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Abstract: Satellite-derived environmental parameters play important roles in environmental research
on global changes and regional resources. Atmosphere effects and sensor limitations often lead to
data products that vary in quality. The main goal of time series data reconstruction is to use various
statistical and numerical analysis methods and to stimulate changing seasonal or annual parameters,
providing more complete data sets for correlational research. This paper aims to develop a time series
reconstruction algorithm for LST based on data assimilation according to the current problems of
unstable precision and unsatisfactory results, and the simplistic effects of evaluation methods while
using remote sensing-derived LST data as the basic parameters and the daily LST data derived from
the static meteorological satellite GMS-5 as the input data. The data assimilation system used the
Kalman filter as the assimilation algorithm. A complete set of global refined LST time series data
sets were obtained by constantly correcting the LST values according to the regional ground-based
observations. This method was implemented using MATLAB software (version R2017a), and was
applied and validated through partitioning using the principal elevation in the Beijing, Tianjin, and
Hebei regions. The results show that the accuracy of the reconstructed LST data series improved
significantly in terms of the mean and standard deviation. Better consistency was achieved between
the variables obtained over a year from the reconstructed LST data and the ground observations from
the LST data set.

Keywords: land surface temperature; time series; reconstruction; Kalman filter; GMS-5

1. Introduction

Land surface temperature (LST) is one of the most important physical parameters in
surface–atmosphere interactions, and is of great importance in many related disciplines
such as global environmental change and ecological evolution [1]. As a dynamic thermal
equilibrium parameter, the land surface temperature is impacted by the land surface energy
balance (SEB) process. It is a dynamically changing time series parameter. In addition,
land surface temperatures that are obtained by remote sensing inversion are transient
samples that can have temporal or spatial gaps or can be unstable as a result of the effects
of factors such as the two-way reflection of clouds and land objects [2,3]. Additionally, the
distribution of an LST obtained by remote sensing inversion in land SEB studies is often
inaccurate due to factors such as the indirectness and morbidity of the remote sensing
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inversion data. To overcome the problems of missing and low-quality data, Moderate
Resolution Imaging Spectroradiometer (MODIS) products deliver level three 10-day and
monthly synthetic data. However, although applying interpolation and iteration to such
data solves the problem of temporal and spatial gaps in the data to some degree, missing
and inaccurate data are still severe problems that affect studies of regional land surface
energy parameters, directly affecting the accuracy and effects of subsequent land surface
process modeling [4].

Data assimilation is a method in which new observational data are merged during the
dynamic execution of a numerical model based on the data’s temporospatial distribution
as well as the data’s observational and background errors [5–7]. The core of land surface
data assimilation is to merge direct and indirect data from difference sources and different
resolutions in the dynamic framework of land surface process modeling to accurately
and consistently estimate each component of the hydrological and energy cycles of the
land surface.

By integrating surface models and satellite data using data assimilation, Chen estab-
lished a framework for the assimilation of multisource remote sensing data combined with
the simultaneous estimation of states and parameters to provide accurate estimates of soil
moisture on the Tibetan Plateau, providing a practical method for improving simulation
accuracy when determining soil moisture [8]. Li used above-ground biomass (AGB) from
Zhejiang Province to assimilate MODIS LAI (leaf area index) products, which resulted
in the assimilated LAI spatio-temporal data being much more accurate compared to the
observed LAI, and the changes in the assimilated LAI time series were consistent with the
seasonal dynamics of bamboo forest growth [9].

As research regarding land surface data assimilation continues to become more in
depth, optimization algorithms that are suitable for land surface data assimilation are
being developed rapidly. Since the 1960s, the Kalman filter algorithm has been widely
used in the fields of Global Positioning System (GPS) navigation, aircraft orbit correction,
human–robot interaction, radar systems and missile tracking, and deformation monitor-
ing [10–14]. Recently, it has been applied to practical studies, such as those on sensor
data merging and microeconomics [15,16]. In addition to applications in industrial and
socio-economical areas, the Kalman filter has been used in meteorology and Earth sciences.
Fu et al. and Zhang introduced ground meteorological observations and meteorological
satellite data and assimilated them using the Kalman filter. The reconstructed time series of
solar radiation exhibited greater consistency with the in situ data set than with the time
series before the optimization [17,18]. Tian et al. developed a data assimilation framework
using Kalman filtering to simultaneously assimilate satellite soil moisture retrievals from
the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS)
missions using the Australian Water Resources Assessment Landscape model (AWRA-L).
The results show an increased correlation between simulated surface soil moisture and in
situ observations [19].

