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Abstract: In view of the problems of long matching time and the high-dimension and high-matching
rate errors of traditional scale-invariant feature transformation (SIFT) feature descriptors, this paper
proposes an improved SIFT algorithm with an added stability factor for image feature matching. First
of all, the stability factor was increased during construction of the scale space to eliminate matching
points of unstable points, speed up image processing and reduce the dimension and the amount
of calculation. Finally, the algorithm was experimentally verified and showed excellent results in
experiments on two data sets. Compared to other algorithms, the results showed that the algorithm
proposed in this paper improved SIFT algorithm efficiency, shortened image-processing time, and
reduced algorithm error.

Keywords: image matching; SIFT; stability factor; feature descriptor

1. Introduction

Image matching [1,2] is one of the important research contents in computer vision and
image processing, and is widely used in visual 3D reconstruction [3], tracking [4], object
recognition [5] and content-based image retrieval [6]. Its purpose is to find one or more
transformations in the transformation space so that two or more images of the same scene
from different times, different sensors or different perspectives are spatially consistent.
There are many types of image matching methods, among which feature-based matching
has better robustness to image distortion, noise and occlusion. However, this matching
depends to a large extent on the quality of feature extraction. One of the research hotspots is
pattern recognition [7–10]. The most basic one is the scale-invariant feature transform (SIFT)
algorithm proposed by Lowe in 2004 [11,12]. However, it only considers the Euclidean
distance between the feature vectors when matching, and does not use any structural
information contained in the dataset itself; therefore, the search efficiency is relatively low.
When the image noise or the difference between matching objects is large, the mismatching
situation is obvious. To solve this problem, Ooi and Weinberger proposed using a Kd tree
to divide the space and then perform a nearest neighbor query [13,14], but this means of
establishing an index structure carries a relatively high cost. Chen and Torr proposed the M
estimation method [15] and the maximum likelihood estimation by sample and consensus
(MLESAC) [16] algorithm to estimate the matching matrix. The M estimation method relies
completely on the linear least squares method, so the initial value of the estimated matrix
low accuracy and poor stability; the MLESAC algorithm is incapable of modeling outliers
and has low estimation accuracy. In response to these problems, Choi proposed a better
performance random sample consensus (RANSAC) algorithm [17] to purify the matching
pairs consistently. Since RANSAC depends on the setting of the number of iterations,
the results have errors and may not be optimal. At present, researchers have proposed
a variety of description methods for local feature regions of images, such as descriptors
based on Gaussian differentiation, invariant moments, controllable filters, time-frequency,
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pixel gray value distribution or pixel gradient value distribution. Of these methods, the
most concerned is Lowe’s SIFT descriptor.

The construction of this feature descriptor is achieved by establishing a three-dimensional
gradient directional histogram for the neighborhood of feature points. The SIFT feature
is not only invariant to the scale change and rotation of the image, but also has strong
adaptability to the illumination change and image deformation and has a high discrimina-
tion ability. On this basis, researchers have improved and extended SIFT features, such as
the PCA-SIFT descriptor proposed by Ke and Sukthankar [18], and the Gradient location-
orientation histogram (GLOH) descriptor proposed by Mikolajczyk and Schmid [19], the
Rotation-invariant feature transform (RIFT) descriptor proposed by Lazebnik [20] and the
Speeded up robust features (SURF) descriptor proposed by Bay [21].

In the literature, [22] the performance of descriptors similar to SIFT was found to be
the best after evaluating the performance of many representative descriptors. Local binary
pattern (LBP) is one of the more effective texture analysis features for two-dimensional
images [23]. It is essentially a texture descriptor based on pixel gray order that uses local
patterns as texture primitives for analysis.

It has the characteristics of simple calculation and invariance to linear illumination
changes, and has been widely used in face recognition, background extraction and image
retrieval [24–27]. Reference [28] was the first to apply an LBP operator to the construction of
local image feature descriptors, and proposed a Centersymmetric local binary pattern (CS-
LBP) local image feature area description method. Experimental results showed that the CS-
LBP descriptor has better image matching than the SIFT descriptor and has obvious storage
advantages since the SIFT has color space requirements and computational overhead.

Tan and Triggs extended the LBP operator to a ternary code and proposed a Local
trinary pattern (LTP) operator [29]. The LTP feature has stronger discrimination than the
LBP feature, but its histogram dimension is greatly increased, which is not suitable for
directly describing the local feature area of the image. Extending the CS-LBP descriptor
directly to the Center symmetric local trinary pattern (CS-LTP) descriptor reduces the
dimensionality of the descriptor to a certain extent, but it still cannot meet the needs of
practical applications.

There are many derivatives algorithms based on the SIFT algorithm: the GLOH, pro-
posed by Mikolajczyk [30]; the CSIFT, proposed by AbdelHakim [31]; the ASIFT, proposed
by Morel [32]; the simplified SSIFT proposed by Liu Li [33]; the PSIFT proposed by Cai
Guorong [34]; local feature description based on Laplace, proposed by Tang Yonghe [35];
and image matching based on the adaptive redundant keypoint elimination method in the
SIFT [36], the efficiency of SIFT still has a lot of room for improvement.

