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Abstract: Motion (change) detection is a basic preprocessing step in video processing, which has many
application scenarios. One challenge is that deep learning-based methods require high computation
power to improve their accuracy. In this paper, we introduce a novel semantic segmentation and
lightweight-based network for motion detection, called Real-time Motion Detection Network Based
on Single Linear Bottleneck and Pooling Compensation (MDNet-LBPC). In the feature extraction
stage, the most computationally expensive CNN block is replaced with our single linear bottleneck
operator to reduce the computational cost. During the decoder stage, our pooling compensation
mechanism can supplement the useful motion detection information. To our best knowledge, this is
the first work to use the lightweight operator to solve the motion detection task. We show that the
acceleration performance of the single linear bottleneck is 5% higher than that of the linear bottleneck,
which is more suitable for improving the efficiency of model inference. On the dataset CDNet2014,
MDNet-LBPC increases the frames per second (FPS) metric by 123 compared to the suboptimal
method FgSegNet_v2, ranking first in inference speed. Meanwhile, our MDNet-LBPC achieves
95.74% on the accuracy metric, which is comparable to the state-of-the-art methods.

Keywords: motion detection; single linear bottleneck; pooling compensation

1. Introduction

We investigate efficient deep learning methods for motion segmentation scenarios,
and focus on efficient segmentation models with proper accuracy. Such a task is also known
as unsupervised video object segmentation (VOS). Motion (change) detection is a binary
classification problem which refers to segmenting moving objects from video sequences.
As a basic preprocessing step in video processing, it is widely employed in many visual
applications such as people counting [1], object tracking [2], mobility monitoring [3] and
video summary [4], etc. The common methods for detecting moving objects in a scene
are background subtraction [5], point trajectory [6], over-segmentation [7], “Object-like”
segments [8] and CNN-based [9] methods, in which moving objects are considered as
foreground regions and non-moving objects are considered as background regions, The
output of the moving objects detection process is a binary mask which divides the input
frame pixels into sets of background and foreground pixels.

Background subtraction is widely used in many visual surveillance applications.
There are many challenges in developing a robust background subtraction algorithm:
illumination changes, shadows cast by foreground objects, dynamic background motion,
camera motion, camouflage or subtle regions, i.e., similarity between foreground pixels
and background pixels. In recent years, these challenges have been extensively studied and
numerous approaches have been proposed [6–20]. Among them, some methods based on
deep learning [9–15] have achieved great success. However, in order to solve the above
challenges and eliminate the interference caused by irrelevant targets, deep learning-based
methods need to pay a high computational cost, which makes them difficult to implement
in real-time applications.
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To solve the above efficiency problems in existing deep learning methods and improve
the detection and segmentation efficiency of the model, we expect that we can accelerate
the model by designing the compactness convolution structure.

Some recent studies [21–24] have shown that the bottleneck structure and deep sep-
arable convolution used in the lightweight network model can be used to reduce the
complexity of the deep neural network and achieve a significant acceleration effect. In-
spired by the recent success of semantic segmentation based motion detection method [9],
we propose a Real-time Motion Detection Network Based on Single Linear Bottleneck and
Pooling Compensation (MDNet-LBPC). This model classifies foreground and background
pixels through the encoder decoder structure. Rich segmentation details and efficient
segmentation can be obtained by the pooling compensation mechanism and single linear
bottleneck structure. We successfully combine semantic segmentation techniques and the
lightweight techniques of deep neural networks for efficient motion segmentation. Our
main contributions are as follows:

• We propose a novel real-time motion detection network based on single linear bottle-
neck operator and pooling compensation mechanism named MDNet-LBPC, which
can achieve efficient motion detection with accurate segmentation results.

• Based on the bottleneck structure and the invert linear bottleneck operator, we propose
a single linear bottleneck operator, which can reduce the FLOPs, thereby improving
the inference efficiency of the model.

• We propose a pooling compensation technique based on attention mechanism and skip
connections that can be used to compensate for the loss of information compression
caused by pooling, thereby improving the accuracy of our motion detection model.

2. Related Works

We will provide a brief overview of the related works on motion detection, including
conventional approaches and CNN-based methods from the perspective of computational
efficiency. In addition, we also introduce the lightweight architecture-based methods which
are relevant to this paper.

