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Abstract: Reinforcement learning has been applied to various types of financial assets trading,
such as stocks, futures, and cryptocurrencies. Options, as a novel kind of derivative, have their
characteristics. Because there are too many option contracts for one underlying asset and their price
behavior is different. Besides, the validity period of an option contract is relatively short. To apply
reinforcement learning to options trading, we propose the options trading reinforcement learning
(OTRL) framework. We use options’ underlying asset data to train the reinforcement learning model.
Candle data in different time intervals are utilized, respectively. The protective closing strategy
is added to the model to prevent unbearable losses. Our experiments demonstrate that the most
stable algorithm for obtaining high returns is proximal policy optimization (PPO) with the protective
closing strategy. The deep Q network (DQN) can exceed the buy and hold strategy in options trading,
as can soft actor critic (SAC). The OTRL framework is verified effectively.

Keywords: reinforcement learning; options trading; data augmentation; protective closing strategy

1. Introduction

In recent years, reinforcement learning (RL) emerges as an effective way to trade
financial assets, such as stocks, futures, and cryptocurrencies. Reinforcement learning,
within the financial market, has been gradually dominated by the use of reinforcement
learning, in conjunction with other predictive models, such as neural networks [1]. For stock
trading, Lei K et al. [2] use historical trading data, features of relevant stocks, and technical
analysis indicators as inputs to train a deep reinforcement learning model. The gated
recurrent unit (GRU) [3], with a temporal attention mechanism, is utilized to capture
long-term dependency. The stacked denoising autoencoders (SDAEs) [4] are employed
to denoise the observations, and the asynchronous advantage actor-critic (A3C) model,
accompanied with the long short-term memory (LSTM) [5], achieves stable, risk-adjusted
returns [6]. Yuming Li et al. [7] put forward a theory of deep reinforcement learning in
the stock trading decisions and price predictions. K. Bisht and A. Kumar [8] use multi-
objective deep reinforcement learning to get maximum profit by adjusting risk. For future
trading, reference [9] uses a time-series momentum and technical indicators to train DQN,
policy gradient (PG), and advantage actor-critic (A2C) model. They tested the methods on
50 liquid futures contracts and found that the RL algorithms deliver profits even under
high transaction costs. Weiyu Si et al. [10] introduced a multi-objective deep reinforcement
learning approach for stock index future’s intraday trading. For cryptocurrency trading,
double and dueling DQN is used for trading bitcoin in reference [11], and the trading
system produced positive returns. We can see from the above papers that reinforcement
learning has been used widely in algorithmic trading.

An option is a contract between two parties in the transaction, regarding the right
to buy and sell in the future. The buyer (right party) of an option contract obtains a
right by paying a certain fee to the seller (obligation party), that is, the right to buy or
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sell the agreed amount from the option seller at the agreed time and the agreed price.
There are some papers researching options trading or portfolio construction in recent years.
Kelly’s criterion is used to construct options portfolio [12]. Zhao L et al. [13] proposed an
efficient BSUM-M-based algorithm [14] to solve the portfolio design problem, under the
Markowitz mean-variance framework. Reference [15] incorporated volatility forecasting,
utilizing investors’ sentiments in the decision-making process, to improve options trading
performance. Reference [16] converted index future trading to option trading strategies via
LSTM architecture and achieved superior performance.

Although the methods mentioned above demonstrate good performance in options
trading or portfolio construction, they are not robust for the actual dynamic market and
cannot be directly applied to algorithmic trading. Reinforcement learning agents can
interact with the environment and learn the decision-making parameters automatically,
which is suitable for trading financial assets, including options trading. However, as far
as we know, the papers talking about options trading using reinforcement learning are
very few. There are still some problems that need to be solved. First of all, there are many
different options contracts for one underlying asset, and each contract has its characteristics.
Besides, the period from one contract listed to its expiration is relatively short. Usually,
the period is less than six months. The period for active trading is even shorter, usually less
than two months. The training of reinforcement learning needs plenty of homogeneous
data. Training on one or all contracts cannot meet the demand. Secondly, options, as a kind
of derivative, have high leverage and volatility in nature. If the trading of options is not
appropriately limited, the principal may suffer a considerable drawdown.

