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Abstract: Building extraction from high spatial resolution imagery (HSRI) plays an important role in
the remotely sensed imagery application fields. However, automatically extracting buildings from
HSRI is still a challenging task due to such factors as large size variations of buildings, background
complexity, variations in appearance, etc. Especially, it is difficult to extract both crowded small
buildings and large buildings with accurate boundaries. To address these challenges, this paper
presents an end-to-end encoder–decoder model to automatically extract buildings from HSRI. The
designed network, called AEUNet++, is based on UNet++, attention mechanism and multi-task
learning. Specifically, the AEUNet++ introduces the UNet++ as the backbone to extract multiscale
features. Then, the attention block is used to effectively fuse different-layer feature maps instead
of direct concatenation in the output of traditional UNet++, which can assign adaptive weights to
different-layer feature maps as their relative importance to enhance the sensitivity of the mode and
suppress the background influence of irrelevant features. To further improve the boundary accuracy
of the extracted buildings, the boundary geometric information of buildings is integrated into the
proposed model by a multi-task loss using a proposed distance class map during training of the
network, which simultaneously learns the extraction of buildings and boundaries and only outputs
extracted buildings while testing. Two different data sets are utilized for evaluating the performance
of AEUNet++. The experimental results indicate that AEUNet++ produces greater accuracy than
U-Net and the original UNet++ architectures and, hence, provides an effective method for building
extraction from HSRI.

Keywords: building extraction; high spatial resolution imagery (HSRI); UNet++

1. Introduction

With the rapid development of high spatial resolution imagery (HSRI), which makes
such small objects as buildings identifiable from images, immediate and accurate extraction
of buildings from HSRI has become one of the interesting focuses in the remote sensing
field [1–4]. Effective extraction of buildings is significant for illegal building detection,
urban planning, disaster emergency response, etc. In practice, it is time-consuming to
extract buildings from images by manual mode. Automatic and timely building extraction
methods are urgent to be developed. Luckily, several methods have been presented to
automatically extract buildings from images in recent decades. They can be roughly divided
into two categories: traditional image processing and deep learning-based methods. The
traditional building extraction method mainly trains an efficient classifier for extraction of
buildings from images using a mount of samples containing such handcrafted features as
the spectrum, texture, geometry, shadow, etc. [5–11]; these algorithms have made important
progress in building extraction. While the handcrafted features vary with different sensor
types, building structures, light conditions, etc., the traditional methods are only suitable
for specific types of buildings, and their generalization ability is limited.
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Recently, deep learning technologies, especially the convolutional neural network
(CNN), have shown potential in remote sensing applications [12]. The use of deep learning
for building extraction has attracted considerable attention, because it has good feature
representation ability [13–15]. However, the typical CNN models, such as AlexNet [16]
and VGG networks [17], are usually used to mark the entire image, not to label each
pixel to a class. Evolving from CNN, the fully convolutional network (FCN) contributes
greatly to semantic segmentation, which can assign a label to each pixel. Inspired by the
great success of FCN in semantic segmentation, building extraction can be completed by
semantic segmentation. Thus, on the basis of FCN architecture, many FCN-based models
have been proposed for extracting buildings [18–30]. However, due to pooling operators
in the CNN or the availability of only a portion of features to generate the final feature
map, the problems of missing image content details and poor boundary accuracy can arise.
Furthermore, due to large intra class variance and small inter class variance in the pixel
values and similarities between buildings and their backgrounds, as well as the materials,
proportions and illumination of buildings, extensive salt-and-pepper noise and boundary
ambiguities exist in the building extraction results produced by the FCN-based methods.

To address the problem of spatial location and content details induced by the downsam-
pling operations in the CNN, many improved methods have been presented for achieving
more accurate edges by using more boundary geometric information or post-processing
operators. Shrestha et al. [18] designed a new FCN for extraction of buildings from im-
ages, in which post-processing conditional random fields (CRFs) are added at the end
of the network to refine the coarse pixel level label predictions to produce fine-grained
segmentation results. The principle is to transform the pixel classification problem into
a probabilistic reasoning problem. Wei et al. [19] designed a deep network for extracting
building footprints, in which the polygon regularization is conducted on the initial result
to obtain a rectangle building map. Xia et al. [20] presented a CNN model that combined
full-scale skip connections and an edge guidance module to improve the location accuracy
of buildings. Sun et al. [21] introduced the active contour model to the CNN, combining
remote sensing images and LiDAR data for precise building extraction. However, while
most of the above methods need accurate edge information, auxiliary data or sophisticated
structures, it is difficult to achieve accurate edges due to poor spatial resolution, spectral
similarity, and mixed pixels. Furthermore, CRF-based methods do not sufficiently extract
features from the images, lack adequate information propagation, and use post-processing
that also lowers model performance.