2.1. Conventional Methods

Most conventional approaches rely on building a background model for a specific
video sequence. To model the background model, statistical (or parametric) methods
using Gaussians are proposed [20,25,26] to label each pixel as a background or foreground
pixel. In [27], an improved Gaussian mixture model compression technique is proposed
to separate background images and moving objects in video. However, parametric meth-
ods are computationally inefficient. To alleviate this problem, various nonparametric
methods [28–30] have been proposed.

In order to reduce the impact of lighting changes, shadows cast by foreground objects,
dynamic background motion, camera motion, camouflage or subtle areas on the perfor-
mance of background subtraction, A. Pante et al. [31] proposed the idea of background
modeling based on frame difference. Furthermore, ref. [32] used Genetic programing to
select different change detection methods and combined their results. Most of the current
CNN-based methods are also based on background subtraction. However, these methods
may cause overfitting due to the loss of redundant pixels and higher context information in
patches, and require a large number of patches for training.

2.2. Cnn-Based Methods

Recently, CNN-based methods [10–13,33] have shown impressive results and can
outperform classical approaches by large margins. Braham et al. [34] proposed the first
CNN-based background subtraction method for specific scenes. First, a temporal median
operation is performed on the video frames to generate a fixed background image; then,
for each frame in the sequence, an image patch frame and background image centered
on each pixel are extracted from the current frame. Babaee et al. [17] proposed a new
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background image generation and motion detector, which produces a more accurate
background image. R. Gupta et al. [35] proposed a new computer vision algorithm to
improve detection accuracy by using spatiotemporal features. Further optimization will
reduce feature dimension by using principal component analysis to detect anomalies in a
given video sequence.

Wang et al. [16] proposed a multi-scale cascaded convolutional neural network struc-
ture for background subtraction without the need to construct a background image. Re-
cently, Lim et al. [10] proposed a semantic segmentation-based encoder–decoder neural
network with triple CNN and transposed CNN configurations, which has achieved state-
of-the-art performance. In the subsequent studies [9,11,13,33], the semantic segmentation-
based strategy was used in the motion detection task and was able to achieve state-of-the-art
performance. Although these semantic segmentation-based methods can achieve high
accuracy, their inference efficiency is limited.

2.3. Lightweight Architecture

In recent years, deep neural network model compression and acceleration methods
have been rapidly developed. Ji et al. [36]. summarized this work in 2018, including
lightweight architecture to achieve model compression and acceleration.

Following the pioneering work of grouping/deep convolution and separation con-
volution, lightweight architecture design has achieved rapid development, including
Xception [23], MobileNet [22,24], ShuffleNet [21], etc. The lightweight neural network is
a lighter model, which has a performance no worse than that of the heavier model. It
aims to further reduce the amount of model parameters and complexity on the basis of
maintaining the accuracy of the model and make the operation speed faster, so as to realize
a hardware-friendly neural network.

Commonly used lightweight neural network technologies include distillation, pruning,
quantization, weight sharing, low-rank decomposition, lightweight attention module,
dynamic network architecture/training mode, lighter network architecture design, NAS
(neural architecture search), etc. These methods achieve a valuable compromise between
the speed and accuracy of the classification task. We propose a new lightweight operator,
called single linear bottleneck, and apply it to our motion detection network. This is the
first work to use the lightweight operator to solve the motion detection task.

3. Methods

Motivated semantic segmentation-based methods [9,11,13,33] in motion detection
tasks typically use lightweight operators [22–24,37], and here we propose a real-time
motion detection network based on single-linear bottleneck and pooling compensation,
MDNet-LBPC.

The overview of our framework is illustrated in Figure 1. In the first stage (blue),
the encoder takes an RGB image as the input, and outputs multi-scale spatial feature maps.
We replace the most computationally expensive CNN block with our single linear bottleneck
operator to reduce the computational cost. In the second stage (green), the decoder uses
the coarse probability maps and intermediate spatial feature maps from the first stage to
further refine predictions through our proposed pooling compensation mechanism. At the
same time, the lower left corner shows the relationship between the input and output in a
single linear bottleneck operator. A single linear bottleneck block looks like a residual block,
where each block contains one input, then a bottleneck, and finally an extension. However,
the bottleneck actually contains all the necessary information, and the extension layer is
only the implementation of the nonlinear transformation of the adjoint tensor. Therefore,
we can directly use shortcuts between the bottlenecks.

