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Abstract: The study of functional connectivity (FC) of the brain using resting-state functional magnetic
resonance imaging (rs-fMRI) has gained traction for uncovering FC patterns related to autism
spectrum disorder (ASD). It is believed that the neurodynamic components of neuroimaging data
enhance the measurement of the FC of brain nodes. Hence, methods based on linear correlations
of rs-fMRI may not accurately represent the FC patterns of brain nodes in ASD patients. In this
study, we proposed a new biomarker for ASD detection based on wavelet coherence and singular
value decomposition. In essence, the proposed method provides a novel feature-vector based on
extraction of the principal component of the neuronal dynamic FC patterns of rs-fMRI BOLD signals.
The method, known as principal wavelet coherence (PWC), is implemented by applying singular
value decomposition (SVD) on wavelet coherence (WC) and extracting the first principal component.
ASD biomarkers are selected by analyzing the relationship between ASD severity scores and the
amplitude of wavelet coherence fluctuation (WCF). The experimental rs-fMRI dataset is obtained
from the publicly available Autism Brain Image Data Exchange (ABIDE), and includes 505 ASD
patients and 530 normal control subjects. The data are randomly divided into 90% for training and
cross-validation and the remaining 10% unseen data used for testing the performance of the trained
network. With 95.2% accuracy on the ABIDE database, our ASD classification technique has better
performance than previous methods. The results of this study illustrate the potential of PWC in
representing FC dynamics between brain nodes and opens up possibilities for its clinical application
in diagnosis of other neuropsychiatric disorders.

Keywords: autism spectrum disorder; resting state fMRI; BOLD signal; dynamic functional connectivity;
SVD; principal component; oriented energy

1. Introduction

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders charac-
terized by difficulties in social interactions, language delay, and repetitive behaviors. The
World Health Organization (WHO) reports that ASD affects 1 in 160 children worldwide [1].
Moreover, the severe deficits associated with ASD place a significant health and financial
burden on the global community [2]. Given the increasing prevalence of ASD, it is impor-
tant to further develop ASD diagnostic tools to reduce the impact of this burdens and to
better manage ASD subjects. In the Diagnostic and Statistical Manual of Mental Disorders
(DSM), the American Psychological Association (APA) has classified ASD into three sub-
types based on impairment symptoms: classic autistic disorder (ASD), Asperger syndrome
(APD) and pervasive developmental disorder—not otherwise specified (PDD-NOS) [3].
The different impairment ratings for ASD subtypes are based on repetitive behaviors, verbal
skills, social interaction and communication. Diagnosis of autism is a difficult task because
there is no standard medical test for accurate diagnosis [4]. Current clinical practice uses
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various questionnaires based on cognitive characteristics and behavioral observations for
diagnosis of ASD [5–8]. The disadvantages of these clinical assessments, which require
direct interaction between the child and the clinician, are that they are time-consuming and
costly. Because symptom-based diagnostic criteria depend on observational techniques
and subjective decisions, autism researchers point out that diagnoses of ASD types vary
widely from clinic to clinic, even when they are all based on the same standard tests [8].
Because clinical results are imprecise, there is a need to find accurate biological markers to
automate the ASD diagnostic process [9]. Automated solutions based on artificial intelli-
gence (AI) can enable rapid ASD classification, hence increasing the reliability and accuracy
of diagnostic results [10,11]. Experts have recently developed many AI algorithms for
ASD diagnostic models based on functional magnetic resonance imaging (fMRI). Previous
works have shown that resting-state functional magnetic resonance imaging (rs-fMRI) data
play an essential role in diagnosing ASD. Because rs-fMRI has better spatial resolution,
it enables the functional analysis of deep brain structures [11]. In particular, rs-fMRI is
commonly used to study functional connectivity (FC) of the brain at rest by detecting
fluctuations in blood oxygenation-dependent (BOLD) signals. Essentially, FC identifies
the spatio–temporal correlations between brain regions based on BOLD signals [12]. The
different patterns of FC in ASD are mainly used with AI algorithms to create ASD classifiers
that distinguish ASD from normal cases (NC) [13–15].

