instance an assignment submitted by the student. Therefore, each
bag has as many instances as assignments submitted by the student during a presentation
of a course and one class attribute that can take, similarly to traditional representation,
two values: the student passes (with distinction or without it) or does not pass the course
(aggregating the failure and the dropout). This representation fits the problem perfectly
because it can be customized by each student. Thus, the number of attributes in an instance
is always the same, while the number of instances in a bag depends on the student’s
activity. There are five attributes in every instance described in Table 3: type, weight, days
between the submission and the deadline, score obtained by the student and a status flag
that indicates if the given assignment has been transferred from a previous presentation
coursed by the student.

Table 5. Fragment of ARFF representation for simple instance representation in course DDD.

Code Attributes

@relation assignments-course-DDD

@attribute 1-assignment_type { TMA, CMA }
@attribute 1-assignment_weight numeric
...

@attribute 7-assignment_type { TMA, CMA }
@attribute 7-assignment_weight numeric
...

@attribute 13-assignment_score numeric
@attribute 13-assignment_banked numeric

@attribute final_result { pass, no_pass }

@data

13 × assignment_type
13 × assignment_weight
13 × assignment_advance
13 × assignment_score
13 × assignment_banked
Total: 65 attributes

The same example presented in traditional supervised learning (see previous
Section 4.2.1) is addressed in Figure 4 from a flexible representation based on MIL. There
are two students enrolled on AAA course: one of them submits only two assignments and
he/she doesn’t pass the course while the other one submits all assignments and he/she
passes the course. In case of MIL, the data representation is much more efficient: each stu-
dent is represented as a bag with so many instances as assignments he/she had submitted.
As we can see, with this representation there are no empty fields and the representation.
It is adapted perfectly to the available information of each student. The corresponding
ARFF representation used by machine learning algorithms in Weka can be seen in Table 6.
In this case, attributes for each instance must be defined as part of a relational attribute.
Thus, they do not depend on the number of assignments in the course achieving a uniform
representation between courses. For all course there are one relational attribute (with five
instance attributes) independently of the number of assignments by course. Thus, the ARFF
representation for DDD course would use the same number of attributes than AAA course.
Each student is represented by one bag with all their instances enclosed in double quotes
and each one separated by the character “\n” representing each submitted assignments.
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Table 6. Fragment of ARFF header for multiple instance representation in any course.

Code Attributes

@relation assignments-course

@attribute id_student-code_course-code_presentation {...}
@attribute bag relational
@attribute assignment_type { TMA, CMA }
@attribute assignment_weight numeric
@attribute assignment_advance numeric
@attribute assignment_score numeric
@attribute assignment_banked numeric
@end bag
@attribute final_result { pass, no_pass }

@data

1 × assignment_type
1 × assignment_weight
1 × assignment_advance
1 × assignment_score
1 × assignment_banked
Total: 5 attributes
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Figure 4. MIL representation example of two students in course AAA.

5. Experimentation and Results

The goal of the experimental study is to investigate the potential of assignments to
predict whether a student will or won’t pass a course. As it has been commented in related
work, the previous studies focus on this problem with OULA dataset involve mainly
the evaluation of the student interactions with resources in VLE to determine his/her
success in the course. On the contrary, this paper explores the potential of assignments
to determine the level of engagement of students in a particular course. To validate this
hypothesis, the performance of same algorithms will be analyzed. Thus, same information
is used, but it is represented in one case from a traditional approach and in another
case from a MIL approach. Thus, the flow of the experimental study is divided in five
steps: first the configuration of the algorithms used to predict the student performance is
presented in Section 5.1. Secondly, in Section 5.2 two procedures that permit to algorithms
perform with MIL problems are presented and configured. Then, Section 5.3 defines the
evaluation metrics as well as their meaning from a classification perspective and from a
educational perspective. Next, Section 5.4 addresses the results contextualizing them in
two comparative studies: attending to representations and attending to previous works.
Finally, in Section 5.5, a discussion of the obtained results is carried out.

5.1. Configuration of Classification Algorithms

The experimentation of this is designed to offer a fair comparison between MIL and
the traditional single-instances paradigm evaluating the same metrics in the same problem
with the same information and in the same wide set of algorithms, part of the state of
the art in supervised learning. They have been selected 23 algorithms considering the
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main paradigms of machine learning and the most popular methods for predicting student
performance (see Section 2.2).