To address the SIFT algorithm’s poor real-time performance, this paper first changed
the scale space calculation method and then added a stability factor to reduce the matching
error and calculation time; then, by establishing the feature descriptor of the cross-shaped
partition, the dimension of the descriptor was reduced from 128 to 96, which reduced the
amount of matching calculation and shortened the matching time.

The structure of the rest of the article is arranged as follows: Section 2 presents the
original and Section 3 the improved SIFT algorithm. Section 4 analyzes the experimental
results, and Section 5 presents the conclusions.

2. Original SIFT Algorithm

The traditional SIFT algorithm is divided into four parts: scale space extreme value
detection, key localization, orientation determination, and key point description.

2.1. Scale Space Extreme Value Detection

Potentially sensitive points that are invariant to scale and rotation are identified using
differential Gaussian functions. The scale space of the image is mainly obtained by convolving
the Gaussian differential function and the original image, as shown in Equations (1) and
(2) [12]:
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G(x, y, z) =
1

2πδ2 e
(x− m

2 )2+(y− n
2 )2

2δ2 (1)

L(x, y, δ) = G(x, y, z)× I(x, y) (2)

where is L(x, y, δ) is the scale space function, and G(x, y, z) is the Gaussian blur function.
I(x, y) is the original image function, where (x, y) are the image pixel coordinates; δ is the
spatial scale; and (m, n) is the image dimension.

The difference of Gaussian (DoG) detection was used to find the space extremum
detection, as shown in Equation (3):

D(x, y, δ) = (G(x, y, kδ)− G(x, y, δ))× I(x, y) = L(x, y, kδ)− L(x, y, δ) (3)

In the equation, k is the multiplication factor, and S is the integer number [36]. The
value of k is shown in Formula (4):

k = 2
1
s (4)

The key points composed of local extreme points in the DoG space are initially detected
by comparing the images of two adjacent layers of each DoG space in the same group. In
order to find the extreme point in DoG space, each pixel is compared with all its neighbors
to see if it is larger or smaller than its neighbors in the image domain and scale domain. As
shown in Figure 1, the detection point in the middle (the “X” in the picture) is compared
with its 8 adjacent points of the same scale and the 9 × 2 points corresponding to the upper
and lower adjacent scales, a total of 26 points, to ensure that extreme points are detected in
both scale space and 2D image space.

Figure 1. Spatial extremum detection.

2.2. Key Point Positioning

The extreme point in the discrete space is not the real extreme point. The method of
using known discrete space point interpolation to obtain the continuous space extreme
point is called sub-pixel interpolation.

To improve the stability of key points, curve fitting was performed on the scale-space
DoG function. Using the Taylor expansion of the function in the scale space:

D(x) = D +
∂DT

∂X
X +

1
2

XT ∂2D
∂X2 X (5)

In the formula, the key points obtained by X = (x, y, δ)T generated a strong edge
response, so the unstable edge response points needed to be eliminated so that the threshold
could be set.
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2.3. Direction Determination

After the key points were found, considering that they are in the scale space, it was
necessary to use local image features to assign a reference direction to all key points so that
the descriptor had rotation invariance. Therefore, the image gradient method was used
to obtain the stable direction of the local structure. The magnitude and direction of the
gradient are shown in Equations (6) and (7):

m(x, y) =
√
(L(x + 1, y)− L(x − 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (6)

θ(x, y) = tan−1(((L(x, y + 1)− L(x, y − 1))/(L(x + 1, y)− L(x − 1, y)))) (7)

where m(x, y) is the gradient value; L is the scale space value where the key point is located;
and θ is the gradient direction. The histogram was used to count the gradient directions of
the key point in a certain neighborhood, find the direction corresponding to the highest
histogram peak and then use it as the main direction of the key point.

2.4. Description of Key Points

Three pieces of information were obtained from the above: position, scale, and ori-
entation. A descriptor was then established for each key point, and a set of vectors was
used to describe the key point so that it did not change because of changes in lighting or
perspective. This descriptor included not only the key points, but also the pixels around
the key points that affected it. At the same time, the descriptor had to have uniqueness to
improve the probability of correctly matching of feature points. The generation of keypoint
descriptors is shown in Figure 2. The red dots in Figure 2 represent feature points. First,
a square pixel area of a 16 × 16 grid was selected around the feature points; second, the
4 × 4 grid was divided; finally, the cumulative gradient values of 8 directions (one direction
every 45 degrees) were calculated in each sub-region, and each feature point generated a 4
× 4 × 8 (128) dimensional feature descriptor.

Figure 2. Depiction of the 128-dimensional feature descriptor.