Recent studies have demonstrated that data assimilation techniques have great po-
tential for time series reconstruction. Masiello implemented a Kalman filter approach to
apply temporal constraints on the retrieval of surface emissivity and temperature from
radiance measurements, and the results show that the Kalman filter strategy can retrieve
temperature simultaneously with an accuracy of ±0.2 K [20]. Xu proposed a new fusion
strategy for generating high-quality, all-weather LST data based on cumulative distri-
bution function (CDF) matching and multiresolution Kalman filtering (MKF) [21]. Jia
reconstructed hypothetical clear sky LST with missing or possibly cloud-contaminated
pixels by assimilating high-quality satellite retrieval data into a time-evolution model built
from reanalysis data through a Kalman filter data assimilation algorithm [22]. However,
regarding the current reconstruction of land SEB parameters, the most prominent problem
is the lack of systematic analysis and assessment methods for the reconstruction effect,
including analyses of the “true value” determination and scale effects [23–26]. This study
selects land surface temperature, one of the land surface energy parameters, as the object;
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addresses adoptability problems common to current remote-sensing inversion methods
and the instability in the data accuracy; and uses the Kalman filter for data assimilation
to take land surface in situ data continuously, improve the forecast accuracy, and ensure
that the reconstructed land surface temperature series are more similar to the in situ data.
We also extend this technique to the entire study area using the derived linear regression
equation, thereby obtaining a complete time series of the land surface temperature in the
study area, which can be used to obtain the refined long-term land surface temperature at
larger scales.

2. Summary of Study Area and Data Sources
2.1. Summary of Study Area

The Beijing–Tianjin–Hebei (Jing–Jin–Ji) region refers to a region consisting of three dis-
tricts, Hebei Province and its inner rings of Beijing and Tianjin (Figure 1), which are located
in the northern part of eastern China. The region’s topographic elevation decreases gradu-
ally from northwest to southeast, and it comprises a mountainous and plain-dominated
landscape. The Beijing–Tianjin–Hebei region is located on the east coast of the mid-latitude
Eurasian continent, and it has a typical temperate semi-humid and semi-arid continental
monsoon climate. The four seasons are able to be distinguished from one another, and
precipitation is concentrated in significant wet and dry periods. The north–south tempera-
ture difference in this region is very large. Taking the Great Wall as the border, the average
temperature up to the north of the Great Wall is less than 10 ◦C, whereas that of the northern
Bashang Plateau is only −0.5 ◦C. The temperature to the south of the Great Wall is higher
than 10 ◦C, and the annual mean temperature of the southern plain of Handan is 14.2 ◦C. The
north–south temperature difference is 14.7 ◦C. The average temperature in the coldest month,
January, ranges from −2 ◦C to −16 ◦C, and the temperature in the hottest month, July, ranges
from 20–28 ◦C, with a north–south temperature difference of 22–44 ◦C [27].
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Figure 1. Study area and distribution of observation sites.

The zoning criteria of the study area are based on the relationship between elevation
and altitude. We determined the zoning of the study area using US Geological Survey
(USGS) digital elevation model (DEM) data with a resolution of 30 m according to the
elevation of each station and basic principles, including the average distribution of stations
at a similar elevation, a combination of concurrent occurrence and the relative homogeneity
of regional climate characteristics, and the continuity of the spatial distribution (Figure 1).
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We assumed that natural conditions, including the elevation, precipitation, dryness, and
topography within a zone, were generally consistent.