The experimentation has been developed using Weka [49], a framework for machine
learning in Java. In order to ensure solid evaluation, each experiment is executed with
a 10-fold cross-validation. In addition, stochastic algorithms are executed 5 times with
different seeds, having a total of 50 executions per algorithm and course. The datasets in
ARFF format ready to be used in Weka have been published in open access mode in the
web repository associated to this paper (http://www.uco.es/kdis/mildistanceeducation/,
accessed on 23 October 2021). In order to easily reproduce the experimentation, this section
presents the studied algorithms as well as their configurations. Since the purpose of this
study is to compare types of learning under equal conditions, the configuration of the
predictive algorithms should not favor one or the other representation paradigm. Thus,
these configurations has been chosen based on the default settings that the authors specified
according to the Weka workbench [49], where more information can be consulted.

The 23 predictive algorithms and their configurations are listed bellow:

• Methods based on trees : Decision Stump [50], J48 [51], Random Tree [52] and Random
Forest [53]. See configurations in Table 7.

• Methods based on rules: ZeroR [49], OneR [54], NNge [55], PART [56] and Ridor [57].
See configurations in Table 7.

• Method based on Bayesian models: naive Bayes classifier [58]. See configuration in
Table 7.

• Methods based on logistic regression: the algorithm considered in this paradigm is
the proposal of Cessie and Houwelingen [59]. See configuration in Table 7.

• Methods based on Support Vector Machines (SVM): LibSVM [60], SGD with SVM as
loss function [61], SMO with polynomial kernel [62] and SPegasos [63]. See configura-
tions in Table 8.

• Methods based on Artificial Neural Networks (ANN): Multilayer Perceptron [64] and
RBFNetwork [64]. See configurations in Table 8.

• Methods based on ensembles: AdaBoostM1 [65] and Bagging [66]. These meta-
algorithms have been used with three distinct base classifiers previously commented:
Random Forest, PART and Naive Bayes. See configurations in Table 8.

5.2. Configuration of Wrappers for MIL

With respect to MIL representation based on multiple instance, it is proposed the
use of two different wrappers available in Weka [49] to adapt the MIL problem to single
instance or traditional learning problem. Once that the problem is transformed, the same
algorithms used in single instance representation (presented in previous Section 5.1) can be
used with MIL representation. Thus, it is a more fair comparison because same algorithms
and configurations are used. The proposals of MIL wrappers are the following:

• SimpleMI [67]: this wrapper makes a summary of all the instances of a bag in order to
build a unique instance that can be processed by a simple instance algorithm.

• MIWrapper [68]: this wrapper assumes that all instances contribute equally and inde-
pendently to the bag’s label. Thus, the method breaks up the bag into its individual
instances labeling each one with the bag label and assigning weights proportional
to the number of instances in a bag. At evaluation time, the final class of the bag is
derived from the classes assigned to its instances.

In the case of SimpleMI, there are two possible configurations to compute the summary
of the instances of a bag into a single instance:

• Configuration 1: computing arithmetic mean of each attribute using all instances of
the bag and using it in the summarized instance.

• Configuration 2: computing geometric mean of each attribute using all instances of
the bag and using it in the summarized instance.

http://www.uco.es/kdis/mildistanceeducation/
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Table 7. Configuration of the studied algorithms I.

Algorithm Parameter Value Algorithm Parameter Value

Decision
Stump - - ZeroR - -

J48

binarySplits False OneR minBucketSize 6

collapseTree True
NNge

numAttemptsOf
GeneOption 5

confidenceFactor 0.25 numFolderMIOption 5

doNotMakeSplit
PointActualValue False

PART

binarySplits False

minNumObj 2 confidenceFactor 0.25

numFolds 3 doNotMakeSplit
PointActualValue False

reduceErrorPruning False minNumObj 2
useLaplace False numFolds 3
useMDLcorrection True reduceErrorPruning False

Random Tree

allowUnclassified
Instances False useMDLcorrection True

breakTiesRandomly False

Ridor

folds 3
maxDepth 0 majorityClass False
minNum 1.0 minNo 2.0
minVarianceProp 0.001 shuffle 1

Random
Forest

bagSizePercent 100 wholeDataErr False

breakTiesRandomly False
Naive Bayes

useKernelEstimator False

computeAttribute Importance False useSupervised
Discretization False

maxDepth 0
Logistic

maxIts −1
numFeatures 0 ridge 1× 10−8

numIterations 100 useConjugate
GradientDescent False

In the case of MIWrapper, three configurations to compute the final class of the bag,
extracted from the classes assigned at evaluation time:

• Configuration 1: computing the arithmetic average of the class probabilities of all the
individual instances of the bag.

• Configuration 2: computing the geometric average of the class probabilities of all the
individual instances of the bag.