Improving multiscale feature extraction ability is also an important way to enhance
building extraction performance. Based on FCN and VGG16, the multiscale decoding
network (MSDNet) was designed for the semantic segmentation of images [31]; an inception
module, which combines the un-pooling, transposed convolution, and dilated convolution
paths, is treated as its decoding part. Ma et al. [32] proposed the GMEDN framework,
in which a distilling decoder part is used to extract the multiscale features for precise
prediction results. Rastogi et al. [33] provided the UNet-AP model for accurate building
footprint extraction from very-high resolution remote sensing satellite imagery. In which
atrous convolution is applied to feature extraction for enhancing the representation of
objects at different scales in the image. The USPP framework was provided for building
segmentation in high-resolution remote sensing [34], which enables extraction of features
at multiple spatial scales and at the same time up-samples the feature maps to learn
global contextual information by incorporating a spatial pyramid pooling module. These
models try to extract and fuse the multiscale features in the network; however, to reduce
the complexity of the model or improve its efficiency, the multiscale feature extraction
modules are mainly implemented in the decoding part of the network. Thus, extraction
of the multiscale features is not enough, for example, lacking refinement of the feature
maps extracted by the network to reduce negative feature information, the fusion of
deep and shallow features in the encoding stage, the direct multiscale features from the
input images, etc.
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In order to fully utilize different-level feature maps, residual networks or skip-layer
connections are used to fuse the shallow layers and deep layers in some proposed models.
For example, the dilated convolutions are used to increase the receptive field instead of
using pooling layers [22–24]. However, dilated convolution-based models must perform
convolutional operations on high-resolution feature maps through the entire network,
which makes such models difficult to train and computationally expensive. Another impor-
tant approach is to use skip connections, such as U-Net [25], UNet++ [26], SegNet [27], etc.
They directly connect a convolutional layer in the encoder and a corresponding layer in the
decoder. Thus, the fusion of the feature maps of earlier layers and the discriminative feature
maps up-sampled at the end of the encoder step can obviously refine the segmentation map.
Therefore, the skip-connections approach is widely used in encoder–decoder models for
improving the performance of remote sensing classification [35,36]. Diakogiannis et al. [37]
proposed the ResUNet-a model, in which U-Net was taken as the encoder/decoder back-
bone, and the pyramid scene parsing pooling module, residual connections module and
multi-tasking module were combined. The above methods can perform well in most
cases, but while these networks are able to improve the overall segmentation results, the
boundaries between two different semantic classes often can not be well defined.

Above all, despite the great progress achieved by the above methods, accurate ex-
traction of buildings from remote sensing images is still a challenge. Presently, attention
mechanisms [38] and multi-task learning [39] are widely used in image processing; among
them, the goal of applying attention mechanisms is to help select effective information used
in the network. The aim of multi-task learning is to leverage useful information contained
in related tasks to help improve the generalization performance of all tasks. Inspired by
attention mechanisms and multi-task learning, in this paper, to address the aforementioned
problems based on the traditional UNet++ architecture combined with attention mecha-
nisms and multi-task learning, we designed an improved UNet++ architecture with an
attention block and edge preservation (AEUNet++) for accurate extraction of buildings
from HRSI. Based on UNet++, we exploited deep structured feature fusion techniques
to enhance the feature fusion by giving a trainable weight to the different feature maps
using the convolutional block attention module (CBAM) [40]. Further, in order to address
the problem of segmentation prediction results with poor boundaries, we incorporated
the boundary information of the building mask into the network by introducing a multi-
task loss based on the distance class map. The aim was to produce accurate semantic
segmentation results in homogeneous regions and preserve image details.

The main advantages of the AEUNet++ are as follows:

(1) An improved UNet++ for the wise fusion of extracted feature maps is proposed, in
which the CBAM, including the spatial attention and channel attention gates, is intro-
duced to learn ‘where’ and ‘what’ the meaningful representations of the given features
are. It significantly suppresses the drawbacks of direct concatenation by averaging
the operations in the UNet++ models, thus improving the segmentation accuracy.

(2) To improve the boundary precision of extracted buildings, the boundary geometric
information of the building is introduced into the proposed AEUNet++ by using a
multi-task loss based on the proposed distance class map.

(3) The proposed AEUNet++ achieved 1.62% and 1.8% F1 and 2.0% and 3.24% intersec-
tion over union (IoU) improvements compared with UNet++ on the Massachusetts
building data set [41] and the WHU data set [36] and outperforms two other SOTA
methods on the two data sets.