2.2. Data Source

The remote sensing imagery data used in this study are from the Chinese Energy and
Water Balance Monitoring System (CEWBMS), which was jointly built by the National
Meteorological Administration, the Institute of Geographic Sciences and Natural Resources
Research, and the Chinese Academy of Sciences. Land surface remote sensing imagery
is one of the standard products obtained from this system. This system uses the Japan
GMS (geostationary meteorological satellite) as its data source [28]. The land surface
temperature in this study is one of the CEWBMS’ standard energy products, of which the
spatial resolution is 5 km × 5 km [29].

This study uses data from 24 land surface temperature observation stations in the
Beijing–Tianjin–Hebei region and their corresponding daily average surface temperatures,
which were provided by the China Meteorological Science Data Sharing Centre [30]. We use
the location coordinates of the 24 stations to retrieve the remote sensing-inverted daily land
surface temperature data for the Beijing–Tianjin–Hebei region from 2002 for each station
during that year. We introduce the daily average surface temperature of the observation
stations into the Kalman filter as the “true value” to optimize the remote sensing inversion
data. In addition, we obtain DEM elevation raster data with a resolution of 30 m from the
USGS website, which are used to determine the elevations of the observation stations. We
use the elevation data to determine a zoning strategy based on previous knowledge. Based
on the characteristics of the standard products of the CEWBMS in combination with the
land surface data for the study area and numerous experiments, this study selects the land
surface temperature from 2002 as the study object to conduct time series reconstruction.

3. Method
3.1. Kalman Filter-Based Reconstruction Algorithm

A Kalman filter was used as the reconstruction algorithm in this study. In 1960,
Kalman et al. [31] proposed the concept of a Kalman filter for the state estimation of stochas-
tic processes. The method has been modified and widely applied in many fields of research
and has been adopted as one of the most traditional data assimilation algorithms [32–34].

The Kalman filter is a sequential mathematical procedure for data assimilation that
operates through a prediction and correction mechanism. The filter is sequential because it
recalculates the solution each time a new measurement is available without using old data
again. This procedure obtains a new estimate of the state from its previous estimate by
adding a correction term that incorporates the information provided by new measurements,
so that the prediction error is statistically minimized.

The Kalman filter addresses the general problem of trying to estimate the state xn+1
of a discrete-time-controlled process that is governed by the linear stochastic difference
equation [35,36].

The evolution over time of the quantity to be estimated is described, expressed by
means of a state vector xn+1. The transition between states xn and xn+1 is characterized
by the transition matrix An+1 and the addition of a Gaussian white noise wn+1 with
covariance matrix Qn+1.

xn+1 = An+1xn + wn+1, wn+1 ∼ N(0, Qn+1) (1)

The measurement vector zn relates to the state of the system xn through the measurement
matrix Hn and the addition of a Gaussian white noise vn with covariance matrix Rn.

zn = Hnxn + vn, vn ∼ N(0, Rn) (2)

The random variables wn and vn represent the process and measurement noise, re-
spectively. These factors are assumed to be independent (of each other), composed of white
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noise, and with normal probability distributions. In practice, the process noise covariance
and measurement noise covariance matrices An+1 and wn+1, respectively, might change
with each time step or measurement; however, here, we assume that they are constant. The
matrix Hn in the measurement Equation (2) relates to the state to the measurement. In
practice, Hn might change with each time step or measurement, but, here, we assume it is
constant, H = 1. 

E[wn] = 0
E
[
wnvT

n
]
= Qnδn

E[vn] = 0
E
[
vnwT

n
]
= Rnδn

E
[
wnvT

n
]
= 0

E
[
vnwT

n
]
= 0

(3)

where Qn is the nonnegative covariance matrix of wn and Rn is the positive covariance
matrix of vn.

We define N as the number of days of measurement, then define N as the number of
days of measurement, then

Qn = 0.5 ∗ cov(randn(1, N)) (4)

Rn = 0.5 ∗ cov(randn(1, N)) (5)

We define x̂−n+1 to be our a priori state estimate at step n, given knowledge of the
process prior to step n, and x̂−n is our a posteriori state estimate at step n, given measurement
zn. We can then define the a priori state as follows

x̂−n+1 = An+1 x̂n (6)

The a priori estimate of the error covariance is as follows

Pn,n−1 = An,n−1Pn−1 AT
n,n−1 + Qn−1 (7)

The a posteriori estimated error covariance is as follows

P−
n+1 = An+1Pn AT

n+1 + Qn+1 (8)

In this phase, the new state vector x̂−n+1 and its covariance matrix Pn+1 are calculated.
For this, the predicted covariance is used to calculate the Kalman gain Kn+1. The new state
vector x̂−n+1 is calculated adding to the predicted state vector x̂−n+1 and the measurement
residual zn+1 − Hn+1 x̂−n+1 scaled with the Kalman gain.