We will elaborate the single linear bottleneck operator in MDNet-LBPC in Section 3.1,
and the polling compensation mechanisms in MDNet-LBPC in Section 3.2. In Section 3.3,
We will analyze the computational cost of our model. In Section 3.4, we will provide more
implementation details.
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Figure 1. Overview of our MDNet-LBPC. The single-linear bottleneck operator is used to reduce the
computational complexity of the model. The polling compensation mechanism is used to reduce
information loss caused by channel compression. “Conv” indicates convolution operation, “Down”
indicates maxpooling and upsampling operation. “SPP” indicates spatial pyramid pooling layer.

3.1. Single Linear Bottleneck

The single-linear bottleneck operator is mainly used to reduce the computational load
of the model. Its structure is shown in Figure 2b. First, the channel dimension is reduced
by the 1× 1 convolution. Then the feature map is passed through the 3× 3 depth-wise
separable convolution. Finally the channel dimension is restored by the 1× 1 convolution.
The nonlinear activation function ReLU is used at the bottleneck, and the other bottleneck
is linear. Therefore, it is called the single-linear bottleneck structure. The design idea of the
single-linear bottleneck structure will be described in details below.

(a) (b)

Figure 2. Invert linear bottleneck [24] and Single linear bottleneck comparison diagram. (a) Invert
linear bottleneck. (b) single linear bottleneck.

He et al. [37] used the bottleneck structure to reduce the computational load of the
model. However, subsequent study [24] showed that using ReLU for nonlinear activation
in the bottleneck layer may lead to loss of information, especially in low-dimensional space.
Considering that if the number of channels is increased in the bottleneck layer, the amount
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of computation will increase. Han et al. [38] used an appropriate number of ReLUs to ensure
the nonlinearity of the feature space, and the remaining ReLUs can be removed to improve
network performance. Shen et al. [39] set ReLU within residual units by creating identity
paths. On this basis, we think that ReLU can be placed in the bottleneck structure channel
recovery, which can maintain a certain nonlinearity and prevent excessive information
loss. The proposed single linear bottleneck is denoted as Φ(x), which can be represented
by the Equation (1). A · N represents the linear conversion A : Rs×s×k → Rs1×s1×(tk), B
is a nonlinear transformation with B : Rs1×s1×(tk) → Rs1×s1×k′ , where t is the channel
reduction factor.

Φ(x) = [A · N ◦ B]x (1)

The detailed structure of this block is shown in Table 1. During the operation, the num-
ber of channels is reduced from k to tk, and then expanded to k′.

Table 1. Single linear bottleneck block transforming from k to k′ channels, with stride s, and reduction
factor t.

Input Operator Output

h × w × k linear 1 × 1 conv2d h × w × (tk)
h × w × (tk) linear 3 × 3 dwise s = s h

s ×
w
s × (tk)

h
s ×

w
s × (tk) 1 × 1 conv2d, ReLU h

s ×
w
s × k

Formal comparison MobileNetV2 [24] is shown in Figure 2, Figure 2a is the inverted
residual linear bottleneck structure. Compared with the inverted residual linear bottleneck,
both bottleneck ends are linearly processed. However, the single-linear bottleneck structure
only keeps one bottleneck end linear. Furthermore, compared to MobileNetV2 [24], which
can only use depth-wise separable convolutions to reduce computation, our single-linear
bottleneck operator simultaneously reduces computation by channel narrowing and using
depth-wise separable convolutions.

3.2. Pooling Compensation

The pooling compensation mechanism proposed in this paper uses skip links to com-
pensate for the loss of information in the encoder–decoder structure due to the compression.
The main theoretical basis is the re-used feature implemented by skip links [40], on which
the attention mechanism is used to enhance the desired detail regions while suppressing
other irrelevant regions.