To address the problems mentioned above, we put forward a framework to trade
options using reinforcement learning. The underlying asset’s trading data is utilized for
training the RL model. Compared with the option contracts, the underlying assets have
a more extended and continuous trading period, which is fit for RL training. To further
augment the training dataset, we use candle data in different time intervals (a day, 60 min,
30 min, 15 min, and 5 min) to train the model, respectively. Different RL algorithms are
used to test our methods, such as DQN, SAC, and proximal policy optimization (PPO).
To relieve the volatility of options, we added a protective close strategy to the model.
The strategy can prevent unbearable losses. The proposed model was tested on the actual
market data for options trading. It can make reliable profits on various options contracts.
Furthermore, we compared the models’ performance training on different time interval
datasets to find the proper time interval training datasets we should use.

Our study has research significance and application meaning in options algorith-
mic trading. It has a reference value for other financial assets trading and training data
augmentation problems. The main contributions of this paper are as follows:

• We propose a framework to trade options using reinforcement learning. The model is
trained on the underlying asset’s trading data. Candle data in different time intervals
(a day, 60 min, 30 min, 15 min, and 5 min) are utilized to augment the training datasets.
By this means, adequate data is available for training the RL model, leading to a
satisfactory result.

• The protective close strategy is added to the RL model to prevent unbearable losses.
Due to the high volatility of option prices, the strategy can protect the principal from
suffering a massive drawdown. Moreover, the strategy could improve investment
returns to some extent.

• The experimental results showed that the proposed model, with the protective close
strategy, can get decent returns, compared to the Buy and Hold strategy in options
trading, which indicates that our model learns ways to make profit from underlying
asset data and applies it to options trading.

The remaining parts of this paper are organized as follows. Section 2 describes the
background on reinforcement learning, options trading, and data augmentation. Section 3
introduces the options trading reinforcement learning (OTRL) framework. Section 4 pro-
vides experimental settings, results, and evaluation. Finally, Section 5 concludes this paper.
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2. Preliminaries and Background

In this section, we first present the introduction to reinforcement learning and algorith-
mic trading. After that, data augmentation methods for time series are introduced. Finally,
we discuss the essential characteristics of the options.

2.1. Reinforcement Learning and Algorithmic Trading

Reinforcement learning is an area of machine learning concerned with how intelli-
gent agents should take actions in an environment to maximize the notion of cumula-
tive reward [17]. Reinforcement learning differs from supervised learning in not needing
labeled input/output pairs to be presented and not needing suboptimal actions to be
explicitly corrected. Instead, the focus is on finding a balance between exploration and
exploitation [18].

Algorithmic trading refers to the method of issuing trading instructions, through the
use of computer programs. In trading, the program can determine the choice of trading
time, price of the transaction, and even number of securities that need to be traded in the
end. Algorithmic trading, also called quantitative trading, is a subfield of finance, which
can be viewed as the approach of automatically making trading decisions based on a set of
mathematical rules computed by a machine [19].

Applying reinforcement learning to algorithmic trading is a significant improvement.
The RL model can learn its trading strategy by observing the market environment and
trying different actions, not like supervised learning that trains a predictive model on
historical data to forecast the trend direction. If we get a predictive model trained by LSTM,
we still need to develop a trading strategy to utilize its forecasting result, and the risk
of error needs to be considered. However, for reinforcement learning, we need to input
adequate and appropriate data. The specified model can learn the trading strategy that
concerns the long-term rewards, not just short-term rewards. Besides this, the RL model
can update its strategy automatically, according to new observations.

2.2. Data Augmentation Methods for Time Series

Data augmentation has proven to be an effective approach to reduce over-fitting and
improve generalization in the neural network [20]. By assuming that more information can
be extracted from the dataset through augmentations, it further has the advantage that it is
a model-independent solution [21]. In tasks such as image recognition, data augmentation
is a common practice and may be seen as a way of pre-processing the training set only [22].
However, such augmentation strategies are not easily extended to time-series data, in
general, due to the non-independent and identically distributed (i.i.d.) property of the
measurements forming each time series [23]. For the financial time series, Teng et al. [24]
used a time-sensitive data augmentation method for stock trend prediction, where data is
augmented by corrupting high-frequency patterns of original stock price data, as well as
preserving low-frequency ones in the frame of discrete wavelet transform (DWT) [25].