As above, the 4 × 4 × 8 = 128 gradient information was the feature vector of the key
point. To remove the influence of illumination changes after the eigenvectors were formed,
they had to be normalized. The normalized eigenvectors are shown in Formula (8):

wi =
fi√

128
∑

j=1
f j

(8)

where wi is the normalized vector; fi is the original feature vector; and j = 1, 2, 3 . . . . Larger
gradient values were truncated by setting the threshold value. After that, a normalization
process was performed to improve the discrimination of the features.
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3. Improved SIFT Algorithm

To address the low real-time performance of the SIFT algorithm, two innovations were
proposed in this paper: increase the stability factor in the scale space and simplify the
feature descriptor. This section describes these improvements.

3.1. Scale Space Increases the Stability Factor

The traditional scale space construction formula is

δ(o, s) = δ02o+ s
S , oε[0, . . . , O − 1], sε[0, . . . , S + 2] (9)

where δ is the scale space coordinate; O is the number of octaves; S is the number of layers
in the group; δ0 is the scale of the reference layer; o is the index of the octave of the group;
and s is the index of the layer in the group.

When building the Gaussian pyramid at the beginning, the input image should be
pre-blurred as the image of the 0th layer of the 0th group, which is equivalent to discarding
the highest sampling rate of the spatial domain. Therefore, the usual practice is to double
the scale of the image to generate the −1 group. Apply a Gaussian blur of δ−1 = 0.5 to it,
if the size of the input image is doubled with bilinear interpolation, then it is equivalent
δ−1 = 1.

When constructing a Gaussian pyramid, the scale coordinates of each layer in the
group are calculated as follows:

δ(s) =
√
(ksδ0)2 − (ks−1δ0)2 (10)

The value of k is shown in Formula (4).
To reduce error and matching time, a stabilizer P is added, and then a new Gaussian

pyramid is constructed. The scale coordinates of each layer in the group are calculated as
follows:

δ(s) =
√
(wsδ0)2 − (ws−1δ0)2 (11)

Definition 1. Stabilizer factor P
To reduce error and matching time, the stabilizer P is added, where P = w

k . The stabilizer
factor P is shown in Equation (12):

P = 0.4S + 0.9 (12)

Proof. Because the number under the square root of formula (11) is greater than or equal
to 0:

(wsδ0)
2 − (ws−1δ0)

2 ≥ 0. (13)

According to [36], δ0 = 1.6, so

(ws)2 − (ws−1)2 ≥ 0. (14)

According to w = pk, so

(psks)2 − (ps−1ks−1)2 ≥ 0. (15)

Since the value of k > 0 and p > 0,

(p2k2) ≥ 1. (16)

According to [36], usually 3 ≤ S ≤ 5, so

P >
1

2
1
S
≥ 0.87, (17)
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and because we want to remove redundant feature points, if P < 1, then 0.87 ≤ P < 1.
Since k is a decreasing function, so must w be; k is also an exponential function. To

facilitate the derivation, P was designed as an exponential function as follows:

P = AS + b (18)

To ensure that P is a decreasing function, let 0 < A < 1. When S is infinite, AS = 0
and P = B. To ensure that the value of P can remove redundant points, let B = 0.9 because
0.87 ≤ P < 1, AS needs to meet 0 < AS < 1. Usually 3 ≤ S ≤ 5, so

0 < AS < 0.1
1
3 < 0.47. (19)

Let A = 0.4 to ensure that the filtering window and feature points are not too small.
Therefore, P = 0.4S + 0.9.

3.2. Simplified Feature Descriptor

In the original SIFT algorithm, there were 128 high-dimensional feature descriptors
and redundant data. The computational complexity of computing the feature descriptor is

O(keypoints.size × d1 × d2 × (n2 + scale2)) (20)

where O() represents the time complexity of the corresponding algorithm; keypoints.size
represents the number of feature points; d1 and d2 represent the dimension of the feature
descriptor; n represents the number of iterations of the algorithm; and scale represents the
Gaussian scale. The time complexity of the 128 dimensions is

O(keypoints.size × 4 × 4 × (n2 + 82)). (21)

The higher the dimension of the feature descriptor, the higher the time complexity.
Therefore, this article simplified the descriptor. The specific division of the simplified
descriptor is shown in Figure 3, the red dots in Figure 3 represent feature points. Compared
with the square area divided by the SIFT algorithm, the 4 × 4 grid pixels with 4 corners
were discarded. The basis for this was that the smaller the distance between the pixel and
the feature point, the smaller the contribution to the matching. The the weight distribution
of the descriptor data was in line with the Gaussian kernel, so the pixel information that
was far away and had little influence on the matching effect was discarded. Therefore,
obtaining a 3 × 4 × 8 (96)-dimensional feature descriptor reduced the descriptor dimension
of the original SIFT algorithm by 25%. The time complexity of 96 dimensions is

O(keypoints.size × 3 × 4 × (n2 + 82)), (22)

so the consumption time was shortened, and the computational complexity and amount of
computation of the algorithm was reduced. Although a small amount of feature information
in the corners was discarded, the uniqueness of the descriptor improved, and the matching
of feature points with the same name was faster and more stable.
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Figure 3. 96-dimensional feature descriptor.