• Configuration 3: checking the maximum probability of single positive instances. If
there is at least one instance with its positive probability greater than 0.5, the entire
bag is positive.

This study evaluates the accuracy of the different configurations to predict if a student
will pass or fail the course. The experimentation consists of a 10-fold stratified cross-
validation for every combination of wrapper configuration, algorithm and course. The
complete results of this experimentation can be downloaded from the web repository
associated to this work (http://www.uco.es/kdis/mildistanceeducation/, accessed on 23
October 2021).

With the average accuracy of the cross-validation, a statistical analysis is carried
out in order to find significant differences between configurations in each MIL wrapper.
Concretely, it is used the non-parametric Wilcoxon signed-rank test [69] to carry out a
pairwise statistical procedure between every two configurations. In each comparison
is applied the test and obtained a p-value independent to show if algorithms obtain
significantly better accuracy values with a specific configuration. Table 9 shows the R+, R−

and p-values for all pairwise comparisons carried out. For both wrappers and considering
a confidence level of 99%, the configuration 1 obtains significantly higher accuracy values
than the others. Thus, for SimpleMI is more convenient to summarize the bag with the

http://www.uco.es/kdis/mildistanceeducation/
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arithmetic mean and in case of MIWrapper, it is also better to use the arithmetic mean to
combine the class probabilities of instances into the final class bag.

Table 8. Configuration of the studied algorithms II.

Algorithm Parameter Value Algorithm Parameter Value

LibSVM

SVMType C-SVC

Multilayer
Perceptron

decay False
coef0 0 hiddenLayers a
cost 1.0 learningRate 0.3
degree 3 momentum 0.2
doNotReplace
MissingValues False normalize

Attributes True
eps 0.001 reset True
gamma 0.0 trainingTime 500
kernelType radial validation

Threshold 20

normalize False

RBF Network

maxIts −1
probability
Estimates False minStdDev 0.1
shrinking True numClusters 2

SGD

dontNormalize False ridge 1× 10−8

dontReplace
Missing False

AdaBoost-Random
Forest

numIterations 10
epochs 500 useResampling False
lambda 1× 10−4 weightThreshold 100

learningRate 0.01

AdaBoost-PART

numIterations 10
lossFunction SVM useResampling False

SMO

buildCalibration
Models False weightThreshold 100

c 1.0
AdaBoost-Naive
Bayes

numIterations 10
epsilon 1× 10−12 useResampling False
filterType Normalize

training weightThreshold 100

kernel PolyKernel Bagging—Random
Forest

bagSizePercent 100
tolerance
Parameter 0.001 numIterations 10

SPegasos

dontNormalize False
Bagging—PART

bagSizePercent 100
dontReplace
Missing False numIterations 10

epochs 500 Bagging—Naive
Bayes

bagSizePercent 100
lambda 1× 10−4 numIterations 10
lossFunction SVM

Table 9. Wilcoxon signed-rank test between MIL wrappers.

Wrapper Comparison R+ R− p-Value

SimpleMI Conf. 1 vs. Conf. 2 12,740.5 300.5 4.78× 10−25

MIWrapper
Conf. 1 vs. Conf. 2 8274.0 4606.0 5.19× 10−4

Conf. 1 vs. Conf. 3 12,846.0 195.0 2.32× 10−25

Conf. 2 vs. Conf. 3 12,847.0 194.0 2.28× 10−25

5.3. Evaluation Metrics

The metrics used for evaluation are some of the most common ones in the field of
classification. In this context, classical concepts of binary classification are re-defined to our
specific problem of having success in a course (passing it with or without distinction) or
not having it (failure or dropout) as follow:

• tp is the number of students correctly identified to pass the course.
• tn is the number of students correctly identified to fail the course.
• fp is the number of students do not correctly identified to pass the course (it is

predicted that students pass the course, but they really do not pass).
• fn is the number of students do not correctly identified to fail the course (it is predicted

that students do pass the course, but they really pass).
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Given the nature of the problem, in this context it is specially interesting to focus on
students who are likely to fail. Thus, the metrics studied are [70]:

• Accuracy is the proportion of correctly classified students, i.e., identifying if they pass
or not the course.

Acc =
tp + tn

tp + tn + fp + fn
(1)

• Sensitivity is the proportion of students correctly classified that pass the course.

Se =
tp

tp + fn
(2)

• Specificity is the proportion of students correctly classified that do not pass the course.