Data augmentation for time series is still an open research field. There are some
methods put forward to tackle the problem, such as magnify [26], jittering [27], and
SPAWNER [28]. Fons et al. [23] evaluated the performance of these methods for financial
time series classification.

2.3. Basic Characteristics of Options

Options are a type of financial derivative. Its underlying instrument can be a stock,
index, currency, commodity, exchange traded fund (ETF), or any other security. An option
contract gives an investor the right to either buy or sell an asset at a pre-determined price
by a specific date. There are two types of options, call options and put options. A call
option gives its owner the right to buy the underlying asset, while a put option gives its
owner the right to sell the underlying asset.

The strike price is the price for which the option’s owner can buy or sell the underlying
asset. There are usually at least several different strike prices available for one underlying
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and one type of option (calls or puts). For example, for Shanghai 50 ETF (510050), which
currently trades at 3.5, you can trade call options with strike prices of 3.4, 3.5, 3.6, 3.7, etc.,
and put options with the strike prices of 3.3, 3.4, 3.5, 3.6, etc.

3. Methodology

In this section, we introduce the options trading reinforcement learning (OTRL) frame-
work and its protective close strategy. Section 3.1 presents the training data for the RL
model trading options. Section 3.2 details the OTRL framework, and Section 3.3 introduces
the algorithms used in the framework. Section 3.4 introduces the protective close strategy
that the framework utilizes.

3.1. Training Data for Options Trading

Options trading data are challenging to use in RL training directly, due to two aspects.
The first one is that there are many different options contracts for one underlying asset,
and each contract has its characteristics of price behavior. It is hard to construct a unified
dataset from different options contracts for RL training. The second problem is that the
period from one contract listed to its expiration is relatively short. RL training requires a
great deal of data with similar characteristics. If the trading data of one contract is used to
train the RL model, its amount is not enough. Selecting a proper dataset to train the RL
model is a crucial problem for algorithmic options trading.

To solve the problem mentioned above, we find that the underlying asset’s trading
data can train the RL model. In our experiment, we use trading data of Shanghai 50 ETF
and Shanghai and Shenzhen 300 ETF (510300) to train the RL model. They are the only two
ETFs that have exchange-traded option contracts in the A-share market. Figure 1 shows
a close price trend of 50 ETF, from 26 January 2017 to 27 September 2017, and its 2.4 call
option. Figure 2 shows a close price trend of 300 ETF, from 23 January 2020 to 23 September
2020, and its 4.0 call option. The period is from the option listed date to its expiration date.
As shown in the two figures, the price behavior of the option and its underlying asset are
very similar. As a result, the experience learned from the underlying asset trading data can
be used in trading its option contracts. Furthermore, the underlying asset trading data is
more extended and continuous, which is more suitable for RL training.

(a) 50 ETF (b) 50 ETF 2.4 call option

Figure 1. Price trend from 26 January 2017 to 27 September 2017.
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(a) 300 ETF (b) 300 ETF 4.0 call option

Figure 2. Price trend from 23 January 2020 to 23 September 2020.

However, the daily trading of the data of underlying assets is not very sufficient for
RL training in reality. Shanghai 50 ETF was listed on the exchange on 23 February 2005.
Additionally, Shanghai and Shenzhen 300 ETF was listed on the exchange on 28 May
2012. There are about 250 trading days in a year. Thousands of daily trading data rows
are not enough to train the RL model, which needs millions of steps to converge. It may
lead to over-fitting. To further augment the training dataset, we use the underlying asset
candle data in different time intervals (a day, 60 min, 30 min, 15 min, and 5 min) to train
the RL model, respectively. Minute candle data can be used to train RL agents for data
augmentation [29]. The agent is then used to guide daily trading. The data in a larger time
interval (like 60 min) may be more similar to daily data in price behavior, but its amount is
fewer and vice versa. In our experiment, proper training data can be picked out from data
in different time intervals.