2. Methodology

The purpose of this paper was to explore a network to improve the accuracy of building
extraction from HSRI, especially for enhancing poor boundaries. By introducing the
attention mechanism and multi-task learning into the conventional UNet++, we designed
an end-to-end encoder–decoder network for automatically extracting buildings from HSRI
(as shown in Figure 1). The proposed model mainly contains three modules: multiscale
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features extraction module, attention block, and multi-task learning module. First, remote
sensing images are fed into the multiscale feature maps extraction module for extracting
multiscale feature maps, then, to enhance the fusion of the multiscale feature maps, the
attention block is applied to enhance the fusion of feature maps from different hierarchical
layers according to their degrees of importance. Lastly, to further address the problem of
poor extracted building boundaries caused by the pooling operations in the AEUNet++,
the multi-task learning module is introduced to optimize the segmentation results for
producing fine-grained segmentations with accurate boundaries.
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Figure 1. The architecture of the proposed AEUNet++ (the output of previous stage is the input of
the next stage).

2.1. Multiscale Feature Extraction Module

Variants of encoder–decoder architectures such as FCN and U-Net had been widely
used to extract multiscale features from images due to skip connections, which can combine
deep, semantic, coarse-grained feature maps from the decoder sub-network with shallow,
low-level, fine-grained feature maps from the encoder sub-network. Specially, UNet++ [26]
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is a variant of U-Net, which can narrow and fill the information gap between the feature
maps of the encoder and decoder prior to fusion. In this study, the multiscale feature
extraction module of the proposed AEUNet++ was based on the traditional UNet++, in
which the encoder and decoder sub-networks are connected through a series of nested
and dense skip pathways. Additionally, long-range connections are also introduced by the
encoder and the corresponding decoder parts; thus, different hierarchical feature maps from
the encoder can be fully fused in the decoder part, and as a result, the network becomes
much more precise and expansible. As shown in the part on multiscale feature extraction
in Figure 1, let xi,j denote the output of node Xi,j, where i denotes ith down-sampling layer
along the decoder pathway and j is jth convolution layer along the skip pathway. The
fused feature maps xi,j can be represented as:

xi,j =

{
δcov(xi−1,j) , j = 0
δcov(δcat(δcat(xi ,0, xi ,1 · · · , xi ,j−1), δup(xi+1,j−1))), j > 0

(1)

where δcov represents a convolution operation including an activation function, δcat is the
concatenation, and δup represents an up-sampling layer. If j = 0, Xi,j represents the nodes
in the encoder sub-network. If j > 0, Xi,j represents the concatenation results of all the other
nodes in the same level and the up-sampled result of Xi+1,j−1, which includes the deeper,
coarser and sematic information.

2.2. Attention Block

As shown in the part on multiscale feature extraction in Figure 1, X0,1, X0,2, X0,3 and
X0,4 represent the four predicted feature maps generated by the UNet++, respectively. In
the traditional UNet++, the four feature maps are directly concatenated by an averaging
operation, which will suppress the better feature maps and raise the negative feature
maps on the final output. The reasons may be as follows: for the extracted hierarchical
semantic features, the low-level feature maps have poor semantic information but rich
spatial location information for the small receptive field, whereas the high-level feature
maps have strong semantic information but weak spatial location information because of
the large receptive field. Hence, feature maps from different levels should be concatenated
discriminately to make networks allocate reasonable attention to the high-level and low-
level features. Furthermore, it is necessary to emphasize the important parts and suppress
the unimportant parts due to the extracted features that are often spatially affected by
similar patterns and noisy backgrounds. Thus, in this paper, in order to select representative
features when fusing different level feature maps, we assigned weights to different-layer
feature maps as their relative importance in the channel dimension and sub-features in the
spatial dimension. Thus, inspired by the great progress in attention mechanisms of neural
networks, CBAM was introduced in our proposed network to learn which information
to emphasize or suppress, which is a sequential combination of a channel and a spatial
attention module (as shown in the attention block in Figure 1).

As shown in Figure 2, given the predicted feature map F ∈ RC×H×W generated from
the multiscale features extraction module, N = H×W denotes the number of spatial pixels,
and C is the dimension of the feature map.
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The channel attention explores ‘what’ is useful in an input image by exploiting the inter-
channel relationships of features. Firstly, two descriptors including average-pooled features
FC

AVG and max-pooled features FC
MAX are generated by using global average-pooling and

global max-pooling for aggregating the global information of each channel and clues about
distinctive object features, respectively. The two descriptors are then forwarded to a shared
multi-layer perceptron (MLP) (as shown in Figure 3) to produce two vectors, which are
next merged by an element-wise sum and finally output the channel attention map Mc(F):