Sp =
tn

tn + fp
(3)

5.4. Comparative Study

This section presents experimental results in the problem of comparing both multiple
instances and single instance representation in predicting student performance using only
his/her assignments activity. First, it is evaluated the performance of 23 machine learning
algorithms using both representations. Statistical tests are used to determine if there are
significant differences between performance using the different representations. Then, the
best results achieved in this study are compared with the results of previous works shown
in Section 3 that also predict the success of students for the same public dataset but using
other student information available in OULAD.

5.4.1. Comparative Analysis between Different Representations

This section compares the performance of a wide set of algorithms in the problem of
predicting student’s success in a distance course using the same student information with
different representations: traditional representation (based on single instance learning) and
flexible representation (based on MIL). For solving the problem using flexible representa-
tion, as it is commented in Section 5.2, two different methods (MIWrapper and SimpleMI)
that transform the MIL problem are used.

The experimental study carries out a 10-fold stratified cross-validation. The full results
of this experimentation can been downloaded from the web repository associated to this
work (http://www.uco.es/kdis/mildistanceeducation/, accessed on 23 October 2021).

Tables 10 and 11 show average accuracy results for each course. Thus, for each
representation and algorithm, it is presented the average accuracy results of each course
presented in OULAD. It can be observed that SimpleMI (using flexible representation)
obtains the highest accuracy for most algorithms in the different courses. Thus, with an
accuracy between 85% and 95% for all algorithms, SimpleMI outperforms in a robust
way to traditional representation. MIWrapper (also using flexible representation) achieves
similar results to SimpleMI and it obtains better results for the most algorithms than
traditional representation. Although its values are somewhat lower. This affects to general
accuracy of MIWrapper (around 80%) that is lower than those of SimpleMI. Algorithms
that use traditional representation have a more variable performance. It can be appreciated
that in general, this representation obtains lower accuracy (around 65%). In this case,
we appreciate that more complex algorithms like the multi-layer perceptron, LibSVM
or Ridor are needed to reach results comparable to SimpleMI. This is a disadvantage in
terms of interpretability, since these methods do not provide information of which are
the most relevant attributes in order to obtain representative information to help students.
In this line, methods like those based on rules or trees get to outperform their results
using SimpleMI representation while maintaining interpretable results. Concretely, they

http://www.uco.es/kdis/mildistanceeducation/
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obtain a 20% more than accuracy in average, using the same data but with a more optimal
representation that fixes better to the problem.

For a more detailed analysis, Table 12 shows the average results for accuracy, sen-
sitivity and specificity considering average results of the seven courses by the different
algorithms. Results are grouped by representation: traditional representation and flexible
representation (SimpleMI and MIWrapper). A full report of the results can be seen at the
web repository associated to the article (http://www.uco.es/kdis/mildistanceeducation/,
accessed on 23 October 2021). These data help to see in more detail tendencies like the
superiority of SimpleMI, that gets the best accuracy results in all courses. Thus, the general
tendency is that flexible representation (using SimpleMI) gets to improve the algorithms
performance, obtaining better accuracy values versus traditional representation. In ad-
dition, this table shows in-depth the differences of performance between methods with
the different representations. On the one hand, it is shown that traditional representation
causes that algorithms obtain better values for specificity (predicting students that do not
pass the course) at the expense of obtaining worse values for sensitivity (predicting stu-
dents that pass the course). On the other hand, flexible representation (using WrapperMI)
entails that algorithms obtain better values for sensitivity (predicting students that pass the
course) at the expense of obtaining worse values for specificity (predicting students that
do not pass the course). The fact of this off-balance between these measures is traduced in
worse predictions overall. Again, flexible representation (using SimpleMI) obtains the most
balanced results for both measures, sensitivity and specificity. Thus, this representation
gets the best value or a very close one, achieving the best accuracy.

To analyze final results and show if there is significant differences between the be-
havior of algorithms using different representations, it is applied the test of Wilcoxon
signed-ranks [69]. Thus, a pairwise comparison is carried out facing representation based
on single instance (traditional) and the two MIL-based representations (SimpleMI, MIWrap-
per). Table 13 shows the results of the tests attending to accuracy measure. It is shown the
R+, R− and p-values. With a confidence level of 99%, SimpleMI shows an improvement
over the other representations. With a confidence level of 95%, MIWrapper shows an
improvement over traditional representation.

Analyzing the differences in sensitivity, Table 14 shows a similar tendency: both flexi-
ble representations significantly outperform with a confidence level of 99% to traditional
representation. However, attending to specificity results in Table 15, it can be appreciated
that MIWrapper has difficulties to distinguish the negative class, which leads to a bad
performance compared to SimpleMI and traditional representation. However, SimpleMI
does not have this problem, reaching the best results in this metric too.

http://www.uco.es/kdis/mildistanceeducation/
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Table 10. Accuracy results by algorithm and courses I/II.