If T = (t1, t2, . . . , t96) is a 96-dimensional feature descriptor of a feature point, it needs
to be normalized to remove the influence of illumination changes.

Definition 2. Normalized feature vector According to Formula (8) and the 96-dimensional feature
descriptor model, the improved normalized feature vector is shown in Formula (21):

t̄i =
ti√
96
∑

j=1
tj

(23)

Therefore, the feature descriptor T̄ = (t̄1, t̄2, . . . , ¯t96) was obtained.

4. Experimental Results and Analysis
4.1. Experimental Environment

To show the adaptability of this algorithm to different types of datasets, two different
types were selected: The first was the kitti dataset, which is used in unmanned driving,
which is closer to the real perspective of mobile robots and unmanned vehicles, and it is
close to life scenes. The second was the Euroc dataset, which is collected in the factory
environment, close to the industrial scene. The kitti dataset contained 20 sets of pictures,
the pixel size of which was 1242 × 375. The Euroc dataset contained 20 pictures, the pixel
size of which were 752 × 480. The purpose of selecting these two datasets was to show the
effect of the algorithm in this paper on life and industrial scenes. It had good authenticity.

The experimental equipment in this paper was a Legion Y7000p laptop, equipped
with an Inte(R) Core(TM) i7-10750H CPU, a frequency of 2.6 GHz, and 16 G of memory.
The programming platform was VS2019; the language was C++; and the operating system
was 64-bit Windows 10.

4.2. Comparison of Experimental Results
4.2.1. Comparison of Experimental Results Based on Kitti Dataset

Indicator description: RN represented the number of reference image feature points;
WN: the number of image feature points to be matched; MN: the number of matching
points; PT: the matching time; and rems represented the rems error.

First, the Kitti dataset was used, and the feature point extraction results of a group of
pictures were randomly selected for display. These included reference images and images to
be registered. The serial number in the dataset was 17). The feature-point extraction results
of the SIFT algorithm of the reference image and the algorithm of this paper are shown in
Figure 4; the results of the SIFT algorithm of the image to be registered and the algorithm of
this paper are shown in Figure 5. Of these, Figures 4a and 5a are the feature points extracted
by the SIFT algorithm, and Figures 4b and 5b are those extracted by the algorithm in this
paper, which increased the stability factor and simplified the description. The number of
feature points obtained by the algorithm was reduced Figure 4a. The number of feature points
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extracted by the SIFT algorithm was 6203. After optimization by the algorithm in this paper,
the number of feature points in Figure 4b was 4725. The number of features extracted by the
SIFT algorithm in Figure 5a was 4348, and the number optimized by the algorithm in this
paper was 3429. From Figures 4 and 5, the feature points extracted by the algorithm were also
sparser than those of the SIFT algorithm, which proved the role of the stability factor.

The matching results of the reference image and the image to be registered are shown
in Figure 6, and the matching results of the SIFT algorithm are shown in Figure 6a. The
matching time of the SIFT algorithm was 3.284 s with a root mean square error of 0.153.
Using the feature descriptor to remove the four-corner rectangular area made the feature
description ability faster and eliminated some less ideal matching point pairs. The matching
results of the optimized algorithm are shown in Figure 6b. The matching time of the
algorithm was 2.63 s, with a root mean square error of 0.122, which proved the advantage
of this algorithm in this group of pictures.

The specific experimental data of the Kitti dataset is displayed in Table 1, and Figure 7
is a comparison diagram of the corresponding experimental results. Figures 7a,b, shows
that the algorithm in this paper increased the stability factor when constructing the scale
space compared with the SIFT algorithm. Feature points were fewer and more robust, and
the algorithm running time was reduced, as shown in Figure 7c. The accuracy of image
matching increased and the error decreased, as shown in Figure 7d, proving the superiority
of this algorithm over the SIFT.

(a)

(b)
Figure 4. The extraction result of feature points of the 17th reference image. (a) Feature point
extraction result of the SIFT algorithm; (b) feature point extraction result of this algorithm.

4.2.2. Comparison of Experimental Results Based on the Euroc Dataset

To avoid the contingency of the experiment, the Euroc dataset was also used to verify
the algorithm in this paper. One group was randomly selected from the 20 groups of images
in the dataset for display. The feature point extraction result of the reference image and
of the image to be compared are shown in Figures 8 and 9. After the optimization of the
algorithm in this paper, the number of feature points of the reference image was reduced
from 4649 to 3662, and the number of points decreased from 4308 to 3383. The matching
results are shown in Figure 10. The running time of the SIFT algorithm corresponding
to Figure 10a is 4.354 s; the running time of the algorithm in Figure 10b was 3.224 s, a
reduction of 26.0%. The rems error dropped from 0.071 to 0.057.
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(a)

(b)
Figure 5. Extraction results of feature points of the 17th group of images to be registered. (a) Feature
point extraction result of the SIFT algorithm; (b) feature point extraction result of this algorithm.