The trading data we used to train the RL model contains five columns: open price,
highest price, lowest price, close price, and trading volume. Trading data in different time
intervals all have these features. When multiple features exist simultaneously, if the range
of feature values is very different, the feature with a more extensive value range is more
likely to significantly impact the model, such as the trading volume in our training data.
Normalization is to process the data by some algorithm and then limit it to a specific range.
In our experiment, the features mentioned above were normalized to a dataset with a mean
of 0 and variance of 1. The normalization formula is as follows:

z =
x− µ

σ
(1)

Among which, µ and σ are the mean and variance of the original dataset, respectively.
Due to the large fluctuations in the stock price and the options price, it is more reasonable
to normalize the features by a certain length of a sliding window, rather than normalize
the global features data.

3.2. Proposed OTRL Framework

The proposed OTRL framework uses underlying asset trading data in different time
intervals to train the RL model. A standard reinforcement learning environment usually
contains state, action, reward, and done or not. For financial assets, our state includes time,
open price, highest price, lowest price, close price, and trading volume [30]. At every step,
the agent can take one of the following actions:

• Do nothing: skip the bar without taking an action.
• Buy an asset: if the agent has already got the asset, nothing will be bought; otherwise,

we will pay the commission (0.1% by default).
• Close the position: if we do not have a previously purchased asset, nothing will

happen; otherwise, we will pay the commission of the trade.
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The training will use several RL algorithms, i.e., DQN, PPO, and SAC, in our ex-
periment. PPO and SAC will be introduced in Section 3.3. After the training, different
models training on datasets in different time intervals are applied to trade underlying
assets for validation. The model behaving well will be selected by trading on datasets that
are different from the training datasets. By this means, the training dataset in the proper
time interval is confirmed in different RL algorithms. Then, the selected model is used for
trading options contracts.

There are many options contracts for one underlying asset. For example, Shanghai
50 ETF option quotation on one day is listed in Table 1. Table 2 shows the 50 ETF call option
candle data that day. The close price of 50 ETF that day was 3.399. In our experiment,
the model trades one option contract in one test, to show a complete trading result on one
contract during a specific period. In reality, the agent can monitor many options contracts
at the same time. We can buy the option contract that the agent takes a buy action on early,
in order to seize the trading opportunity in time.

Table 1. 50 ETF option quotation.

Call Strike Price Put

0.2091 3.2 0.0055
0.1184 3.3 0.0184
0.0530 3.4 0.0509
0.0193 3.5 0.1170
0.0063 3.5 0.2079

Table 2. 50 ETF call option candle data.

Strike Price Open Highest Lowest Close

3.3 0.1671 0.1709 0.1126 0.1184
3.4 0.0876 0.0900 0.0496 0.0530
3.5 0.0379 0.0390 0.0180 0.0193

3.3. Primary Algorithm Introduction

DQN, PPO, and SAC are typical reinforcement learning algorithms. They are used to
verify the effectiveness of the data augmentation method. Details of the three algorithms
are as follows.

3.3.1. Q-Learning and DQN

Methods in this Q-learning family learn an approximator Q(s, a) for the optimal action-
value function, Q∗(s, a). Typically they use an objective function, based on the Bellman
equation. This optimization is almost always performed off-policy, which means that each
update can use data collected at any point during training, regardless of how the agent was
chosen to explore the environment when the data was obtained. The corresponding policy
is obtained via the connection between Q∗ and π∗: the actions taken by the Q-learning
agent are given by:

a(s) = arg max
a

Q(s, a). (2)

DeepMind successfully trains DQN on a set of 49 Atari games and demonstrates the
efficiency of the approach, when applied to complicated environments [31]. The steps of
the DQN algorithm are shown in Algorithm 1.
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Algorithm 1: DQN.

1 Initialize the parameters for Q(s, a) and
target

Q (s, a) with random weights and
empty the replay buffer.