Lecun et al. [41] and Zeiler et al. [42] pointed out that pooling will bring about the loss
of information, which may affect the final effect of the model. In previous studies, such
as in the field of image segmentation, FCN [43] used skip links to add rich details to the
segmentation results, but did not explain it theoretically. These methods did not highlight
the specific needs of rich foreground target details, neither do methods such as Unet [44]
and the foreground segmentation network FgSegNetV2 [9]. In other words, these methods
do not achieve relevant feature enhancement and irrelevant feature suppression, while irrel-
evant features may have an impact on the accuracy of results. The motivation for designing
the pooling compensation mechanism in this paper is based on this existing problem.

We believe that the loss of detailed information caused by pooling can be alleviated
by pooling compensation. We propose the pooling compensation mechanism (Figure 3)
to enhance the detailed information required for classification and suppress irrelevant
information. We first perform the convolution operation of k× k on the feature map X
before the maximum pooling operation to obtain the feature map SX. We then obtain the
corresponding weight matrix S through the Sigmoid activation process, and finally input
the feature. The image X and the weight matrix S are multiplied to obtain the weighted
output feature map Y, as shown in Equation (2). The importance of each pixel on the
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input feature map for subsequent classification is obtained by the learning. Hence, we can
enhance the feature details of the pooling loss and suppress the irrelevant regions.

Y = σ( f k×kX )X (2)

where σ is the sigmoid activation operation, and f k×k represents the k× k convolu-
tion operation.

Figure 3. Pooling loss detail enhancement processing.

3.3. Computational Analysis

The lightweight of FSNet-LBPC is mainly reflected in the use of the single-linear
bottleneck operator. In this section, we will first compare the computational load of similar
operators, and then compare the computational load of similar models.

Comparison of different bottlenecks. We set 3 standard convolutional layers of 3×3
as the benchmark. Table 2 shows the comparison results: compared with similar operators,
the computational complexity of the single-linear bottleneck operator is reduced by an
order of magnitude.

Table 2. Comparing the computation and parameters of different bottlenecks. The best scores are
marked in bold.

Input Feature Map Size: 14× 14× 512

Module Settings Baseline Bottleneck [37] Ivert LB [24] Our

FLOPs 1.4× 109 1.9× 108 1.6× 108 6.5 ×107

Params 7.1× 106 2.6× 106 9.9× 105 4.0 ×105

Comparison of similar models. Table 3 shows the comparison results, compared
with similar models, FSNet-LBPC is comparable to the method with the least amount of
computation MU-Net2 [13], but the accuracy is better than MU-Net2. Compared with other
methods, the calculation amount is reduced by about three times.

Table 3. Computational comparison with state-of-the-art methods. The best scores are marked
in bold.

Input Feature Map Size: 112× 112× 3

Method MDNet-LBPC FgSegNet_v2 [9] FgSegNet_S [15] FgSegNet [10] MU-Net2 [13]

FLOPs 2.4× 109 7.2× 109 7.2× 109 7.2× 109 1.9 ×109

Params 2.1 ×106 8.1× 106 8.2× 106 8.2× 106 1.2× 107

3.4. Implementation Details

• Architecture details. We use the first four convolution blocks of the adjusted VGG16 [45]
as the encoder. We remove the third max-pooling layer, and adjust the convolution op-
erator in the fourth convolution block to our single linear bottleneck operator. The “SPP”
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in Figure 1 is consistent with Chen et al. [46]. For the decoder part, before the upsam-
pling operation, the input is concatenated with the output of the pooling compensation,
which is then upsampling with bi-linear interpolation.

• Training details. The pixel-level cross-entropy is used to calculate the loss. We consider
that the number of background pixels in some video frames in the CDNet2014 [47]
benchmark is much larger than the number of foreground pixels, which may lead to
sample imbalance. This paper penalizes the background pixels in the loss function,
using weighted cross entropy loss function, as shown in the Equation (3).

L = − ∑
(r,c)

[T(r, c)log(S(r, c)) + λ(1− T(r, c))log(S(r, c))] (3)

Among them, T(r, c) represents the pixel value of the target mask with the position
of row r and column c. S(r, c) represents the pixel value at row r and column c of the
prediction result. λ represents the weight coefficient.

Furthermore, the weights of the first three convolutional blocks of VGG16 [45] pre-
trained on Imagenet [48] are used as the initial weights of the first three convolutional
blocks of the encoder module and remain unchanged. The RMSProp optimizer is used as
the training optimizer. The batch-size is set to 1, the number of maximum epochs is set to
100, and the initial learning rate is set to 1 ×10−4 and constantly adjusted during training.