AAA BBB CCC

Traditional SimpleMI WrapperMI Traditional SimpleMI WrapperMI Traditional SimpleMI WrapperMI

Trees methods

DecisionStump 0.710 0.918 0.789 0.655 0.823 0.627 0.794 0.788 0.740
J48 0.705 0.919 0.809 0.569 0.901 0.770 0.622 0.899 0.845

RandomTree 0.693 0.868 0.796 0.624 0.853 0.750 0.701 0.860 0.832
RandomForest 0.727 0.904 0.818 0.619 0.886 0.754 0.691 0.887 0.843

Rules methods

ZeroR 0.710 0.752 0.752 0.525 0.618 0.618 0.622 0.509 0.509
OneR 0.710 0.918 0.775 0.653 0.902 0.627 0.800 0.889 0.712
NNge 0.909 0.898 0.779 0.501 0.877 0.657 0.415 0.868 0.578
PART 0.709 0.920 0.812 0.569 0.899 0.779 0.630 0.900 0.846
Ridor 0.899 0.902 0.744 0.915 0.859 0.569 0.901 0.850 0.655

NaiveBayes 0.730 0.921 0.810 0.785 0.735 0.706 0.823 0.779 0.807

Logistic 0.722 0.925 0.788 0.797 0.807 0.740 0.904 0.837 0.822

SVM methods

LibSVM 0.806 0.916 0.759 0.851 0.832 0.658 0.830 0.861 0.752
SPegasos 0.301 0.913 0.759 0.489 0.795 0.627 0.454 0.824 0.662

SGD 0.733 0.915 0.755 0.755 0.805 0.627 0.815 0.836 0.729
SMO 0.721 0.918 0.759 0.741 0.808 0.735 0.806 0.837 0.815

ANN methods RBFNetwork 0.758 0.859 0.813 0.856 0.907 0.687 0.882 0.873 0.829
MultilayerPerceptron 0.879 0.919 0.808 0.911 0.939 0.760 0.918 0.907 0.837

Ensembles methods

AdaBoost&RandomForest 0.656 0.905 0.813 0.743 0.885 0.754 0.689 0.884 0.838
AdaBoost&PART 0.738 0.918 0.811 0.699 0.894 0.778 0.715 0.894 0.847

AdaBoost&NaiveBayes 0.730 0.921 0.809 0.790 0.805 0.753 0.836 0.788 0.830
Bagging&RandomForest 0.726 0.919 0.820 0.625 0.905 0.760 0.690 0.903 0.845

Bagging&PART 0.715 0.915 0.811 0.562 0.895 0.778 0.629 0.892 0.848
Bagging&NaiveBayes 0.732 0.920 0.809 0.785 0.699 0.683 0.826 0.777 0.795
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Table 11. Accuracy results by algorithm and courses II/II.

DDD EEE FFF GGG

Traditional SimpleMI WrapperMI Traditional SimpleMI WrapperMI Traditional SimpleMI WrapperMI Traditional SimpleMI WrapperMI

Trees methods

DecisionStump 0.667 0.775 0.724 0.646 0.903 0.718 0.661 0.906 0.797 0.607 0.907 0.717
J48 0.584 0.863 0.809 0.593 0.898 0.816 0.530 0.931 0.868 0.597 0.908 0.784

RandomTree 0.584 0.828 0.776 0.596 0.872 0.789 0.667 0.909 0.830 0.590 0.862 0.771
RandomForest 0.584 0.855 0.797 0.603 0.888 0.799 0.659 0.929 0.848 0.600 0.900 0.771

Rules methods

ZeroR 0.584 0.528 0.528 0.562 0.718 0.718 0.530 0.580 0.580 0.598 0.717 0.717
OneR 0.665 0.844 0.668 0.646 0.904 0.729 0.656 0.924 0.611 0.603 0.907 0.720
NNge 0.863 0.830 0.695 0.911 0.871 0.722 0.506 0.918 0.637 0.612 0.887 0.635
PART 0.584 0.862 0.812 0.588 0.900 0.805 0.578 0.931 0.874 0.593 0.908 0.791
Ridor 0.876 0.833 0.618 0.907 0.892 0.739 0.941 0.915 0.670 0.905 0.868 0.697

NaiveBayes 0.817 0.765 0.742 0.602 0.900 0.773 0.789 0.910 0.832 0.588 0.902 0.814