2 With probability ε, select a random action a, otherwise, a(s) = arg max
a

Q(s, a).

3 Excute action a in an emulator and observe the reward r and the next state s
′
.

4 Store transition (s, a, r, s
′
) in the replay buffer.

5 Sample a random mini-batch of transitions from the replay buffer.
6 For every transition in the buffer, calculate target y = r if the episode has ended at

this step, or y = r + γ max
a′∈A

target
Q (s, a).

7 Calculate loss: L = (Q(s, a)− y)2.
8 Update Q(s, a) using the stochastic gradient descent algorithm by minimizing the

loss in respect to the model parameters.

9 Every N steps, copy weights from Q to
target

Q .
10 Repeat from step 2 until converged.

3.3.2. Proximal Policy Optimization

PPO is motivated by the same question of trust region policy optimization (TRPO) [32].
How can we take the biggest possible improvement step on a policy using the data we
currently have, without stepping so far that we accidentally cause performance collapse?
TRPO tries to solve this problem with a complicated second-order method. PPO is a family
of first-order methods that use a few other tricks to keep new policies close to old.

PPO updates policies via:

θk+1 = arg max
θ

E
s,a∼πθk

[L(s, a, θk, θ)], (3)

typically taking multiple steps of (usually minibatch) SGD to maximize the objective. Here,
L is given by:

L(s, a, θk, θ) = min
(

πθ(a|s)
πθk (a|s) Aπθk (s, a), clip

(
πθ(a|s)
πθk (a|s) , 1− ε, 1 + ε

)
Aπθk (s, a)

)
, (4)

in which ε is a (small) hyperparameter, which roughly says how far away the new policy is
allowed to go from the old.

There is another simplified version of this objective:

L(s, a, θk, θ) = min
(

πθ(a|s)
πθk (a|s) Aπθk (s, a), g(ε, Aπθk (s, a))

)
, (5)

where

g(ε, A) =

{
(1 + ε)A A ≥ 0
(1− ε)A A < 0.

(6)

Clipping serves as a regularizer, by removing incentives for the policy to change
dramatically. The hyperparameter ε corresponds to how far away the new policy can go
from the old, while still profiting the objective.

3.3.3. Soft Actor-Critic

SAC is an algorithm that optimizes a stochastic policy in an off-policy way. A central
feature of SAC is entropy regularization. The policy is trained to maximize a trade-off
between expected return and entropy, a randomness measure in the policy. Increasing
entropy results in more exploration, which can accelerate learning later on. It can also
prevent the policy from prematurely converging to a bad local optimum.
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Entropy is a quantity that says how random a random variable is. Let x be a random
variable, with probability mass P. The entropy H of x is computed from its distribution P,
according to:

H(P) = E
x∼P

[− log P(x)]. (7)

In entropy-regularized reinforcement learning, the agent gets bonus rewards at each
timestep. This changes the RL problem to:

π∗ = arg max
π

E
τ∼π

∞

∑
t=0

γt
(

R(st, at, st+1) + αH(π(·|st))

)
, (8)

where α > 0 is the trade-off coefficient. The policy of SAC should, in each state, act to
maximize the expected future return, plus expected future entropy.

Original SAC is for continuous action settings and it is not applicable to discrete action
settings. To deal with discrete action settings of our financial asset, we use an alternative
version of the SAC algorithm that is suitable for discrete actions. It is competitive with
other model-free, state-of-the-art RL algorithms [33].

3.4. Protective Closing Strategy

The protective closing strategies are independent mechanisms, intended to prevent
unbearable losses [34]. Under the stop-loss mechanism, all positions are immediately
closed if the unrealized loss exceeds the threshold. For example, if the threshold is set to 2%
and we take a long position at 5.0, once the price dropped to below 4.9, then the stop-loss
mechanism would be triggered, such that the position would be closed immediately.