Mc(F)= Sigmoid(a1(a0(FC
AVG)) + a1(a0(FC

MAX)) (2)

where a0 and a1 denote the MLP weights.
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The spatial attention explores ‘where’ the informative regions that should be paid
more attention are, just as illustrated in Figure 4. Firstly, based on the channel refined
feature F’, average-pooled features FS

AVG and max-pooled features FS
MAX across the channel

are generated by performing average-pooling and max-pooling for aggregating the channel
information, respectively. Then, they are concatenated and convolved by a standard 7 × 7
convolution layer, producing the spatial attention map:

Ms(F)= Sigmoid( f 7×7([FS
AVG; FS

MAX])) (3)

where f 7×7 denotes a convolution operation with size of 7 × 7.
Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 18 
 

Channel-refined
Feature

F’

M
axpool

A
vgpool

conv7x7

Satial
A

ttention

C×H×W

1×H×W

2×H×W MS

C×H×W

 
Figure 4. The spatial attention mechanism. 

Then, the CBAM sequentially infers the channel attention map 1 1
cM RC× ×∈  and the 

spatial attention 1
sM R H W× ×∈ , and the total attention process can be written as: 

c

s

F ' M (F) F,
F '' M (F') F',

= ⊗
= ⊗

 (4)

where ⊗  represents element-wise multiplication and F ''  is the final refined feature 
map. cM (F)  and sM (F')  are the channel and spatial attention maps as described above, 
respectively. 

At last, the four prediction feature maps generated by the multiscale feature extrac-
tion module are fused by assigning adaptive weights to different-layer feature maps as 
their relative importance, which is refined by the CBAM. 

2.3. Multi-Take Learning Module 
Due to the downsampling operations in the UNet++ network, image content details 

and spatial location information often are missed in the result; in particular, buildings are 
segmented with poor boundaries. To improve the accuracy of boundaries, here, we intro-
duced the building edge geometric information into the proposed network as the con-
straints to guide the network to produce precise boundaries, which is trained by the multi-
task learning based on the distance class map defined in this part. As shown in the multi-
task learning part of Figure 1, two convolutional layers DCL  and SegL  are added to the 
AEUNet++ to balance semantic properties and the boundary geometric properties, where 
DCL  is used to predict the distance class to the edges of building, and the segmentation of 

buildings is predicted by SegL . 
Building masks and boundary maps (as shown in Figure 5) are usually used to incor-

porate building geometric information into the network, while both of them have their 
own advantages and shortcomings. If using the boundary maps, due to spectral variation, 
limited spatial resolution, noise pixels, and the fact that edges only occupy a tiny part of 
the whole image, it is difficult for the network to produce accurate closed outlines that fit 
the boundaries of the buildings well. Furthermore, the boundary maps cannot judge 
whether pixels are inside or outside buildings. Using the building mask maps can yield a 
better result, but it cannot represent boundaries of adjacent buildings. To solve these prob-
lems, we introduced the distance class map to represent the building labels in the pro-
posed AEUNet++. As shown in Figure 5, the signed distance function is firstly introduced 
to represent the distances of pixels between the boundaries’ pixels, and then extracted as 
output representation constraints. The value of the signed-distance function for a pixel 
denotes the distance between the pixel and its nearest boundary pixel, and positive and 
negative values indicate whether the pixel is inside or outside the building, respectively. 

Figure 4. The spatial attention mechanism.



Appl. Sci. 2022, 12, 5960 7 of 17

Then, the CBAM sequentially infers the channel attention map Mc ∈ RC×1×1 and the
spatial attention Ms ∈ R1×H×W , and the total attention process can be written as:

F′ = Mc(F)⊗ F,
F′′ = Ms(F’)⊗ F’,

(4)

where⊗ represents element-wise multiplication and F′′ is the final refined feature map. Mc(F)
and Ms(F′) are the channel and spatial attention maps as described above, respectively.

At last, the four prediction feature maps generated by the multiscale feature extraction
module are fused by assigning adaptive weights to different-layer feature maps as their
relative importance, which is refined by the CBAM.

2.3. Multi-Take Learning Module

Due to the downsampling operations in the UNet++ network, image content details
and spatial location information often are missed in the result; in particular, buildings
are segmented with poor boundaries. To improve the accuracy of boundaries, here, we
introduced the building edge geometric information into the proposed network as the
constraints to guide the network to produce precise boundaries, which is trained by the
multi-task learning based on the distance class map defined in this part. As shown in the
multi-task learning part of Figure 1, two convolutional layers LDC and LSeg are added to the
AEUNet++ to balance semantic properties and the boundary geometric properties, where
LDC is used to predict the distance class to the edges of building, and the segmentation of
buildings is predicted by LSeg.