2. Related Work

In the last 10 years, rs-fMRI techniques have been used in the study of brain activity for
diagnosis of ASD using machine learning and deep learning algorithms [16–18]. Table A1
in the Appendix A presents the latest AI technologies in ASD classification using rs-fMRI
data from the Autism Brain Imaging Data Exchange (ABIDE). As shown in Table A1,
support vectors machines (SVMs) are a traditional machine learning classifier that has been
widely used in previous studies. Chen et al. [19] proposed a discriminative model using
an SVM to classify the selected FC features based on the F-score method. With 240 ASD
and 128 NC subjects, the data were collected from six different sites of ABIDE, producing
79.17% classification accuracy based on 10-fold cross validation (CV). Bernas et al. [20] also
used SVM for classification of ASD, taking in-phase synchronization features of the FC
network extracted from 30 subjects from one of the ABIDE sites: the LEUVEN dataset.
Their classification technique achieved an average accuracy of 86.7% using 30-fold CV.
Recently, Ma et al. [21] extracted the phase synchrony of the FC network and used principal
component analysis (PCA) to reduce the dimensionality of the FC network by selecting the
best FC features as the feature vector for the SVM classifier. Using a dataset of 90 subjects,
the classifier achieved 78.9% accuracy in ASD classification from NC run on a 10-fold
CV framework.

As shown above, the selection of discriminative FC features in fMRI data is crucial
for good performance of discriminative models for ASD detection. On the other hand,
deep learning (DL) algorithms based on FC networks of rs-fMRI data have been used
to classify ASD. Heinsfeld et al. [16] concluded that DL algorithms should use unsuper-
vised methods to extract relevant features while minimizing human intervention. They
transferred 19,900 features from the FC network to a deep neural network (DNN) using
two stacked denoising auto-encoders and achieved an average accuracy of 70%. Wang
et al. [22] achieved 93.2% accuracy by using SVM with recursive feature elimination (RFE)
to select the top-ranked FC features from an FC network; their results were based on 10-fold
CV among the full ABIDE dataset. Sherkatghanad et al. [17] attempted to improve the
automated ASD classifier by converting the vector of FC features to two-dimensional (2D)
matrices and using the images as input to a convolutional neural network (CNN). Their
proposed model achieved an average accuracy of 70.2% based on 10-fold CV. In the same
context, Hunag et al. [18] achieved 76.4% average classification accuracy using 2D images of
selected FC features as input to a deep belief network (DBN). Huang et al. [18] first filtered
the FC network using a heuristic graph-based feature selection method that considered
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both external and internal FC network measurements. Subah et al. [23] achieved 87.9%
ASD classification accuracy by training a DNN using the FC features of rs-fMRI data from
ABIDE. Based on the quality assessment of the fMRI data, the authors selected 866 patients
from a total number of 1035, including 402 ASD and 464 NC subjects.

It is worth mentioning that the brain network pattern FC plays a key role in the
performance of ASD classification models. As can be seen from Table A1, there are two
main patterns of FC: static and dynamic. To determine the static FC network, the Pearson
correlation between the BOLD signals of the brain nodes is used. Most studies that have
used rs-fMRI data to classify ASD utilized static FC [16–18]. On the other hand, dynamic
connections can be obtained by representing the FC in the time–frequency domain, resulting
in more informative connectivity features.

For example, Chen et al. [19] examined the resting-state FC in ASD over two frequency
bands: the slow-4 (0.01–0.027 Hz) and slow-5 (0.027–0.073 Hz). Bernas et al. [20] attempted
to study FC networks based on in-phase synchronization of coherence between signals,
and Ma et al. [21] determined the dynamic correlation between brain nodes based on phase
synchrony coefficients. Exciting new work has shown that viewing the brain FC as dynamic
over time and frequency can successfully reveal the disruptions of the normal human brain
in a disordered state [24,25].