Logistic 0.833 0.842 0.780 0.802 0.899 0.794 0.917 0.915 0.826 0.610 0.907 0.743

SVM methods

LibSVM 0.814 0.843 0.724 0.884 0.896 0.761 0.845 0.909 0.662 0.854 0.846 0.7232
SPegasos 0.583 0.840 0.767 0.443 0.902 0.748 0.495 0.911 0.601 0.598 0.907 0.717

SGD 0.796 0.847 0.688 0.607 0.895 0.722 0.719 0.911 0.594 0.604 0.907 0.717
SMO 0.787 0.845 0.771 0.592 0.895 0.781 0.786 0.906 0.793 0.600 0.907 0.717

ANN methods

RBFNetwork 0.758 0.799 0.768 0.856 0.902 0.793 0.882 0.909 0.837 0.694 0.904 0.790

MultilayerPerceptron 0.879 0.855 0.787 0.911 0.903 0.807 0.918 0.930 0.870 0.881 0.907 0.784

Ensembles methods

AdaBoost&RandomForest 0.761 0.857 0.786 0.679 0.889 0.792 0.805 0.926 0.838 0.728 0.898 0.769
AdaBoost&PART 0.623 0.859 0.808 0.721 0.894 0.799 0.701 0.929 0.873 0.677 0.904 0.793

AdaBoost&NaiveBayes 0.820 0.814 0.767 0.818 0.900 0.779 0.838 0.910 0.855 0.588 0.902 0.809
Bagging&RandomForest 0.584 0.868 0.798 0.602 0.901 0.803 0.667 0.935 0.854 0.602 0.912 0.775

Bagging&PART 0.584 0.861 0.817 0.597 0.896 0.812 0.585 0.931 0.876 0.598 0.905 0.790
Bagging&NaiveBayes 0.818 0.743 0.730 0.601 0.900 0.771 0.789 0.911 0.820 0.593 0.902 0.816
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Table 12. Average results by algorithm for all courses.

Accuracy Sensitivity Specificity

Traditional SimpleMI WrapperMI Traditional SimpleMI WrapperMI Traditional SimpleMI WrapperMI

Trees methods

DecisionStump 0.677 0.860 0.730 0.458 0.949 0935 0.822 0.703 0.300
J48 0.600 0.903 0.814 0.434 0.953 0.959 0.592 0.802 0.505

RandomTree 0636 0.865 0.792 0.504 0.889 0.951 0.616 0.807 0.463
RandomForest 0640 0.893 0.804 0.510 0.931 0.957 0.610 0.810 0.485

Rules methods

ZeroR 0.590 0.631 0.631 0.429 0.857 0.857 0.571 0.143 0.143
OneR 0.676 0.898 0.692 0.458 0.966 0.985 0.818 0.770 0.156
NNge 0.674 0.878 0.672 0.954 0.905 0.891 0.397 0.814 0.298
PART 0.607 0.903 0.817 0.443 0.949 0.957 0.604 0.806 0.515
Ridor 0.906 0.874 0.670 0.948 0.949 0.871 0.732 0.720 0.291

NaiveBayes 0.733 0.844 0.783 0.851 0.938 0.955 0.560 0.676 0.440

Logistic 0.798 0.876 0.785 0.822 0.945 0.962 0.716 0.738 0.417

SVM methods

LibSVM 0.841 0.872 0.720 0.978 0.920 0.989 0.667 0.769 0.218
SPegasos 0.480 0.870 0.697 0.548 0.948 0.964 0.483 0.717 0.193

SGD 0.718 0.874 0.690 0.728 0.950 0.968 0.587 0.720 0.142
SMO 0.719 0.874 0.767 0.722 0.953 0.965 0.585 0.716 0.354

ANN methods RBFNetwork 0.812 0.879 0.788 0.861 0.947 0.954 0.647 0.727 0.433
MultilayerPerceptron 0.899 0.909 0.808 0.919 0.943 0.954 0.757 0.788 0.498

Ensembles methods

AdaBoost&RandomForest 0.723 0.892 0.798 0.607 0.930 0.953 0.719 0.810 0.478
AdaBoost&PART 0.696 0.899 0.816 0.684 0.946 0.956 0.617 0.799 0.514

AdaBoost&NaiveBayes 0.774 0.863 0.800 0.843 0.925 0.949 0.617 0.738 0.488
Bagging&RandomForest 0.642 0.906 0.808 0.513 0.958 0.957 0.610 0.799 0.495

Bagging&PART 0.610 0.899 0.819 0.444 0.940 0.959 0.603 0.811 0.518
Bagging&NaiveBayes 0.735 0.836 0.775 0.849 0.945 0.958 0.525 0.648 0.416
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Table 13. Wilcoxon signed-rank test results for accuracy measure.