Kn+1 = P−
n+1HT

n+1

(
Hn+1P−

n+1HT
n+1 + Rn+1

)−1
(9)

x̂n+1 = x̂−n+1 + Kn+1
(
zn+1 − Hn+1 x̂−n+1

)
(10)

Pn+1 = (I − Kn+1Hn+1)P−
n+1 (11)

3.2. Study Procedure

This study introduces a data assimilation technique for time series reconstruction,
uses the data assimilation technique to connect remote sensing parameters and ground
observations, and calibrates errors caused by the time trajectories of the remote sensing
parameters and errors in the output of the simulation continuously. In combination with
the Kalman filter, this study uses the daily average land surface temperature from the
ground observation stations to filter and optimize the remote sensing-inverted land surface
temperature time series and divides the area into zones according to DEM elevation data to
build a corresponding fitting function and method to optimize the land surface temperature
of the entire study area.
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1. At the pixel scale, we obtained the daily average surface temperature of the ground
observation stations at different sites and the GMS-5-based remote sensing inversion
data for the surface temperature, applied the Kalman filter to reconstruct a short-
period time series of the land surface temperature from the retrieved remote sensing
inversion data, and analyzed the accuracy of the reconstruction.

2. For the post-reconstruction land surface temperature of each station, we built a linear
fitting function using the “sub-regional and per-seasonal” method and developed
a technical scheme for reconstructing the land surface temperature time series. We
assumed that the conditions in each zone, including the elevation, precipitation, dry-
ness, and topography, were generally consistent and divided the study area according
to its seasonal characteristics (spring, summer, autumn, and winter). According to the
land surface temperature inverted by means of remote sensing during each season in
2002 in each zone and the Kalman filter reconstruction values, we applied the least
squares method to build linear fitting functions to obtain the empirical coefficient for
each season and to then build a first-order linear regression function based on the
fitting functions between the remote sensing inversion data and refined value of each
sub-region and season in 2002.

3. We optimized the original remote sensing inversion of the land surface temperature in
each sub-region of the study area, analyzed and compared the accuracy and rationality
of the land surface temperatures of the representative stations before and after the
reconstruction, and drew conclusions. We used the established fitting function of each
zone and season to calculate the remote sensing inversion data using a raster calculator,
obtaining the spatial distribution of the optimized land surface temperature in the
study area and the refined values for the other stations. Regarding the optimized land
surface temperature, we selected the representative stations in the area for validation
to analyze and compare the accuracy and rationality of the land surface temperature
before and after reconstruction and conducted an error analysis.

The full procedure is explained in the flowchart of Figure 2.
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4. Results and Discussion
4.1. Station-Based Reconstruction of Land Surface Temperature

When validating the accuracy of the remote sensing inversion of the land surface
temperature and considering the effect of the elevation on the temperature, we found
that the precipitation, dryness, and topography of this region were generally consis-
tent. This study divides the existing land surface temperature observation stations in the
Beijing–Tianjin–Hebei region into five sub-regions based on the DEM elevation data. We
selected one meteorological station from each sub-region to conduct a correlation analysis
between the in situ remote sensing inversion of the land surface temperature and the
observed daily average temperature.

This study uses data from 24 ground meteorological stations in the Beijing–Tianjin–
Hebei region and their corresponding daily average surface temperatures provided by the
China Meteorological Data Sharing Service Network. We selected observation stations
with a near-average elevation for each sub-region to retrieve the remote sensing-inversed
data for the daily land surface temperature in 2002 from these five stations. In addition,
we introduced the in situ data for the daily average land surface temperature from the
observation station into the Kalman filter as the “true value” to optimize the remote
sensing-inversed data. The statistics before and after the reconstruction are presented
in Table 1.