At present, the accuracy of ASD classification models based on multiple ABIDE
training datasets ranges from 70–93% over the full ABIDE database. However, despite
the increasing number of automated classification models, it remains a challenge to find
discriminative models that provide superior accuracy with low false prediction in FC-based
ASD diagnosis. Clearly, inaccurate predictions can have a negative impact on a patient’s life
and even cause financial costs for healthcare institutions [26,27]. For example, if a model
misclassifies an ASD patient as a normal case or misidentifies ASD subtypes, the disorder
may go untreated and may worsen the patient’s impairment symptoms. In this case, there
can be serious consequences for the reputation and performance of health facilities.

On the premise of ensuring a robust and efficient ASD diagnostic model, this study
proposes a new dynamic FC as an ASD biomarker for more accurate classification of ASD
from NC. Evidence suggests that the temporal dynamics of FC is a key feature in identifying
brain disorders [20,21].

Therefore, we proposed a new metric called wavelet coherence fluctuations (WCF),
which represents the amplitude of coherence between brain regions during low-frequency
fluctuations using the wavelet coherence transform. The functional brain network is
constructed based on WCF, and biological ASD markers are identified by using a variance
analysis-support vector machine (ANOVA-SVM) method. Then, the wavelet coherence
plus singular value decomposition is implemented to generate a 2D matrix representing
the coherence of the ASD biomarkers based on the pure time–frequency components. This
matrix is known as the principal wavelet coherence (PWC) connectivity. By using SVD, the
useful properties of the WC matrix in classifying ASD vs. NC can be extracted. Then, the
PWC matrix is converted into a 2D image. Finally, a three-layer CNN (3L-CNN) is used
as an AI algorithm to examine the performance of the proposed framework in identifying
ASD patients using PWC images.

Three main sections of the paper are presented as follows: the methodology in
Section 3 explains the complete ASD classification methods based on the principal subspace
of dynamic functional connectivity, including the WCF calculation, the ANOVA-SVM
algorithm, the PWC generation and the proposed CNN models. Section 4 presents the
results and discussion, and lastly, Section 5 provides the conclusion and future works.

3. Material and Method

The overall methodology in developing ASD classification using the ASD FC patterns
of rs-fMRI data is shown in Figure 1. The rs-fMRI data preparation, FC measurements,
identification of ASD FC patterns, 2D FC image construction and classification networks
are illustrated in the following sections.
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Figure 1. Method of investigation in the development of automatic ASD diagnosis using PWC of
resting-state fMRI BOLD signals and convolutional neural networks.

3.1. rs-fMRI Data Preparation

First, preprocessed ABIDE rs-fMRI data are downloaded from the Preprocessed Con-
nectomes Project (PCP) database, and the Data Processing Assistant for rs-fMRI (DPARSF)
is selected [28]. The ABIDE data include 1035 subjects collected from different universities
and institutions, of which 505 are ASD subjects and 530 are NC subjects. Details about the
dataset, its scanning parameters and the number of subjects are listed in Table 1.

Table 1. Details of rs-fMRI ABIDE database for ASD and NC subjects acquired using 3T MRI scanner.

Site Country Manufacturer Time Points (TPt) # of ASD # of NC Total

SDSU US GE 175 14 22 36
STANFORD US GE 235 19 20 39

UM US GE 295 66 74 140
KKI US Philips 151 20 28 48

LEUVEN-1 Belgium Philips 245 14 15 29
LEUVEN-2 Belgium Philips 245 15 19 34

SBL Netherlands Philips 195 15 15 30
TRINITY Ireland Philips 145 22 25 47

CALTECH US Siemens 145 19 18 37
CMU US Siemens 315 14 13 27
MAX Germany Siemens 115 24 28 52
NYU US Siemens 175 75 100 175

OHSU US Siemens 77 12 14 26
OLIN US Siemens 215 19 15 34
PITT US Siemens 195 29 27 56

UCLA US Siemens 115 54 44 98
USM US Siemens 235 46 25 71
YALE US Siemens 195 28 28 56

Overall - - 505 530 1035

Legend: SDSU, San Diego State University; STANFORD, Stanford University; UM, University of Michigan;
KKI, Kennedy Krieger Institute; LEUVEN, University of Leuven; SBL, Social Brain Lab; Trinity, Trinity College
Institute of Neuroscience; CALTECH, California Institute of Technology; CMU, Carnegie Mellon University;
MAX, Ludwig Maximilian University of Munich; NYU, New York University; OHSU, Oregon Health and Science
University; OLIN, Olin Center; Institute of Living at Hartford Hospital; PITI, University of Pittsburgh School of
Medicine; UCLA, University of California; Los Angeles; USM, University of Utah School of Medicine; Yale, Yale
School of Medicine.