Building masks and boundary maps (as shown in Figure 5) are usually used to
incorporate building geometric information into the network, while both of them have
their own advantages and shortcomings. If using the boundary maps, due to spectral
variation, limited spatial resolution, noise pixels, and the fact that edges only occupy a tiny
part of the whole image, it is difficult for the network to produce accurate closed outlines
that fit the boundaries of the buildings well. Furthermore, the boundary maps cannot
judge whether pixels are inside or outside buildings. Using the building mask maps can
yield a better result, but it cannot represent boundaries of adjacent buildings. To solve
these problems, we introduced the distance class map to represent the building labels in
the proposed AEUNet++. As shown in Figure 5, the signed distance function is firstly
introduced to represent the distances of pixels between the boundaries’ pixels, and then
extracted as output representation constraints. The value of the signed-distance function
for a pixel denotes the distance between the pixel and its nearest boundary pixel, and
positive and negative values indicate whether the pixel is inside or outside the building,
respectively. For convenience, the distance is truncated at a given threshold, and the
truncated signed-distance function can be described as:

Dist(i) = δdmin(min
j∈X

d(i, j), d) (5)

where i denotes a pixel in an image, x denotes the set of pixels belonging to the building
boundaries, and min

j∈X
d(i, j) is the Euclidean distance between the pixel i and its nearest

boundary pixel j. d is a threshold, and δd denotes a sign function to indicate that the pixel is
inside or outside the building; if δd = 1, pixel i is inside the building mask, while δd = −1
represents that pixel i is outside the building mask.

In this paper, to facilitate training of the network, we defined the distance class map by
uniformly quantizing the truncated signed-distance Dist(i) to a limited number of classes at
equal intervals. As shown in Figure 5d, different values represent different distance classes.
In this case, the boundary prediction is converted into the multi-label segmentation task,
because pixels are assigned to finely divided classes based on their distance to boundaries
instead of a small number of coarse classes (e.g., building and non-building). The distance
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class maps guide the network to differentiate regions with different spatial relations to
building masks.
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2.4. Loss Function of AEUNet++

As described above, our proposed AEUNet++ comprises an edge branch and segmen-
tation branch, and we define the multi-task loss as follows:

L = λ1Lseg + λ2LDC (6)

where Lseg is the semantic segmentation task loss function and LDC is the distance class map
prediction task loss function, and they are weighted by λ1 and λ2, respectively. Usually,
the weighting terms λi are set equal or found through an expensive grid-search. Here, the
uncertainty-based multi-task loss [35] is introduced to determine the weighting terms λi by
using the uncertainty in the model’s prediction for each task, in which, depending on the
confidence of the individual task prediction, a relative task weight is learned. Equation (6)
can be rewritten as follows:

L(x; θ, σDC, σseg) = Lseg(x; θ, σseg) + LDC(x; θ, σDC) (7)

where θ denotes the network parameters, x is the trained images, and σDC, σseg are the
corresponding task weights for λi, respectively.

If the likelihood of the model for each classification task is represented by the model
output f (x) with the uncertainty through a SoftMax function:

P(C = 1|x, θ, σt) =
exp[ 1

σ2
t

fc(x)]

∑c′=1 exp[ 1
σ2

t
fc′(x)]

(8)

where P is the multi-task estimation, fc(x) is the desired output, fc′(x) is the original actual
input, and σt denotes the scaling factor.

Using the negative log likelihood for Equation (4), and expressing the classification
loss with uncertainty as follows:

L(x, θ, σt) =
C
∑

c=1
−Cc log P(Cc = 1|x, θ, σt)

=
C
∑

c=1
−Cc log{exp[ 1

σ2
t

fc(x)]}+ log
C
∑

c′=1
exp[ 1

σ2
t

fc′(x)]
(9)
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Assuming the multi outputs consist of continuous and discrete outputs, they are
modeled by Gaussian likelihood and SoftMax, respectively. Then, the loss function can be
simplified as follows:

1
σ2

t
∑
c′

exp[
1
σ2

t
fc′(x)] ≈ {∑

c′
exp[ fc′(x)]}

1
σ2

t (10)

Combining Equations (9) and (10), the loss function of the network is described as follows:

L(x, θ, σt) ≈
1
σ2

t

C

∑
c=1
−Cc log P(Cc = 1|x, θ) + log(σ2

t ) (11)

3. Experiments and Results
3.1. Data Sets

To evaluate the performance of AEUNet++, the data sets we used in the experiments
were two open building data sets, i.e., the Massachusetts buildings dataset and WHU aerial
image data set. In addition, as shown in Figures 6 and 7, we can see that the two data
sets cover various building characteristics, such as size, shape, and spatial resolution and
distribution, Thus, the two kinds of data sets can be used to evaluate the generalization
ability of the proposed model.
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3.1.1. Massachusetts Buildings Data Set

The Massachusetts building data set [37] consists of many 1 m resolution RGB aerial
images with the size of 1500 × 1500 pixels. The original data set contains 137 images
for training, 10 images for testing, and 4 images for validating. For computational con-
venience, in the data preprocessing stage, we cropped all of the images into 512 × 512
pixels and added a flip operation for data augmentation. Through augmentation, there
were 4700 images for training and 144 images for validating. Lastly, we transformed la-
beled images to grayscale images with pixel values of 0 and 1. Some samples are shown
in Figure 6.