(a)

(b)
Figure 6. Matching results of the 17th group of pictures. (a) The matching results of the SIFT
algorithm; (b) the matching results of the algorithm in this paper.
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Figure 7. Comparison of the kitti dataset’s specific experimental data in four categories. (a) the
number of feature points of the reference image; (b) the number of feature points of the images to be
compared; (c) matching time; (d) Rems errors.

Table 1. Comparison of the results of Kitti dataset.

Number
SIFT Algorithm The Algorithm of This Paper

RN WN MN PT(s) rems RN WN MN PT(s) rems
1 12,823 16,329 66 6.839 0.146 11,537 14,633 44 6.055 0.001
2 11,545 10,407 86 6.450 0.134 10,686 9419 54 5.817 0.131
3 10,204 7845 66 5.049 0.227 8387 6490 46 4.067 0.132
4 9909 3540 71 4.490 0.204 8452 2509 45 3.627 0.065
5 9486 5295 90 4.344 0.161 8390 4505 63 3.678 0.122
6 9276 11,774 71 5.346 0.384 8326 10,443 48 5.102 0.154
7 8725 5057 69 4.244 0.192 6689 3589 48 3.216 0.129
8 8604 10,518 83 4.850 0.147 7797 10,094 60 4.069 0.118
9 8497 6751 66 4.244 0.199 7497 5837 46 3.520 0.071

10 7674 4971 80 3.994 2.465 6251 4376 57 3.545 0.152
11 7240 4507 71 3.635 0.176 6567 3947 45 3.115 0.0.131
12 7152 11,281 65 4.014 0.517 6318 10,269 45 3.495 0.015
13 7011 6622 78 3.949 0.119 6136 5778 53 3.615 0.134
14 6914 7581 72 3.701 0.130 5391 5716 54 2.938 0.103
15 6457 6914 65 3.748 0.028 5383 5491 45 2.859 0.103
16 6223 5830 72 3.521 0.145 4355 4976 52 2.940 0.143
17 6203 4348 74 3.283 0.153 4725 3429 53 2.629 0.121
18 5538 5531 79 3.205 0.142 4514 4871 58 2.452 0.114
19 5520 5799 80 3.304 0.150 4159 4102 57 2.225 0.108
20 5057 4900 65 2.710 0.145 3589 3381 47 1.911 0.128

The specific experimental data of the kitti dataset is displayed in Table 2, and Figure 11
is a comparison diagram of the corresponding experimental results. Figure 11a,b compares
the number of feature points of the reference image and the image to be compared. Com-
pared with the SIFT algorithm, the number of feature points was greatly reduced, with an
average reduction ratio of 20.4 and 19.3%, respectively. Figure 11c shows the comparison
results of the image matching time, which was reduced on average by 30.0% compared
with the SIFT algorithm; Figure 11d shows that the error comparison results of rems, de-
creased by 12.7%. The results on the Euroc dataset also demonstrated the advantages of
our algorithm in matching time and error.
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(e) (f)

Figure 8. The extraction result of feature points of the 11th reference image. (a) Feature point
extraction result of the SIFT algorithm; (b) feature point extraction result of this algorithm.

(a) (b)

Figure 9. Extraction results of feature points of the 11th group of images to be registered. (a) Feature
point extraction result of the SIFT algorithm; (b) feature point extraction result of this algorithm.

(a)

(b)

Figure 10. The matching results of the 11th group of pictures. (a) The matching results of the SIFT
algorithm; (b) the matching results of the algorithm in this paper.
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Table 2. Comparison of the results of Euroc.

Number
SIFT Algorithm The Algorithm of This Paper

RN WN MN PT(s) rems RN WN MN PT(s) rems
1 7497 7131 1132 18.869 0.016 6425 6005 1002 14.621 0.015
2 6623 5770 501 12.036 0.030 5307 4513 430 7.963 0.025
3 6400 7003 346 10.063 0.040 4908 5790 270 6.777 0.022
4 6156 5960 692 11.869 0.024 5178 4942 523 8.904 0.023
5 5784 5922 441 11.150 0.025 4485 4752 375 7.266 0.024
6 5729 5130 531 9.542 0.027 4360 4079 428 6.252 0.026
7 5141 5159 677 9.933 0.021 4441 4273 513 7.617 0.019
8 5138 4589 306 7.522 0.027 4206 3662 281 5.497 0.025
9 5130 4698 424 8.551 0.026 4079 4698 380 5.955 0.026