There is a take-profit mechanism being used to ensure that a profit is realized in
reference [34]. Once the gain reaches the threshold, the take-profit mechanism is activated
to protect unrealized gain. In our experiment, trading actions depended on the RL agent.
We used the stop-loss mechanism to prevent unbearable losses in options trading. Ideally,
the take-profit mechanism can be learned by the agent from the training process. Therefore,
we do not use the take-profit mechanism in the OTRL framework explicitly.

For the stop-loss mechanism, we need to determine the threshold value that means
the maximum loss a trader can accept in one complete trade. In our experiment, we use the
validation dataset to select the proper stop-loss threshold. The validation dataset contains
the underlying asset and option daily trading data. The trading period of the underlying
asset in the validation dataset is different from the training dataset.

The proposed OTRL framework is illustrated in Figure 3. Firstly, the underlying asset
trading data in different time intervals (a day, 60 min, 30 min, 15 min, and 5 min) are used
to train RL models. Different RL algorithms can be applied, such as DQN, PPO, and SAC,
in our experiment. After the training, the models are used for trading underlying assets in
different periods to select training data in a proper time interval, such as 60-min trading
data. Then, the selected training data are used to retrain the model with different stop-loss
thresholds. Afterward, the retained models are used for trading underlying assets and
options in different periods, in order to select the proper stop-loss thresholds. Finally,
the retrained models, with proper stop-loss thresholds, are used for trading options in the
testing dataset.
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Figure 3. The flowchart of the OTRL framework.

4. Experiment Result

To evaluate the effectiveness of the proposed OTRL framework, we designed an
experiment process, referring to Algorithm 2. Firstly, the better time interval of trading
data is selected by the training and validation process. Secondly, the proper threshold
of the protective closing strategy is determined by the retraining and validation process.
Thirdly, the final models are used for trading options.

4.1. Training Result

In our experiment, we used 50 ETF trading data from 5 January 2009 to 25 January
2017 and 300 ETF trading data from 28 May 2012 to 22 January 2020, in different time
intervals (a day, 60 min, 30 min, 15 min, and 5mins), as training sets. Transaction costs were
set as 0.1% (buy and sell were the same). The reinforcement learning framework we used
was SLM-Lab (https://github.com/kengz/SLM-Lab, accessed on 10 November 2021). We
used DQN, PPO, and SAC to train the trading agents in our experiments.

The agents were initialized with five normalized inputs (open price, highest price,
lowest price, close price, and trading volume), two hidden fully-connected layers (512-512),
and three outputs (buy, hold, and sell). By using the SLM-Lab, one experiment was a
trial in the framework. Additionally, a trial contained four concurrent sessions. Each
session included the same algorithm structure and different initialized random parameters.
The parameters of the DQN, PPO, and SAC models are shown in Table 3.

https://github.com/kengz/SLM-Lab


Appl. Sci. 2021, 11, 11208 10 of 17

Algorithm 2: OTRL Framework.

1 Initialize underlying asset trading data in 5 min, 15 min, 30 min, 60 min, and 1 day
time intervals as TS.

2 Initialize reinforcement learning algorithms set, including DQN, PPO, and SAC,
as RLAS.

3 Initialize underlying assets daily trading data in periods different from TS as VS1.
4 Initialize underlying assets and options daily trading data in periods different

from TS as VS2.
5 Initialize target option daily trading data in periods different from TS, VS1,

and VS2 as TES.
6 Initialize stop-loss thresholds set 1%, 2%, and 3% as SLT.
7 for each t in TS do
8 for each algo in RLAS do
9 train algo model on data t.

10 store trained model in M1.
11 end
12 end
13 for each m in M1 do
14 use model m to trade underlying assets in VS1.
15 find the best two training sets in TS for each algorithm in RLAS.
16 end
17 for each sl in SLT do
18 for each algo in RLAS do
19 train algo model on the best two training sets using sl.
20 store trained model in M2.
21 end
22 end
23 for each m in M2 do
24 use model m to trade underlying assets and options in VS2.
25 find a proper stop-loss threshold for each algorithm in RLAS.
26 end
27 Use selected models with proper stop-loss thresholds to trade target options in

TES.

Table 3. Hyperparameters setting.