3.1.2. WHU Aerial Image Data Set

The WHU data set [38] consists of an aerial image sub-dataset and two satellite image
sub-datasets. In this experiment, only the aerial image data sets were selected as the test
data. The WHU aerial dataset covers 450 km2 in Christchurch, New Zealand, and about
220,000 independent buildings are contained in it. The spatial resolution of the WHU
arterial image data set is 0.3 m. In the data reprocessing stage, images were cropped into
512 × 512 pixels. All of the cropped images were sliced into training, test and validation
sets numbering 4736, 2416 and 1036 images, respectively. Some samples of them are shown
in Figure 7.
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3.2. Network Configurations and Training

In Section 2, we proposed the AEUNet++ model based on the traditional UNet++. It
can be regarded as an improved UNet++, so in the two experiments, the performance of the
proposed AEUNet++ model was compared with the four SOTA methods, including U-Net,
UNet++, SegNet and DeeplabV3+. All networks in the experiments used the same settings:
adaptive moment estimation (Adam) optimizer was adopted, the initial learning rate was
0.0001, batch size was 5, and the learning rate was decreased by 0.5 times every 50 epochs.
We conducted 100 epochs on the two data sets. All networks were implemented with
Pytorch 1.2.0 and python 3.7.9, and were checked using a single Nvidia Tesla P100 GPU
with 16 GB.

In addition, before the training stage, it was necessary to generate the defined distance
maps used in the multi-task learning module. In all experiments, as shown in Figure 5,
based on the building mask in the ground truth samples, the building boundaries were
extracted through the canny edge detection. Then, for each of the building boundaries,
the truncated signed-distance of each pixel was calculated based on Equation (5). Finally,
each building mask described by the truncated signed-distance was categorized into
different classes, namely distance class maps (e.g., Figure 5d). Here, we repeated tests using
AEUNet++ with different truncation thresholds by step 1 in the interval [15,30] and the
different truncated signed-distance class number by step 1 in the interval [5,20] in the WHU
data set. Figure 8 shows the intersection over union (IoU) curve obtained with different
pairs of thresholds (drawing a point every 10 points); the curve fluctuates and reached the
highest IoU at threshold pairs (20, 11); thus, the truncation threshold was set to 20, and the
truncated signed-distance class number was set to 11 in the experiment.
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3.3. Metrics

To quantitatively evaluate the effectiveness of the proposed network, overall accuracy
(OA), recall, precision, F1 score, IoU and mIoU were utilized to evaluate its performance.
They are defined as follows:

OA =
TP + TN

TP + FP + FN + TN
(12)

recall =
TP

TP + FN
(13)

precision =
TP

TP + FP
(14)

F1 =
2× precision× recall

precision + recall
(15)
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IoU =
TP

TP + FP + FN
(16)

mIoU =
1
N

N

∑
k=1

TPk
TPk+FPk+FNk

(17)

where TP denotes true positives (correctly extracted building pixels), FP denotes false
positives (pixels mislabeled as buildings in results), TN denotes true negatives (correctly
identified nonbuilding pixels), and FN denotes false negatives (pixels incorrectly labeled as
non-buildings or that could be interpreted as missed building pixels). TPk, FPk and FNk
denote the TP, FP and FN of class k, respectively, and N is the number of classes.