For extraction of BOLD signals, Automated Anatomical Labeling (AAL) is chosen as
the default brain atlas; it essentially divides the brain into 90 nodes [29]. For each subject,
the BOLD signal is extracted at each brain node, and this forms a matrix B ∈ RTPt×node,
where each column contains the BOLD signal of length TPt of a specific node = [1, 2, ..., 90].
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3.2. Functional Connectivity (FC) of BOLD Time-Series Signals

Functional connectivity of fMRI signals provides a measure of correlation or similarity
between brain nodes and is commonly used in discriminating various neurological disor-
ders [24,30,31]. The calculation of FC from fMRI is obtained from BOLD time-series signals
extracted for specific brain nodes according to the type of brain atlas. The conventional
method of FC is based on Pearson correlation coefficients (PCCs) and are classified as a type
of static FC since it is based only on the time-domain information. On the other hand, FC
based on wavelet coherence (WC) is a dynamic FC due to the fact that the wavelet transform
provides time–frequency resolution of 1D signals. The decomposition into time–frequency
localization of wavelet-based FC essentially provides additional information for better
discrimination of neurological disorders [20,32]. In the subsequent sections, the theory of
static and dynamic FC is provided in detail.

3.2.1. Static FC Using Pearson Correlation Coefficients (PCC)

For static FC (SFC), the use of Pearson correlation coefficients (PCCs) of BOLD signals
is a common linear method for determining functional connectivity between different areas
of the brain and provides useful information about brain activity [17,18]. Calculating the
PCC between two BOLD signals involves finding their covariance (cov) and dividing by
the product of their standard deviations. If x(t) and y(t) represent the BOLD signals of two
nodes, the PCC of the two nodes is

βx,y =
cov(x, y)

σxσy
, (1)

where for x(t) and y(t), the standard deviation is represented by σx and σy, respectively.
By subtracting the mean value of the BOLD signals and determining the expected value,
the covariance can be calculated as follows

cov(x, y) = E[(x− µx)(y− µy)], (2)

where E[.] denotes the expected value, and µx and µy denote the mean of x(t) and
y(t), respectively.

3.2.2. Dynamic FC Using Wavelet Coherence (WC)

For dynamic FC (DFC), wavelet coherence (WC) is a nonlinear estimator used to
determine functional connectivity between brain areas using time–frequency components
of neuroimaging signals [20,32]. Based on the Grinsted et al. [33] method, the WC can be
calculated by first extracting the time–frequency components from each BOLD signal using
the continuous wavelet transform (CWT). As given in Equation (3), the CWT coefficient is
defined as the convolution of the BOLD signal x(t) with the scaled and translated form of
a mother wavelet ψa,b(t).

CWT(a, b) =
1√
a

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt, (3)

where a is the wavelet scale, b is the location, and * indicates the complex conjugate [34]. The
Morlet wavelet is used as the mother wavelet because it has the best ratio (1.03) between
frequency band and wavelet scale, which facilitates the understanding of data in the
frequency domain [35]. CWT is emerging as an important method in biosignal analysis due
to its ability to extract useful information from non-stationary signals [36,37]. Further, WC,
which is based on CWT, characterizes coherence measures between two signals on different
time scales and does not require assumptions about the stationarity of the input signals. As
a result, CWT provides a good balance between time and frequency components.