4. Experiments

In this section, we have done sufficient experiments to verify the effectiveness of our
method. We choose CDNet2014 [47] as the benchmark, the training and testing are based
on an NVIDIA 2080TI card.

4.1. Dataset and Metrics

CDNet2014 [47]. It contains 11 categories: Baseline, Camera Shake, Severe Weather,
Dynamic Background, Intermittent Object Motion, Low Frame Rate, Night Video, PTZ
(Pan-Tilt-Zoom), Shadows, Heat, and Turbulence. Each category contains 4 to 6 sequences.
There are 53 different video sequences in total.

Metrics. The evaluation metrics are recall (R), precision (P), F1 score (F ), percentage
of wrong classifications (PWC) and inference frames per second (FPS).

4.2. Ablation Studies

In this section, we investigate the important setups and components of MDNet-LBPC.
The model without pooling compensation and single linear bottleneck branch of MDNet-
LBPC is used as the baseline model.

• Single Linear Bottleneck. Ablation studies of single linear bottlenecks include reduc-
tion factor comparison experiments and bottleneck structure comparison studies.

Comparison of different reduction factors. We set different reduction factors to
transform channels from 512 to 512, 256, 128 and 64 for comparison. The results are shown
in Table 4. When the channels are transformed to 512 and 256, the experimental results
are not significantly worse, while the segmentation accuracy of the model is significantly
reduced when the number of channels is changed from 256 to 128 and from 128 to 64.
Meanwhile, the classification error rate is significantly increased.

Comparison of different bottleneck structures. The results of the three bottlenecks
on the baseline model are shown in Tables 5 and 6. The inverse residual linear bottleneck
(Invert LB) [24] does not perform channel reduction, and the reduction factor of our single
linear bottleneck (Single LB) and bottleneck [37] is 0.5. It can be seen that all bottlenecks
lead to a slight decrease in model segmentation accuracy. The acceleration improvement
of our single linear bottleneck can outperform that of the linear bottleneck by 5%, so it is
more suitable for improving the model inference efficiency.
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Table 4. Experimental results of channel reduction factor ablation for our single linear bottleneck.
The last row represents the average result for each scenario.

Category
512 256 128 64

F PWC F PWC F PWC F PWC
baseline 0.9784 0.0617 0.9767 0.0624 0.9108 0.1005 0.8541 0.2128

cameraJit 0.9701 0.2412 0.9688 0.2514 0.9247 0.2914 0.8599 0.3621
badWeather 0.9632 0.0588 0.9641 0.0602 0.9065 0.1023 0.8215 0.2218
dynamicBg 0.9641 0.0279 0.9635 0.0298 0.9277 0.0589 0.8432 0.1029

intermitt 0.8279 0.1399 0.8284 0.1403 0.7425 0.1521 0.5858 0.1999
lowFrameR. 0.9254 0.0603 0.9247 0.0625 0.8899 0.1014 0.7612 0.1856
nightVid. 0.9511 0.1014 0.9507 0.1287 0.9003 0.1452 0.7922 0.2123

PTZ 0.9823 0.0181 0.9814 0.0195 0.9321 0.0887 0.8132 0.1767
shadow 0.9533 0.1086 0.9528 0.1099 0.9011 0.1424 0.8354 0.1569
thermal 0.9636 0.1712 0.9631 0.1721 0.9112 0.1847 0.8011 0.2202

turbulence 0.9562 0.0407 0.9547 0.0438 0.9002 0.1003 0.7878 0.2145
Overall 0.9487 0.0936 0.9481 0.0982 0.8952 0.1334 0.7959 0.2060

Table 5. Accuracy experimental results for different bottlenecks. The last row represents the average
result for each scenario.