10 4774 3817 158 4.764 0.050 3891 2991 128 3.828 0.045
11 4649 4308 91 4.354 0.071 3662 3383 72 3.224 0.057
12 4518 4161 160 5.595 0.053 3529 3228 110 3.993 0.051
13 4463 3870 273 6.903 0.042 3505 3019 266 4.696 0.025
14 4382 4813 127 5.330 0.065 3238 3835 101 3.509 0.062
15 4308 4518 324 6.813 0.034 3193 3529 308 4.704 0.030
16 4204 3994 390 7.408 0.036 3243 3068 298 4.463 0.031
17 4081 4003 455 6.639 0.027 3243 3207 311 4.473 0.026
18 3826 4238 253 6.064 0.040 2947 3137 239 4.096 0.038
19 3802 3826 247 5.588 0.040 2879 2947 227 3.691 0.037
20 3697 3777 117 3.851 0.053 2941 2985 131 2.958 0.045
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Figure 11. Comparison of the Euroc dataset’s specific experimental data in four caegories: (a) the
number of feature points of the reference image; (b) the number of feature points of the images to be
compared; (c) matching time; and (d) Rems errors.
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4.3. Comparison with Other Algorithms

To prove the advantage and significance of the algorithm proposed in this paper, this
section compares its the experimental results with a state-of-the-art algorithm in the same
dataset (three sets of datasets in Reference [36]). The comparison results are shown in
Figures 12–20.

Explanation of the meaning of the indicators in the Tables 3–5: MN: number of
matching points; FT: Feature extraction time (s); PT: match time; ST: total time.

(a) (b)

Figure 12. The extraction result of feature points of the reference image. (a) The extraction result of
the adaptive RKEM algorithm; (b) the extraction result of the algorithm in this paper.

(a) (b)

Figure 13. The extraction result of feature points of the image to be registered. (a) The adaptive
RKEM algorithm; (b) The extraction result of the algorithm in this paper.

The first set is of images of different affine distortions. The detection results of the
reference image feature points, the feature points of the image to be registered, and the
image matching results from the adaptive SIFT algorithm and the algorithm in this paper
are shown in Figures 12–14. The specific data are shown in Table 3. It can be seen from
the results that the algorithm in this paper had fewer matching points. The feature-point
extraction and matching times as well as total time were all reduced.

The second set is of images of different scales. The detection results of reference image
feature points and image feature points to be registered and the adaptive SIFT algorithm
and the image matching results obtained by the algorithm in this paper are shown in
Figures 15–17. See Table 4 for specific data. It can be seen from the results that compared
with the adaptive SIFT algorithm, the algorithm in this paper had fewer matching points,
and the feature-point extraction and matching times were reduced as was total time.
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(a)

(b)

Figure 14. Matching results of images with different affine distortions. (a) The adaptive RKEM
algorithm; (b) The algorithm in this paper.

Table 3. Comparison of matching results of different affine distorted images.

Algorithm MN REMS FT(s) PT(s) ST(s)

SIFT 479 11.429 24.24 11.504 32.744
Adaptive RKEM 245 9.139 35.612 0.734 36.346

This paper 166 8.208 15.73 5.196 20.926

(a) (b)

Figure 15. Extraction result of feature points of the reference image. (a) The adaptive RKEM algorithm;
(b) The algorithm in this paper.
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(a) (b)

Figure 16. The extraction result of feature points of the image to be registered. (a) The adaptive
RKEM algorithm; (b) The algorithm in this paper.

(a)

(b)

Figure 17. Matching results of images with different affine distortion. (a) The adaptive RKEM
algorithm; (b) The algorithm in this paper.

The third set is of images of different lighting. The detection results of reference image
feature points and image feature points to be registered, and the image matching results
obtained by the adaptive SIFT algorithm and the algorithm in this paper are shown in
Figures 18–20. See Table 5 for specific data. It can be seen from the results that the algorithm
in this paper had fewer matching points, and the feature point extraction and matching
times as well as total time were all reduced.
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Table 4. Comparison of matching results of images of different scales images.

Algorithm MN REMS FT(s) PT(s) ST(s)

SIFT 263 15.791 3.794 0.141 3.9235
Adaptive RKEM 179 9.139 6.172 0.020 6.192

This paper 114 8.486 2.443 0.019 2.462

Table 5. Comparison of matching results of different illumination images.

Algorithm MN REMS FT(s) PT(s) ST(s)

SIFT 361 20.062 6.580 0.801 7.381
Adaptive SIFT 228 12.573 17.014 0.029 17.043

This paper 184 11.64 5.419 0.027 5.446

The three sets of data all show that the proposed algorithm had fewer matching points
and less running time than the adaptive SIFT algorithm.

(a) (b)

Figure 18. The extraction result of feature points of the reference image. (a) the adaptive RKEM
algorithm; (b) the algorithm in this paper.

(a) (b)

Figure 19. The extraction result of feature points of the image to be registered. (a) The adaptive RKEM
algorithm; (b) The algorithm in this paper.
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(a)

(b)

Figure 20. Matching results of images with different affine distortion. (a) The adaptive RKEM
algorithm; (b) The algorithm in this paper.

4.4. Summary of Experimental Results

To help readers intuitively feel the advantages of the algorithm in this paper, the index
improvement of the algorithm compared with the SIFT algorithm and the adaptive SIFT
algorithm is summarized, as shown in Table 6.

Table 6. Comparison of matching results of different illumination images.