The next step is to calculate the joint power of the BOLD signal pair x, y at different
scales a and times b using the following equation

Cxy(a, b) = S(C∗x(a, b)Cy(a, b)), (4)
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where Cx(a, b) and Cy(a, b) respectively denote the CWT of x and y at scales a and positions
b, the superscript * is the complex conjugate, and S is smoothing in time and scale. Then,
the WC between x and y is calculated by

WCxy =
| Cxy(a, b) |2

(S | Cx(a, b) |2)(S | Cy(a, b) |2) (5)

The WC is a 2D matrix, WC ∈ RTPt×F, and the matrix coefficient is denoted as wct, f ,
where t = 1, 2, ..., TPt is the number of time points, and f = 1, 2, ..., F is the number
of frequency scales based on wavelet decomposition at low frequency fluctuation (LFF)
(0.01–0.08 Hz). The matrix represents the time–frequency components of the coherence
between pairs of BOLD signals, with each row reflecting the coherence of a particular pair
of brain nodes x and y across time t. The column of the WC matrix represents 37 frequency
bands spaced equally from 0.01 Hz to 0.08 Hz; hence F = 37. The values of time points TPt
for each rs-fMRI dataset are listed in Table 1.

For example, Figure 2 illustrates the 145-length BOLD signal pairs selected from a
subject of the CALTECH dataset. As can be seen in Figure 2, the coherence values of the
signal pairs range between 0 and 1. These values indicate the similarity between x(t) and
y(t) at different phases. As defined by Grinsted et al. [33], the phase difference in wavelet
coherence is from x(t) over y(t) at scales a and positions b is

φxy = tan−1 <(Cxy(a, b))
=(Cxy(a, b))

(6)

where <(Cxy(a, b)) is the real part, and =(Cxy(a, b)) is the imaginary part of Cxy(a, b). A
phase difference of zero means that there is no coherence between the signals. When
φxy ∈ (0, π

2 ), the BOLD signals are coherently in-phase, with the first signal x(t) lagging the
second signal, y(t), whereas when φxy ∈ (−π

2 , 0), x(t) leads y(t). When φxy ∈ (−π,−π
2 ),

the BOLD signals are in anti-phase with x(t) lagging y(t), and when φxy ∈ (π
2 , π), x(t)

leads y(t). The arrows in Figure 2 indicate this behavior of the phase differences between
the signals.

Figure 2. Wavelet coherence formation of (a) a pair of BOLD signals, (b) its corresponding wavelet
coherence and (c) arrows showing the phase difference between the two signals x(t) and y(t). The
vertical and horizontal axes in (b) show the frequency and recording time of the BOLD signals,
respectively. In (b), the darker red regions represent a higher degree of coherency, and the white
overlay defines the cone of influence. In (c), the arrows are indications of the phase coherence, which
is the ratio of leading to lagging signal.

3.3. Selection of the Most Significant ASD-Related Functional Connectivity

When scaling the analysis to multiple subjects and brain regions, the huge amount
of information that a WC analysis generates presents a challenge, since a WC matrix is
generated for each pair of BOLD signals. In this case, it is necessary to select the best
brain-node pairs or FCs for classification of autism, thereby reducing the computational
cost as well as improving the performance of the classifier.
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To achieve this goal, we propose the framework illustrated in Figure 3. In essence, with
90 brain-region nodes, the method takes in 4005 values for the WC matrix and computes
the wavelet coherence fluctuations (WCF), followed by ANOVA-SVM evaluation and lastly
correlation analysis. From ANOVA-SVM, a subset of the most significant FCs is selected,
and this subset is further reduced using the correlation analysis between the WCF of the
selected FC with the Social Responsiveness Scale (SRS) score. In the subsequent sections,
detailed description of the steps involved in selecting the most significant FCs for ASD
are given.

Figure 3. Method of selecting the most significant brain-node pairs from wavelet coherence using
WCF, ANOVA-SVM and correlation analysis between WCF and SRS.