Category
Baseline Bottleneck [37] Invert LB [24] Our

F PWC F PWC F PWC F PWC
baseline 0.9914 0.0421 0.9752 0.0962 0.9798 0.0541 0.9767 0.0624

cameraJit 0.9780 0.2246 0.9595 0.3254 0.9684 0.2846 0.9688 0.2514
badWeather 0.9785 0.0464 0.9577 0.0621 0.9652 0.0511 0.9641 0.0602
dynamicBg 0.9652 0.0238 0.9510 0.0522 0.9621 0.0324 0.9635 0.0298

intermitt 0.8798 0.0886 0.8242 0.1898 0.8320 0.1012 0.8284 0.1403
lowFrameR. 0.9248 0.0521 0.9155 0.0658 0.9263 0.0597 0.9247 0.0625
nightVid. 0.9612 0.1014 0.9456 0.1526 0.9514 0.1113 0.9507 0.1287

PTZ 0.9910 0.0122 0.9724 0.0624 0.9801 0.0243 0.9814 0.0195
shadow 0.9622 0.1052 0.9430 0.1224 0.9506 0.1123 0.9528 0.1099
thermal 0.9721 0.1074 0.9528 0.1312 0.9641 0.1110 0.9631 0.1721

turbulence 0.9622 0.0212 0.9506 0.0667 0.9601 0.0438 0.9547 0.0448
Overall 0.9606 0.0750 0.9407 0.1206 0.9491 0.0896 0.9481 0.0983

Table 6. Experimental results of inference efficiency for different bottlenecks and pooling compensa-
tion. The best results are marked in bold.

Resolution
Baseline Bottleneck [37] Invert LB [24] Single LB Polling C.

FPS FPS FPS FPS FPS

320× 240 66 77 143 154 63
360× 240 59 68 128 138 57
640× 480 20 23 39 42 19
720× 480 18 20 35 38 18

• Pooling compensation. The experimental results of pooling compensation ablation are
shown in Figure 4, Tables 6 and 7. After adding the pooling compensation mechanism,
the model can better segment the foreground targets with complex edge contours.
In most categories, F scores are improved, and PWC was decreased. The average F
of the 11 categories increased from 96.06% to 97.11%, and the average PWC decreased
from 7.5% to 5.01% with comparable inference efficiency.
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Figure 4. Qualitative comparison results of pooling compensation ablation study.

Table 7. Accuracy comparison results of pooling compensation mechanism. The last row represents
the average result for each scenario.

Category
Baseline Pooling C.

F PWC F PWC
baseline 0.9914 0.0421 0.9922 0.0110

cameraJit 0.9780 0.2246 0.9898 0.1412
badWeather 0.9785 0.0464 0.9786 0.0321
dynamicBg 0.9652 0.0238 0.9721 0.0122

intermitt 0.8798 0.0886 0.8912 0.0854
lowFrameR. 0.9248 0.0521 0.9432 0.0482

nightVid. 0.9612 0.1014 0.9788 0.1822
PTZ 0.9910 0.0122 0.9902 0.0074

shadow 0.9622 0.1052 0.9786 0.0734
thermal 0.9721 0.1074 0.9888 0.1566

turbulence 0.9622 0.0212 0.9789 0.0422
Overall 0.9606 0.0750 0.9711 0.0501

Table 8. Quantitative results of existing state-of-the-art methods on the CDNet2014 [47] benchmark.
The inference speed is calculated from the input video with a resolution of 320 × 240. The best results
are marked in bold.

Method P R PWC F FPS
Our 0.9676 0.9473 0.0664 0.9574 151

FgSegNet_v2 [9] 0.9823 0.9891 0.0402 0.9847 28
FgSegNet_S [15] 0.9751 0.9896 0.0461 0.9804 21

FgSegNet [10] 0.9758 0.9836 0.0559 0.9770 18
BSPVGAN [14] 0.9472 0.9544 0.2272 0.9501 23
MU-Net2 [13] 0.9407 0.9454 0.2347 0.9369 -

Cascade CNN [16] 0.8997 0.9506 0.4052 0.9209 13
BSUV-Net 2.0 [12] 0.9011 0.8136 0.7614 0.8378 29

DeepBS [17] 0.8332 0.7545 1.9920 0.7458 -
WeSamBE [18] 0.7679 0.7955 1.5105 0.7446 2

AAPSA [19] 0.6916 0.6498 2.0734 0.6179 -
GMM [20] 0.6025 0.6846 3.7667 0.5707 -

4.3. Quantitative and Qualitative Results

Quantitative Results. Table 8 shows the overall results, with all the top performance
methods taken from the CDNet2014 benchmark [47]. MDNet-LBPC outperforms all the
reported methods on inference frames per second (FPS) metric. Compared with the
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second best method, FgSegNet_v2 [9], our MDNet-LBPC had significant gains of 123 on
inference frames per second, respectively. Meanwhile, our MDNet-LBPC is comparable
with the state-of-the-art methods in terms of accuracy metrics.