Table 1. The statistics of the optimized surface temperature data compared to the original data from
five stations in the Beijing–Tianjin–Hebei region in 2002.

Sub-Region
Station

Mean Bias of
GMS-5

(VISSR)-
Derived
LST (◦C)

Mean Bias
after

Recon-
struction
LST (◦C)

Accuracy
Improvement

RMSE of
GMS-5

(VISSR)-
Derived
LST (◦C)

RMSE after
Reconstruction

Accuracy
Improvement

Pearson’s
Coefficient

Mean
Absolute

Error

Tianjin 0.375 0.266 29.1% 4.716 4.393 6.85% 0.919 3.389
Nangong 0.572 0.399 30.2% 4.895 4.869 0.53% 0.904 3.693
Xingtai 1.541 1.117 27.5% 4.906 4.719 3.81% 0.903 3.675

Chengde 2.678 2.024 24.4% 5.643 4.613 18.25% 0.927 3.558
Yuxian 2.163 1.680 22.3% 5.349 4.920 8.02% 0.912 3.882

The statistical results presented in Table 2 indicate that after Kalman filter recon-
struction, the average root-mean-square error (RMSE), Pearson’s coefficient, and mean
absolute error (MAE) of the land surface temperature at each station improved significantly.
Moreover, the change in the time series is more consistent with the change in the ground
meteorological observations. Therefore, this confirms that the Kalman filter is able to
optimize the time series of the short-period land surface temperature data well.

Table 2. Correlation analysis of the remote sensing-retrieved data and the in situ values at five
stations in the Beijing–Tianjin–Hebei region.

Sub-Region
Station

Mean of
GMS-5

(VISSR)-
Derived
LST (◦C)

Standard
Deviations of

GMS-5
(VISSR)-
Derived
LST (◦C)

Mean of In
Situ LST (◦C) RMSE Correlation (R2) Pearson’s

Coefficient
Mean

Absolute Error

Tianjin 13.152 10.497 13.528 10.502 0.815 0.899 3.761
Nangong 13.686 10.688 14.258 10.553 0.840 0.895 3.799
Xingtai 13.833 10.363 15.374 10.033 0.835 0.896 3.741

Chengde 11.847 10.841 9.169 11.708 0.851 0.896 4.696
Yuxian 11.364 10.938 9.201 11.437 0.831 0.905 4.348

4.2. The Reconstruction of Land Surface Temperature Time Series on a Regional Scale

After applying the Kalman filter, we obtained the refined values of the inversed
remote sensing data for the land surface temperature time series. However, this algorithm
cannot be extended spatially. The remote sensing inversion of the land surface temperature
represents the value of a land surface unit with an area of approximately 25 km2. Table 1
indicates that it is possible to build a good linear correlation between the land surface
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observations from the five stations in the Beijing–Tianjin–Hebei region and the image pixels
with a certain area.

We used the remote sensing inversion of each observation station, including those
in Tianjin, Nangong, Xingtai, Chengde, and Yuxian, and the values after Kalman filter
reconstruction to build a linear fitting function for each station. The obtained function
coefficients are listed in Table 3. We built a fitting equation between the remote sensing
inversion value and the refined value for 2002 for each sub-region and season and applied
the fitting function to the sub-region in which the station is located to obtain the refined
value of the land surface temperature for each season and sub-region.

Table 3. Fitting equation coefficients for each region and season in 2002.

Sub-Region Tianjin
Sub-Region

Nangong
Sub-Region

Xingtai
Sub-Region

Chengde
Sub-Region

Yuxian
Sub-Region

A1 0.189 0.972 1.014 0.94 0.83
B1 1.14 0.288 −0.141 0.286 0.723
A2 0.093 0.749 0.828 0.954 0.867
B2 19.96 6.225 4.263 0.91 2.727
A3 −0.254 0.972 0.985 0.972 0.959
B3 30.78 0.562 0.339 0.467 0.689
A4 −0.067 0.644 0.718 0.504 0.555
B4 3.53 0.402 0.466 −2.638 −1.965

We applied the linear fitting functions with the coefficients listed in Table 3 to calculate
the remote sensing inversion data for the corresponding sub-regions in the study area,
thereby obtaining eight optimized spatial distribution maps of land surface temperature
in the study area. Next, we used 15 February, 15 May, 15 August, and 15 November as
examples of each of the four seasons in 2002 to optimize the remote sensing inversion of the
land surface temperature of each sub-region in the study area. The reconstruction results
are shown in Figure 3.