Comparison R+ R− p-Value

SimpleMI vs. Traditional 273 3 1.192× 10−6

MIWrapper vs. Traditional 212 62 0.02332
SimpleMI vs. MIWrapper 275 0 4.768× 10−7

Table 14. Wilcoxon signed-rank test results for sensitivity measure.

Comparison R+ R− p-Value

SimpleMI vs. Traditional 269 7 4.53× 10−6

MIWrapper vs. Traditional 269 7 4.53× 10−6

SimpleMI vs. MIWrapper 44 231 0.003252

Table 15. Wilcoxon signed-rank test results for specificity measure.

Comparison R+ R− p-Value

SimpleMI vs. Traditional 239 37 0.001279
MIWrapper vs. Traditional 0 276 2.384× 10−7

SimpleMI vs. MIWrapper 275 0 4.768× 10−7

The main conclusion extracted from this experimentation is the importance of an
appropriate problem representation. It can be seen that the assignments represented with
single instance learning obtain lower results. These results can explain why assignments
are not widely included as influencing factors in previous studies of predicting students’
performance. Using the same type of information and the same learning algorithms, but
a representation based on MIL, algorithms can predict the student’s success in distance
education with more accuracy. Thus, we can see that flexible representation can obtain
differences of more than 20% of performance in comparison with traditional representation.

5.4.2. Comparative Analysis with Previous Works

Based on previous studies shown in Section 3 (Table 1), this work deviates from the
general trend marked by the use of clickstreams (well known as student interactions with
the VLE). As it has been shown, a limited number of studies use the information about
assignments as influential factor for the predictions.

However, as it has been shown in the previous comparative study, assignments can
obtain equal or better results if they are processed with the appropriate representation.
Thus, in this section a comparison of the accuracy to predict student’s performance is
carried out attending to the best MIL method according previous section, SimpleMI, and
the related work. Table 16 shows these differences with a special focus on previous works
that have used same algorithms but from a traditional learning perspective. Thus, it is
shown the algorithm and the data from OULAD in previous work compared to the use of
MIL. For example, we can focus on the unique previous work that uses solely assignments
data [40]. This work is limited to courses CCC and FFF and it obtains an average accuracy
of 83% using decision trees. In our work, for these courses and algorithms, the best
results reached show an average accuracy of 92’1%. Focusing on previous works focus on
predicting student success or failure in a course but not based on assignments data, the
best results are achieved by [30]. This work applies J48 over VLE activity data obtaining an
average accuracy over all the courses 90%. In our case, using only assignment data with
the same algorithm, the best result achieved for each course gets an average accuracy of
92.7%.
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Table 16. Comparison with previous works that uses same algorithms from a traditional learning perspective.

Previous Work Proposed MIL Approach
Algorithm Course Ref. Assign. Clicks Demog. Acc. Assign. Clicks Demog. Acc.

Decision tree
CCC [40] X 86.6% X 89.9%
FFF 79.4% X 93.1%

AAA [44] X 83.1% X 91.9%

J48 All courses [30] X 86.7% X 90.3%[33] X 88.5%

RandomForest All courses [47] X X X 81.8% X 89.3%[26] X 86.2%

NaiveBayes All courses [38] X X 63.8% X 84.4%

SVM All courses [27] X X 88.0% X 87.2%

ANN All courses [45] X 89.0% X 90.9%

There are also some works that use algorithms not included in our study, like XG-
Boost [36], Gausian Mixture Models [29], or Deep Learning [39,41–43]. However, if their
best results are compared to the best results obtained in this work, MIL achieves equals or
better results using less data and in a more interpretative way. This is shown in Table 17.
This table shows each previous work that employs an algorithm not included in our study
and it addresses the same problem of predicting student’s performance, as well as the
information used, with the best result obtained using MIL (SimpleMI) for the same courses.

Table 17. Comparison with previous works that use different algorithms from a traditional learning perspective.

Previous Work Proposed MIL Approach
Course Ref. Algorithm Assign. Clicks Demog. Acc. Algorithm Assign. Clicks Demog. Acc.