Dataset PM PT REMS

Kitti dataset 29.9% 11.6% 15.3%
Euroc dataset 17.5% 22.5% 30.6%

Different affine distortion images 32.2% 18.8% 10.2%
Different scale images 36.3% 5% 7.1%

Different illumination images 19.3% 6.9% 7.4%
Overall 27.04% 12.96% 14.12%

5. Conclusions

To address the slow matching speed of the SIFT algorithm, this paper proposed a
method of increasing the stability factor in the construction scale space, reducing the
number of feature points and improving the stability of the feature points. According to
the concept of reducing the time dimension, the four corners of the square description area
of the SIFT feature point neighborhood were removed so that the dimension of the feature
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vector would be reduced, the operation speed accelerated, and the matching efficiency of
the feature descriptor improved. To prove the effects and advantages of the algorithm, it
was verified by the kitti and Euroc datasets. Then the algorithm was compared with a
state-of-the-art algorithm. The results showed that the algorithm in this paper reduced the
number of matching points for feature extraction time, matching time, and rems error by
27.04, 12.96, and 14.12%, respectively.

Author Contributions: Formal analysis, S.M.; Methodology, H.Y.; Software, L.T. and X.M.; Supervi-
sion, H.Y.; Writing—original draft, L.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Natural Science Foundation of Hebei Province (No.
F2021501021 and No. F2020501040).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The ownership belongs to Corresponding author. Please contact
1971828@stu.neu.edu.cn if necessary.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ma, J.; Jiang, X.; Fan, A.; Jiang, J.; Yan, J. Image matching from handcrafted to deep features: A survey. Int. J. Comput. Vis. 2021,

129, 23–79. [CrossRef]
2. Jiang, X.; Ma, J.; Xiao, G.; Shao, Z.; Guo, X. A review of multimodal image matching: Methods and applications. Inf. Fusion 2021,

73, 22–71. [CrossRef]
3. Li, C.; Yu, L.; Fei, S. Large-scale, real-time 3D scene reconstruction using visual and IMU sensors. IEEE Sens. J. 2020, 20, 5597–5605.

[CrossRef]
4. Ciaparrone, G.; Sánchez, F.L.; Tabik, S.; Troiano, L.; Tagliaferri, R.; Herrera, F. Deep learning in video multi-object tracking: A

survey. Neurocomputing 2020, 381, 61–88. [CrossRef]
5. Kechagias-Stamatis, O.; Aouf, N. Automatic target recognition on synthetic aperture radar imagery: A survey. IEEE Aerosp.

Electron. Syst. Mag. 2021, 36, 56–81. [CrossRef]
6. Wang, M.; Li, H.; Tao, D.C.; Lu, K.; Wu, X.D. Multimodal graph-based reranking for web image search. IEEE Trans. Image Process.

2012, 21, 4649–4661. [CrossRef]
7. Wang, M.; Yang, K.Y.; Hua, X.S.; Zhang, H.J. Towards a rele-vant and diverse search of social images. IEEE Trans. Multimed. 2010,

12, 829–842. [CrossRef]
8. Li, J.; Allinson, N.M. A comprehensive review of current local features for computer vision. Neurocomputing 2008, 71, 1771–1787.

[CrossRef]
9. Erxue, C.; Zengyuan, L.; Xin, T.; Shiming, L. Application of scale invariant feature transformation to SAR imagery registration.

Acta Autom. Sin. 2008, 34, 861–868.
10. Yan, Z.; Dong, C.; Wei, W.; Jianda, H.; Yuechao, W. Status and development of natural scene understanding for vision-based

outdoor mobile robot. Acta Autom. Sin. 2010, 36, 1–11.
11. Haifeng, L.; Yufeng, M.; Tao, S. Research on object tracking algorithm based on SIFT. Acta Autom. Sin. 2010, 36, 1204–1208.
12. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
13. Ooi, B.C.; McDonell, K.J.; Sacks-Davis, R. Spatial Kd-tree: An indexing mechanism for spatial databases. In Proceedings of the

IEEE International Computers Software and Applications Conference, Tokyo, Japan, 7–9 October 1987.
14. Weinberger, K.Q.; Saul, L.K. Distance Metric Learning for Large Margin Nearest Neighbor Classification. J. Mach. Learn. Res. 2009,

10, 207–244.
15. Chen, J.H.; Chen, C.S.; Chen, Y.S. Fast algorithm for robust template matching with M-estimators. IEEE Trans. Signal Process. 2003,

51, 230–243. [CrossRef]
16. Torr, P.H.S.; Zisserman, A. MLESAC: A new robust estimator with application to estimating image geometry. Comput. Vis. Image

Underst. 2000, 78, 138–156. [CrossRef]
17. Choi, S.; Kim, T.; Yu, W. Performance evaluation of RANSAC family. In Proceedings of the British Machine Vision Conference,

London, UK, 7–10 September 2009.
18. Yan, K.; Sukthankar, R. PCA-SIFT: A more distinctive representation for local image descriptors. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004.
19. Mikolajczyk, K.; Schmid, C. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2005,