3.4. Experimental Results
3.4.1. Results with the Massachusetts Buildings Data Set

Figure 9 lists the building extraction results for the Massachusetts buildings data set
predicted by the U-Net, UNet ++, SegNet, DeeplabV3+ and AEUNet++, respectively. Seen
from the segmentations of U-Net, SegNet and DeeplabV3+, due to mixed pixels and spectral
similarity in the image, they produced prediction results including an amount of salt-and-
pepper noise and showed weaker performance compared with the other two methods.
Additionally, many mislabeled pixels were produced; for example, many road pixels were
labeled as building pixels in marked areas A and E, some building pixels were mislabeled
as background in marked areas D and F because the plain skip connections are often used
in U-Net for fusing multiscale features, and many noise features were extracted by SegNet
and DeeplabV3+, which may result in insufficient fusion of feature maps from different
layers. Seen from marked areas A, C, D and F, UNet ++ and AEUNet++ presented more
homogeneous segmentation maps with accurate boundaries due to fine-grained details
and features captured by the nested and dense skip connections introduced in UNet++
and AEUNet++. Compared with UNet++, AEUNet++ produced more homogeneous
segmentation maps with accurate boundaries due to the introduce of attention block and
multi-task learning to adaptively fuse multiscale features and edge constraints. Although
UNet++ nearly eliminated most of the isolated noises and obtained satisfactory results, a
number of details in the image content were missing, and many pixels were mislabeled. As
we can see from the segmentation results obtained with AEUNet++, most of the isolated
noises were eliminated and details of the image content were satisfactorily preserved.
Taking the marked area E as an example, many road pixels were mislabeled as building
pixels by UNet++. Seen from the marked area F, many shadow pixels were mislabeled as
building pixels by UNet++, while in AEUNet++, the pixels were mostly correctly labeled.
The main reasons may be as follows: in the traditional UNet++, the total loss was obtained
by averaging the final output of extracted feature maps by UNet++; the simple averaged
result may suppress the better feature maps and raise the negative feature maps from the
final output. However, in AEUNet++, the four prediction feature maps were adaptively
refined through the attention block, and as a result, feature maps were learned that should
have been emphasized or suppressed. As we can see from Figure 8, AEUNet++ achieved
the most accurate boundaries among the three methods, because in the three methods,
progressive down-sampling may cause the loss of location information, which will result
in poor boundaries. The multi-task learning was introduced into the proposed AEUNet++
network to incorporate building boundary geometric properties, and as a result, more
accurate boundaries will be preserved in comparison with U-Net, UNet++, SegNet and
DeeplabV3+.

Table 1 gives the quantitative evaluation results. Seen from Table 1, UNet++ and
AEUNet++ yielded higher segmentation accuracies than that of U-Net. Amongst the
three models, AEUNet++ obtained the greatest accuracy. Compared with UNet++, after
adding the attention block and multi-task learning training, the prediction accuracy was
significantly improved; AEUNet++ obtained 95.12%, 83.40%, 66.10%, 73.75%, 58.41%, and
76.58% with respect to OA, Precision, Recall, F1, IoU, and mIoU index, respectively. The
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accuracy gains with AEUNet++ over UNet++ were 0.37%, 1.78%,2.32%, 2.14%, 2.64% and
1.51%, respectively, yielding improvements of approximately 2.64%, 2.0%, 0.97% and 0.11%
IoU compared with the other four methods.
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Figure 9. Segmented patches from U-Net, UNet++, SegNet, DeeplabV3+ and AEUNet++ based on
the Massachusetts buildings dataset. The white color in the segmented patches represents pixels
belonging to buildings (A–F denote the marked areas).

Table 1. Quantitative comparison of OA, Precision, Recall, F1, IoU and mIoU for the Massachusetts
buildings data set.

Method OA Precision Recall F1 IoU mIoU

U-Net 94.75 81.62 63.78 71.61 55.77 75.07
UNet++ 94.82 81.68 64.58 72.13 56.41 75.43
SegNet 94.89 80.99 66.39 72.97 57.44 75.98

DeeplabV3+ 93.97 81.11 67.40 73.62 58.30 75.64
AEUNet++ 95.12 83.40 66.10 73.75 58.41 76.58

3.4.2. Results with the WHU Aerial Image Data Set

Figure 10 illustrates the segmentation results based on the WHU aerial image data
set using U-Net, UNet ++, SegNet, DeeplabV3+ and AEUNet++, respectively. Visually,
UNet++ and DeeplabV3+ produced more homogeneous segmentation maps with accurate
boundaries than those of U-Net and SegNet, and AEUNet++ had the best performance,
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whereas extensive salt-and-pepper noises existed in the U-Net, SegNet and DeeplabV3+
results. UNet++ enhanced the U-Net to some extent, but showed weaker performance
than AEUNet++. This was also illustrated in areas A–H. Specially, many small areas of
buildings were mislabeled as background by U-Net, UNet++, SegNet and DeeplabV3+ in
areas A, B, C and F, but AEUNet++ showed better performance. The main reason may
be that insufficient utilization of feature maps from different layers may have occurred
due to the use only of plain skip connections by U-Net. Though UNet++ used the dense
skip connections to capture more representative feature maps, negative feature maps were
produced. Moreover, in order to increase the perceptions of U-Net and UNet++, many
max-pooling operators were applied, which may have ignored the details of objects and
location information. Compared with U-Net, UNet++, SegNet and DeeplabV3+, AEUNet++
introduced the attention block for adaptively refining feature maps extracted by UNet++
according to their contributions, and the multi-task learning was introduced to incorporate
building boundary geometric information for guiding accurate boundaries.
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Figure 10. Segmented patches from U-Net, UNet++, SegNet, DeeplabV3+ and AEUNet++ based on
the WHU aerial image data set. The white color in the segmented patches represents pixels belonging
to buildings (A–H denote the marked areas).