BBB [29] Gaussian Mixture X 85.5% Multilayer Perceptron X 93.9%

DDD [37]
Dynamic Incremental

Semi-supervised
Fuzzy C-means

X X X 89.3% Bagging & RandomForest X 86.8%

AAA [43] Convolutional and
Recurrent Deep Model X X X 61.0% PART X 92.0%

All
courses

[41] Deep ANN X X X 84.5%
Multilayer
Perceptron X 90.9%[39] Recurrent Neural Network X X 75.0%

[45] Adversarial Network + ANN X 89.0%

Nevertheless, these comparisons should be taken carefully, since the conditions of ex-
perimentation and evaluation may differ. Thus, our study shows that general performance
of predictive models based on MIL and assignments data are competitive with respect
to other approaches that do not use this information or combine it with other factors. To
promote future fair comparisons, all information necessary to carry out this experimental
study is available in the public repository associated to the article.

5.5. Discussion of Results

In this section, it is highlighted the implications of using MIL to predict students’
performance in a context of distance learning. Moreover, the possible limitations that the
proposed approach may have are also discussed. Comparative analysis between different
representations has shown that MIL robustly outperforms to traditional representation.
Concretely, it is obtained approximately a 20% more accurate results on average. In the
context of the problem of student’s performance, it is important to attend not only to
general metrics that give the same importance to all classes, but also to metrics that explain
how well our system finds those problematic students that will not pass or dropout the
course. This can be measured with metrics like specificity, in which MIL also outperforms
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traditional data representation. Given the superiority in performance, it is also worth
commenting on the advantage of using MIL in terms of interpretability of results. In
the context of predicting student’s performance, it is very important that the models are
not a black box. Thus, they could be interpreted by mentors and tutors in order to be
able to correct in time trends that may lead to students failing or dropping out of the
course. With MIL, a student’s assignment information takes up to four times less than
using the simple instance-based representation. This helps to create models more quickly
and reduce redundancy in the information, which makes the results easier for a human to
read. This, together with the lack of the need for deep learning or black box algorithms to
obtain results above 90% accuracy, means that the level of interpretability of MIL models
remains high and can be used in real-world tools to identify potential problems in distance
learning courses with large numbers of failures, as well as to identify specific students at
risk of failing.

On the other side, the approach of this work may also have limitations that should be
taken into account. The authors can identify two main problems that can be addressed in
future works. First, this work has been carried out by analyzing the dropout and failure
profiles together. Although both profiles correspond to students who do not pass the
course, this could be due to different causes, so it is worth considering the possibility of
carrying out a separate analysis to identify each type of student at risk. Second, the study
has been made considering all the activities of the course, i.e., it is required to have reached
an advanced point of the course to have all the information of the assignments that have
been submitted. This limits the possibilities of action to prevent an at-risk student from
failing the course. It would be desirable to tweak the approach to only use the information
from the assignments up to a certain point in the course, in order to have enough time
before the final exam to be able to adequately guide the at-risk student to avoid failure.

6. Conclusions and Future Work

This paper shows the impact of assignments information to predict the academic
achievements. Online courses are characterized by a high number of enrolled students
with a low participation and engagement, in general terms. Moreover, assignments depend
on each course, because each has its own curriculum, scheduling and evaluation approach,
so offers different number and type of assignments. This has led to ignore assignments as a
criterion to predict students performance, as proves the very limited number of works that
study them. The main problem is that traditional representation produces a very complex
representation that machine learning algorithms cannot properly process.

This work shows that information about assignments can be very valuable to predict
students performance when it is appropriately represented. The comparative study has
employed a public dataset in learning analytics, OULAD. This dataset allows to work with
a big amount of data and the comparison of the proposed study and results in an existing
common framework. Thus, starting from this dataset, the appropriate transformations have
been applied to use MIL as the learning paradigm, generating the files in ARFF format
necessary to train the predictive models. These files are publicly available in the web
repository associated with the article. Experimental results over a wide set of 23 machine
learning algorithms and 7 courses show that, in a general way, using assignments in a
flexible representation improve the accuracy with respect to use the same information
in a traditional representation, achieving an important balance between sensitivity and
specificity measures. Statistical tests confirm these results showing significant differences
in every studied metric between multiple instances and single instance representations.
Finally, it is carried out a comparison with previous studies that also use OULAD for
predicting student performance from other factors, such as demographic information and
students interactions with VLE, showing the relevance of assignments as a very influential
factor to determine the student success or failure.

The great variety of information gathered in OULAD together with the promising
results obtained open the door to continue this line of research. Thus, it may be tested
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another source of information to predict the student success like the clicks activity in the
VLE, the number of times that the student has done a course or including demographic
data. In addition, it is propose to extend the study to algorithms unique to MIL paradigm,
as well as explore different MI assumptions existing in the bibliography.
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