Parameter Parameter Description Value

net_type Type of the neuron network fully-connected network
batch_size Batch size 32
loss_func Loss function MSE loss
optimizer Optimization method Adam

lr Learning rate 0.00025
DQN max_frame Training steps of DQN 6,000,000
PPO max_frame Training steps of PPO 10,000,000
SAC max_frame Training steps of SAC 5,000,000

replay_buffer Max size of replay buffer 1,000,000

Figures 4 and 5 show the training results of 50 ETF, in five different time intervals,
using the three RL algorithms. A trial graph takes the mean of sessions and plots an error
envelop using standard deviation. As we can see from Figure 4, the models trained on the
dataset in larger time intervals (such as 60 min or 1 day) tend to perform better in training
results. There is more noise than in the trading data of shorter time intervals (like 5 min
or 15 min). It is difficult for models to learn a pattern using training data with too much
noise. However, limited training data may lead to overfitting. To select a proper time
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interval for training data, we use models trained on 60-min and 1-day trading data for the
validation process.

(a) 60 min PPO (b) 1 day PPO

(c) 60 min DQN (d) 1 day DQN

(e) 1 day SAC (f) 60 min SAC

Figure 4. Training results on 50 ETF in two different time intervals using PPO, DQN, and SAC.
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(a) 5 min PPO (b) 5 min DQN (c) 5 min SAC

(d) 15 min PPO (e) 15 min DQN (f) 15 min SAC

(g) 30 min PPO (h) 30 min DQN (i) 30 min SAC

Figure 5. Training results on 50 ETF in three different time intervals using PPO, DQN, and SAC.

4.2. Validation Result

To verify the effectiveness of the models, we use them for trading the assets on different
trading dates from the training dataset. Validation sets contain 50 ETF trading data from
22 February 2017 to 30 March 2021, as well as 300 ETF trading data from 23 January 2020 to
23 September 2020. Figures 6 and 7 show the trading performance of the agents trained on
60-min and 1-day trading data, using the three algorithms, compared with the buy and
hold (B and H) strategy.

From Figures 6 and 7, we can see that the agents trained on 60-min trading data
surpass the agents trained on 1-day trading data and B and H strategy among the three



Appl. Sci. 2021, 11, 11208 13 of 17

algorithms. The agents trained on 1-day trading data do not always outperform the B and
H strategy on the validation sets, and they perform well on the training sets. The amount
of 1-day trading data training sets is a quarter of that of the 60-min trading data training
set. We infer that the poor performance of the agents trained on 1-day trading data was
due to overfitting. In addition, the agents trained using PPO tend to hold the asset and
reduce trading frequency. While the agents trained using DQN tend to have no position
and wait for trading opportunities. Furthermore, the agents trained using SAC tend to
trade frequently or even randomly.

(a) PPO (b) DQN (c) SAC

Figure 6. Trading performance on 50 ETF.

(a) PPO (b) DQN (c) SAC

Figure 7. Trading performance on 300 ETF.

The validation results show that the agents, trained on 60-min trading data, using
the three algorithms, perform well on trading assets in different trading dates from the
training dataset, which verifies their effectiveness. To further improve the performance of
trading options, the protective closing strategy is added to the models in the next stage.

4.3. Trading Performance with Protective Closing Strategies

To better apply the models to option trading, we need to add a protective closing strat-
egy to the training stage. In our experiment, the alternative stop-loss thresholds were 1%,
2%, and 3%. If the loss of one step exceeded the threshold, all positions were immediately
closed. The mechanism can prevent unbearable losses, especially in options trading.

In the preceding validation process, we found that the models trained on 60-min
trading data performed better on the validation set and surpassed the B and H strategy.
Therefore, the training for threshold selection used 60-min trading data as the training
set. From the Table 4, we can see that 2% is the better threshold for the PPO and DQN
models. The protective closing strategy was unsuitable for the SAC models. That may be
because the SAC models have their own stop-loss mechanism in the frequent and even
random trading mode. Because the SAC models trade frequently, they can not benefit
from long-term holding. Under this condition, the protective closing strategy shortens the
holding time further, which tends to reduce the returns, rather than lowering the risk.