Qualitative Results. Figure 5 (“Input” and “ground truth” adapted from [47]) shows
the qualitative results, with several top performance methods taken from the CDNet2014
benchmark [47]. Our MDNet-LBPC detection effect is comparable to similar methods.

Figure 5. Qualitative comparison results on CDNet2014 [47] benchmark. The comparison method is
follows: FgSegNet_v2 [9].

Segmentation Stability Comparison. We used F-measure and classification error
percentage (PWC) to analyze the stability performance of 12 methods in each category
of the dataset from both positive and negative aspects. First, F is used to evaluate the
stability of the model in each category of the data set. The F of each method in each
category of the data set is counted, and the curve of its change with the scene is drawn on a
graph, as shown in Figure 6. The vertical axis represents F, and the horizontal axis 1 to 11
sequentially represent 11 scenes of CDNet2014 [47].

Figure 6. The change curve of the comprehensive index F relative to each category of the data set: the
bold broken line segment is the result corresponding to the method in this paper, and is one of the
several broken line segments closest to the straight line at 1.
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It can be seen that the curve corresponding to our method is one of the top curves in
the whole curve comparison diagram. The model segmentation accuracy belongs to one of
the top few methods in the current CDNet2014 [47] data set, indicating that this method
has excellent segmentation performance. Compared with the curve at the bottom of the
figure (the segmentation accuracy is unstable), the curve corresponding to the model in
this paper changes gently, which indicates that our method has good stability for video
segmentation of different scenes.

For the percentage of misclassification (PWC), we counted the PWC of each method
in each category of the dataset, and plotted its curve with the scene as shown in Figure 7.
The vertical axis represents PWC and the horizontal axis represents each scene. It is
shown in the figure that among the methods with better performance on the current CD-
Net2014 [47] data set, the curve corresponding to the method in this paper is one of the
lowest ones in the whole curve comparison diagram, indicating that the model segmen-
tation error rate is low and the curve change is also gentle. This proves the segmentation
accuracy and stability of the model with respect to classification accuracy. Therefore, the ex-
periment shows that our model not only has high segmentation accuracy, but also has good
segmentation stability, and can achieve accurate segmentation of various scenes.

Figure 7. Change curve of PWC relative to each category of the dataset: the bold curve represents
the change curve of PWC value of each category corresponding to the method in this paper, which
is one of the several broken lines closest to the straight line 0, indicating that our method has a low
segmentation error rate in each scene.

5. Conclusions

In this paper, we have proposed a novel semantic segmentation and lightweight-
based method (Real-time Motion Detection Network Based on Single Linear Bottleneck
and Pooling Compensation, MDNet-LBPC) for motion detection. In order to improve the
efficiency of model inference, we first propose a single linear bottleneck operator to make
the lightweight network. In order to handle the problem of information loss due to the
use of pooling for the reduction of feature dimensions in the network, we also propose a
pooling compensation mechanism to supplement useful information. The experimental
results show that, for the segmentation accuracy, it can be seen from Table 8 that our
method achieved third place, and each index is close to the method ranking first. For the
efficiency of segmentation, this method achieved first place, and the segmentation speed is
far ahead of other methods. Specifically, compared with the second-ranking similar method
FgSegNet_ V2 [9] our precision (P) has a difference of 1.47%, and the segmentation speed
has been greatly improved, reaching 151 frames per second.

The proposed real-time unsupervised motion detection network model considers the
balance of real-time and accuracy, but it only makes a preliminary lightweight treatment on
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the network. In actual application, we can prune the network, and compress and accelerate
the quantitative model according to specific application scenarios to improve the inference
efficiency of the network. Moreover, our research has certain limitations. In the training
process, we rely too much on data sets, so we are not completely unsupervised in the
real sense. Therefore, in the future work, we can consider how to design a completely
unsupervised real-time unsupervised motion detection and segmentation algorithm, so
that the model is no longer limited by data set annotation. We expect to further reduce the
weight of the model to improve its efficiency.
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