27, 1615–1630. [CrossRef]

http://doi.org/10.1007/s11263-020-01359-2
http://dx.doi.org/10.1016/j.inffus.2021.02.012
http://dx.doi.org/10.1109/JSEN.2020.2971521
http://dx.doi.org/10.1016/j.neucom.2019.11.023
http://dx.doi.org/10.1109/MAES.2021.3049857
http://dx.doi.org/10.1109/TIP.2012.2207397
http://dx.doi.org/10.1109/TMM.2010.2055045
http://dx.doi.org/10.1016/j.neucom.2007.11.032
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/TSP.2002.806551
http://dx.doi.org/10.1006/cviu.1999.0832
http://dx.doi.org/10.1109/TPAMI.2005.188


Appl. Sci. 2022, 12, 8448 19 of 19

20. Lazebnik, S.; Schmid, C.; Ponce, J. A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell.
2005, 27, 1265–1278. [CrossRef]

21. Bay, H.; Tuytelaars, T.; Gool, L.V. SURF: Speeded up robust features. In Proceedings of the 9th European Conference on Computer
Vision, Graz, Austria, 7–13 May 2006.

22. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution grayscale and rotation invariant texture classification with local binary
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

23. Ahonen, T.; Hadid, A.; Pietiainen, M. Face description with local binary patterns: Application to face recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [CrossRef]

24. Jian, X.; Xiaoqing, D.; Shengjin, W.; Youshou, W. Background subtraction based on a combination of local texture and color. Acta
Autom. Sin. 2009, 35, 1145–1150

25. Huang, D.; Ardabilian, M.; Wang, Y.H.; Chen, L.M. Asymmetric 3D/2D face recognition based on LBP facial representation
and canonical correlation analysis. In Proceedings of the 16th International Conference on Image Procesing, Cairo, Egypt, 7–10
November 2009.

26. Guo, Z.H.; Zhang, L.; Zhang, D.; Mou, X.Q. Hierarchical multiscale LBP for face and palmprint recognition. In Proceedings of the
16th International Conference on Image Procesing, Hong Kong, China, 26–29 September 2010.

27. Guo, Z.H.; Zhang, L.; Zhang, D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans.
Image Process. 2010, 19, 1657–1663. [PubMed]

28. Heikkila, M.; Pietikainen, M.; Schmid, C. Description of interest regions with local binary patterns. Pattern Recognit. 2009,
42, 425–436. [CrossRef]

29. Tan, X.Y.; Triggs, B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image
Process. 2010, 19, 1635–1650. [PubMed]

30. Mikolajczyk, K.; Schmid, C. A performance evaluation of local descriptors. In Proceedings of the International Conference on
Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003.

31. Abdel Hakim, A.E.; Farag, A.A. CSIFT: A SIFT descriptor with color invariant characteristics. In Proceedings of the International
Conferenceon Computer Vision and Pattern Recognition, New York, NY, USA 17–22 June 2006.

32. Morel, J.M.; Yu, G. ASIFT: A new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2009, 2, 438–469.
[CrossRef]

33. Li, L.; Fuyuan, P.; Kun, Z. Simplified SIFT algorithm for fast image matching. Infrared Laser Eng. 2008, 37, 181–184.
34. Cai, G.R.; Li, S.; Wu, Y.; Su, S.; Chen, S. A perspective invariant image matching algorithm. Acta Autom. Sin. 2013, 39, 1053–1061.

[CrossRef]
35. Yonghe, T.; Huanzhang, L.; Moufa, H. Local feature description algorithm based on Laplacian. Opt. Precis. Eng. 2011,

19, 2999–3006.
36. Hossein-Nejad, Z.; Agahi, H.; Mahmoodzadeh, A. Image matching based on the adaptive redundant keypoint elimination

method in the SIFT algorithm. Pattern Anal. Appl. 2021, 24, 669–683. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2005.151
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1109/TPAMI.2006.244
http://www.ncbi.nlm.nih.gov/pubmed/20215079
http://dx.doi.org/10.1016/j.patcog.2008.08.014
http://www.ncbi.nlm.nih.gov/pubmed/20172829
http://dx.doi.org/10.1137/080732730
http://dx.doi.org/10.3724/SP.J.1004.2013.01053
http://dx.doi.org/10.1007/s10044-020-00938-w

	Introduction
	Original SIFT Algorithm
	Scale Space Extreme Value Detection
	Key Point Positioning
	Direction Determination
	Description of Key Points

	Improved SIFT Algorithm
	Scale Space Increases the Stability Factor
	Simplified Feature Descriptor

	Experimental Results and Analysis
	Experimental Environment
	Comparison of Experimental Results
	Comparison of Experimental Results Based on Kitti Dataset
	Comparison of Experimental Results Based on the Euroc Dataset

	Comparison with Other Algorithms
	Summary of Experimental Results

	Conclusions
	References