Figures 8 and 9 show the trading performance of the agents with and without the
protective closing strategy, compared with the B and H trading strategy. The validation set
is the same as the one in the previous section. From Figures 8 and 9, we can see that the
protective closing strategy does not lower the returns while reducing the risk of unbearable
losses, which is especially important for options trading.
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Table 4. Trading performance with different stop-loss thresholds.

Assets Model Thresholds Mean Returns

50 ETF DQN 1% 1.32%
50 ETF DQN 2% 1.98%
50 ETF DQN 3% 1.56%
50 ETF PPO 1% 3.87%
50 ETF PPO 2% 4.74%
50 ETF PPO 3% 4.06%
300 ETF DQN 1% 0.95%
300 ETF DQN 2% 1.37%
300 ETF DQN 3% 1.04%
300 ETF PPO 1% 3.67%
300 ETF PPO 2% 4.31%
300 ETF PPO 3% 3.91%

(a) PPO (b) DQN

Figure 8. Trading performance on 50 ETF.

(a) PPO (b) DQN

Figure 9. Trading performance on 300 ETF.

Since the models with the protective closing strategy performed well on the validation
set, they can be applied to trade options in the next stage. Although the SAC model
cannot be trained well with protective closing strategy, it is still used to trade options,
for comparison.

4.4. Trading Performance on Options

Having determined the training data and chosen the proper stop-loss threshold, we
can eventually apply the model to trading options. In our experiment, the underlying
assets of the options were 50 and 300 ETF. The options were traded using the models
trained on respective underlying assets trading data. The trading dates of the testing set
were different from those of the training set.
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Figure 10 shows trading performance on options of 50 and 300 ETF. The option in
Figure 10a was 2.45 call of 50 ETF from 26 January 2017 to 27 September 2017. The op-
tion in Figure 10b was 4.5 call of 300 ETF from 23 January 2020 to 23 September 2020.
The DQN and PPO models were trained with a 2% stop-loss threshold, and they were
used for trading options with the same threshold. The SAC model was trained without a
protective closing strategy, but it was used to trade options with a 2% stop-loss threshold,
for comparison. From Figure 10 and Table 5, we can see that the RL models with protective
closing strategy outperformed the B and H trading strategy, which verifies the effectiveness
of our OTRL framework. In addition, the PPO model performed best among the three
models, which is likely due to the fact that its internal strategy of holding goes well with
the stop-loss mechanism in trading options.

(a) 50 ETF 2.45 call option (b) 300 ETF 4.5 call option

Figure 10. Trading performance on options.

Table 5. Trading performance on different options.

Options Model Annualized Return Sharpe Ratio

50 ETF 2.45 call B and H 608.94% 32.56
50 ETF 2.45 call DQN 969.05% 58.61
50 ETF 2.45 call PPO 1294.68% 76.34
50 ETF 2.45 call SAC 1027.28% 62.40
300 ETF 4.5 call B and H 848.68% 34.79
300 ETF 4.5 call DQN 1322.01% 72.03
300 ETF 4.5 call PPO 1524.88% 100.36
300 ETF 4.5 call SAC 1274.94% 67.70

5. Conclusions

In this paper, we propose the OTRL framework to trade options using RL algorithms. It
provides a set of executable processes, including training, validation, and testing processes.
Underlying assets’ trading data in different time intervals were used as the training set.
In our experiment, PPO, DQN, and SAC were chosen to train the models. In practice, any
RL algorithms can be applied to trading options using the OTRL framework. Trading data
options of 50 and 300 ETF, in the A-share market, was used as the testing set. The models
with a protective closing strategy performed well on options trading, compared with the
B and H trading strategy, which verifies the effectiveness of the OTRL framework. It
addresses the problem of lack of training data and reduces trading risk. The PPO model
with a protective closing strategy performed best among the three models, which may have
a reference value for the following research.

While the proposed framework has been verified effectively, some directions are still
worth studying in the future. Multi-leg options strategies can be considered to reduce
trading risk further. Meta learning may be utilized to train the model using options with
different strike prices simultaneously.
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