With the exception of the land surface temperature observation stations used for
the fitting equations, the other ground meteorological observation stations were used
to validate the optimized results of the study area. We selected Langfang, Tangshan,
Beijing, Qinglong, and Weichang as validation points; conducted a statistical analysis
on the 2002 remote sensing inversion of the land surface temperature in these stations
(before reconstruction), on the ground meteorological observations, and on the land surface
temperature values after the reconstruction of the fitting functions; and obtained the
average RMSE, Pearson’s coefficient, and MAE, which are listed in Table 4.

Table 4. The mean and RMSE of the derived, the in situ, and the reconstructed surface temperature.

Meteorological
Stations

Mean after
LST Recon-

struction
(◦C)

Mean of
In Situ

LST (◦C)

Mean of
GMS-5

(VISSR)-
Derived
LST (◦C)

RMSE
after

Recon-
struction

RMSE of
GMS-5

(VISSR)-
Derived

LST

Pearson’s
Coefficient
before Re-

construction

Mean
Absolute Error
before Recon-

struction

Pearson’s
Coefficient
after Recon-

struction

Mean
Absolute Error

after Recon-
struction

Langfang 13.720 13.818 12.839 7.428 4.682 0.907 3.633 0.919 3.422
Tangshan 12.677 13.201 12.356 3.824 4.436 0.915 3.414 0.933 2.928

Beijing 13.482 13.402 13.310 4.333 4.847 0.896 3.741 0.914 3.243
Qinglong 11.231 10.457 11.918 4.291 4.986 0.905 4.121 0.927 3.470
Weichang 9.443 6.569 9.539 4.689 5.203 0.929 4.324 0.948 3.217

Figure 3 shows that the average and Pearson’s coefficient of the land surface temper-
ature values are all more similar after reconstruction than before reconstruction, and the
MAE also decreased. In addition, regarding the RMSE, the majority of the land surface
temperature observation stations exhibit RMSE values less than those obtained before
reconstruction, indicating that the data dispersion decreases. Among the validation points,
the RMSE value of the Langfang station after reconstruction is greater than that before
reconstruction, but the change is small. This result may be caused by a systematic error.
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4.3. Error Analysis and Discussion

The Kalman filter reconstruction results presented in Table 2 and the validation of
the reconstruction results for the entire study area presented in Table 4 indicate that the
reconstruction of the short-period land surface temperature time series and its application
have good overall effects. However, the improvement in the accuracy is not significant at
individual stations, which may be caused by the following errors:

First, there could have been a satellite sensor calibration error. Japan’s GMS-5 geo-
stationary meteorological satellite was launched in 1995. It had been running beyond its
intended service life, which was intended to end in 2002, or perhaps even in 2000. The
functionality of the sensor declined continuously during its extended service life, resulting
in its digit number (DN) values only being able to be used after complex calibration and
adjustment. The land surface temperature product used in this study was calibrated against
GMS-5 data prior to delivery. However, the data still exhibit errors.
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Second, remote sensing inversion data are characterized by indirectness and morbidity.
The signal received by the sensor is energy from a very complex land surface temperature
process that includes atmospheric reflection, absorption, transmission to the land surface,
and reflection back. Remote sensing inversion requires a large number of unknown param-
eters that are usually computed using empirical or semi-empirical formulas. Therefore, the
inversion cannot achieve precise quantification. In addition, the parameters that were used
in the subsequent atmospheric calibration and model selection are all uncertain, which
could have affected the accuracy of the data to some degree.