As also illustrated in Table 2, AEUNet++ achieved the greatest accuracy of 98.97%,
95.23%, 95.43%, 95.33%, 91.08%, and 94.97%, respectively, for OA, Precision, Recall, F1, IoU,
and mIoU index. In particular, compared with UNet++, Precision and IoU increased by 1.92%
and 3.24%, respectively, and AEUNet++ obtained IoU improvements of approximately 6.27%,
3.24%, 2.6% and 0.15% over U-Net, UNet ++, SegNet and DeeplabV3+, respectively.
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Table 2. Quantitative comparison of OA, Precision, Recall, F1, IoU and mIoU for the WHU aerial
image data set.

Method OA Precision Recall F1 IoU mIoU

UNet 98.18 91.21 92.35 91.78 84.81 91.39
UNet++ 98.57 93.31 93.74 93.53 87.84 93.12
SegNet 98.67 94.86 92.93 93.88 88.48 93.50

DeeplabV3+ 98.96 95.51 94.99 95.25 90.93 94.88
AEUNet++ 98.97 95.23 95.43 95.33 91.08 94.97

From the above two experiments, we can draw conclusions from Figures 8 and 9
for the two data sets. Whether for the dense and small scale of building distributions
that required smaller and narrower receptive fields, or for the sparse and large scale of
building distributions that required larger and wider receptive fields, the AEUNet++ model
exhibited very good robustness to building information that could be accurately extracted
under different scales and different distributions. Comparing the prediction results from
Figures 8 and 9, AEUNet++ produced better performance based on the WHU aerial image
data set than that based on the Massachusetts buildings data set, because the resolution of
the WHU aerial image was higher than that of the Massachusetts image. Too many mixed
pixels existed in the Massachusetts buildings data set, which may have resulted in too
many mislabeled pixels in the prediction results. That is to say, the proposed AEUNet++ is
more suitable for extracting buildings from the HSRI.

3.4.3. Ablation Study

To assess the advantages of different modules contained in the proposed AEUNet++
model, in this section, we compared the performance of UNet++, AUNet++ (UNet++ with
the attention block), and AEUNet++ (UNet++ with attention block and multi-task learning)
based on the WHU aerial image data set. As shown in Table 3, the two modules could
improve the prediction accuracy; compared with multi-task learning, the combination
with the attention block boosted the segmentation performance dramatically. The reasons
may be that while the attention module could adaptively refine the four prediction feature
maps output by UNet++, feature maps were learned that should have been emphasized
or suppressed, which was most important for the final result. Hence, combination with
the attention block was able to improve the accuracy further. Although the introduction
of multi-task learning using the distance classes map could also improve the accuracy of
segmentation by refining the building boundaries, because the proportion of boundary
pixels in the total image was relatively small, the accuracy was not improved so much, as
seen from Table 3. However, the buildings’ boundaries were highly enhanced, as can be
drawn from the visualizations in Figures 8 and 9.

Table 3. Ablation comparison of OA, Precision, Recall, F1, IoU and mIoU for the WHU aerial image
data set.

Method OA Precision Recall F1 IoU mIoU

UNet++ 98.57 93.31 93.74 93.53 87.84 93.12
AUNet++ 98.92 95.04 95.19 95.12 90.69 94.75

AEUNet++ 98.97 95.23 95.43 95.33 91.08 94.97

4. Conclusions

In this paper, based on UNet++, an attention mechanism and multi-task learning, a
new AEUNet++ was designed and proposed to automatically extract buildings from HSRI.
The proposed method can overcome the drawbacks of segmentation prediction results
with poor boundaries in UNet++. It can produce homogeneous building segmentation
results while weakening the boundary blurring simultaneously. This can be attributed to
the introduced attention block for fusing and refining multiscale features from the different-
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layer feature maps in light of their relative importance, and to multi-task learning for
integrating the boundary geometric information of buildings into the proposed AEUNet++
network. To test the performance of AEUNet++, experiments on two data sets representing
the distribution of buildings at different scales were conducted. Compared with the existing
U-Net and UNet++ models, AEUNet++ was more accurate in visual and quantitative
evaluations. Therefore, AEUNet++ is an effective method for extraction of buildings
from high spatial resolution imagery. In future research, we will explore better ways of
expressing multiscale features and boundary constraints and expanding the data sets.
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