Third, there could have been an error in the in situ data from the meteorological
stations, including systematic errors and accidental errors. In addition, the observations
from the meteorological stations are point data, whereas the GMS-5 inversion yields area



Appl. Sci. 2022, 12, 7414 11 of 13

data. A comparison between the two reveals a fanning out problem from points to areas
that neglects the scaling effect to some degree.

Fourth, the method used in this study generates errors from two sources. During
Kalman filter application, the initial value is uncertain and requires an empirical range.
Thus, the accuracy of the initial value can impact the reconstruction results [37]. During
the fitting of the reconstruction functions, according to previous research that found that
the LST in situ data and satellite inversions exhibit a linear relationship, we built a simple
first-order linear regression equation to spatially extend the reconstruction of the short-
period land surface temperature time series that neglected the effects of scaling, complex
topography, and environmental factors. Thus, this could have resulted in errors.

5. Conclusions

To solve problems associated with missing data in the time series of remote sensing-
inversed energy parameters, this study uses a new method to reconstruct land surface
temperature time series based on a data assimilation approach, designs a refined assimila-
tion algorithm that is validated and calibrated in the study area, and develops a technique
that is able to reconstruct the remote sensing inversion of the daily land surface temperature
to provide more comprehensive and consistent long-term time series data sets for land
surface process modeling and related research. The main conclusions are as follows:

1. At the site-pixel scale, based on the data assimilation approach, it is possible to effec-
tively improve the accuracy and consistency of the entire data set using reconstruction
algorithms such as the Kalman filter. We selected representative stations from the
study area, used the Kalman filter as the assimilation algorithm, and continuously
introduced the daily average LST in situ into the Kalman filter as the “true value”
to optimize the remote sensing inversion data. After Kalman filter reconstruction,
the average RMSE, Pearson’s coefficient, and MAE of the land surface temperature
were significantly improved. As indicated in Table 1, the average temperature of
the Chengde area was 0.65 ◦C greater than it was before reconstruction, showing
an increase of 24.4%. The maximum increase in the RMSE was 18.25%. In addition,
the changes in the time series are very consistent with those of the land surface ob-
servations. Furthermore, when there is a large number of missing data and poor
accuracy, the algorithm is able to reconstruct the missing data, improve the quality
of the entire data set, and recover the trends of the original time series. These results
indicate that the Kalman filter performs well when optimizing short-period land
surface temperature time series.

2. Based on the site-scale results, we proposed a “sub-elevation-per season segmentation
fitting” scheme that is able to extend the site-based reconstruction method to the
entire study area. We performed time series reconstruction and reconstruction on
the daily remote sensing inversion data for the land surface temperature over the
course of a whole year in the study area and achieved satisfactory application results.
This method is based on the following three assumptions: the relationship between
the remote sensing inversion data and ground meteorological observations is linear;
conditions such as the precipitation, dryness, and topography are generally consistent
within each sub-region; and the Kalman filter reconstruction results are reliable. We
selected one land surface temperature ground meteorological observation station
in each sub-region of the study area, divided the data into four seasons (spring,
summer, autumn, and winter), and built linear regression equations based on the
relationship between the remote sensing inversion data and the Kalman filter-refined
value to optimize each sub-region in the study area. Our validation results reveal
that with the exception of Langfang, where the RMSE of the land surface temperature
observation station is greater than that before reconstruction, the average and RMSE
of the land surface temperatures at the other stations are all closer to the observational
averages than they were before reconstruction. The Pearson’s coefficient and MAE
of the land surface temperature were significantly improved compared with before



Appl. Sci. 2022, 12, 7414 12 of 13

reconstruction. The changes in the optimized year-round land surface temperature
time series are more consistent with those observed in the ground meteorological
observations, and the land surface temperature data are more comprehensive spatially
and more continuous temporally.

3. This study employed the Kalman filter, which is an auto-regression data processing
algorithm for reconstruction, as the data assimilation algorithm. The Kalman filter
has been widely used for more than 40 years and has yielded refined solutions for
most of the problems that it has been applied in. Recently, numerous scholars have
proposed improved algorithms for different applications. Future work can employ
new data assimilation methods such as the improved Kalman filter algorithm and
Gaussian kernel density estimation to achieve better reconstruction results.
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