3.3.1. Wavelet Coherence Fluctuation (WCF) Measure

Prior to applying the p-ANOVA-SVM for each subject, the 4005-value WC matrix
is transformed to a 1D matrix with a length of 4005. This 2D-to-1D matrix conversion is
achieved by our newly proposed metric called wavelet coherence fluctuation (WCF). WCF
estimates the total coherence variability in the low-frequency fluctuations of the BOLD
signals. To determine the WCF, first the average (AV) of the wavelet coherence coeffi-
cients (rows of the WC matrix) at each frequency band over the time points is determined
as follows

AVwct =
1

TPt

TPt

∑
t=1

wct (7)

Then, the averaged coefficients are summed over a given frequency scale as follows

WCFx,y =
1
F

F

∑
f=1

AVwct (8)

Most rs-fMRI studies [19,38] have used the low frequency range of 0.01–0.08 Hz,
relying on the results established in [13]. In addition, Biswal et al. [13] discovered that
BOLD signals in the LFF contain physiologically significant information that can be used to
analyze neural processes in a variety of brain disorders.

3.3.2. ANOVA-SVM and Correlation Analysis

In the first step to find the most discriminative FC related to ASD, the ANOVA-SVM
algorithm is applied to the WCF feature vector. The size of the WCF matrix is the total
number of subjects × 4005. ANOVA-SVM is a supervised learning algorithm that uses a
heuristic search strategy to identify which of the 4005 connectivity features significantly
contribute to the identification of ASD-FC patterns. A detailed description of the ANOVA-
SVM steps can be found in Algorithm 1. Here, the p-value is the threshold used to control
the size of subsets of FC. In our experiment, five subsets were determined by setting the
p-value in the range (0.01:0.01:0.05). Then, each subset of the FC network is evaluated in
terms of 10-fold CV classification accuracy by using the SVM classifier. The top subset of
ASD FC is selected based on the highest classification scores for input to the correlation
analysis stage. After that, correlation analysis is applied between the top subset of the FC
network and the SRS scores to determine the significant connectivity features that correlate
positively and negatively with ASD symptoms.
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Algorithm 1 ANOVA-SVM method for finding the top subset of connectivity features for discrimi-
nating ASD and NC
Input = Functional connectivity features vector
Output = ASD functional connectivity patterns
initialization:
FC = Features vector for ASD and NC
producing 4005 × subject numbers per group
F = ∅ Subset of FC
B = ∅ Index of top F-subset

1. for i = 1 to 4005 do
ANOVA (FC(i))
p = p-value
end

2. While 0.01≤ p ≤ 0.05 do
F = FC(p), where F ⊂ FC
Classify F using SVM with 10-fold CV
Record the classification accuracy for each F-subset
B = Index the F-subset with the highest classification accuracy
end

Previous studies have shown that correlation analysis between FC features and clin-
ical symptoms of ASD is helpful in discovering discriminative FC patterns for ASD pa-
tients [21,39,40]. In this study, correlation analysis between DFC measured using the WCF
and clinical symptoms scores is conducted to find the subset of most significant FCs related
to ASD. Clinical symptoms are represented by the Social Responsiveness Scale (SRS), with
details given in Table 2 (Appendix A). The SRS is a tool used to assess the severity of autism
symptoms. It consists of 65 items divided into five content-areas of social deficits: aware-
ness (AWA), cognition (COG), communication (COM), motivation (MOT) and mannerism
(MAN) [41].

Table 2. Demographic and mean value ± standard deviation (SD) of clinical diagnostic SRS scores of
LEUVEN dataset.

ASD Mean (SD) NC Mean (SD) F-Test p-Value

No. of subjects 29 (26M/3F) 33 (28M/5F) - -
Age (years) 17.7 (0.9) 18.3 (0.8) 0.9 0.5
SRS_AWA 7.8 (0.6) 7.4 (0.8) 0.4 0.02
SRS_COG 10.2 (1.1) 10.4 (1.6) 0.4 0.00
SRS_COM 18.6 (1.7) 16.7 (2.8) 0.3 0.00
SRS_MOT 10.9 (1.1) 10.4 (1.5) 0.4 0.01
SRS_MAN 9.7 (1.0) 8.6 (1.4) 0.5 0.02
SRS_TOT 56.8 (4.9) 53.6 (7.8) 0.3 0.00

It should be noted that by using PCC, each subject will generate a single 90× 90 PCC matrix.
The size of the 2D matrix generated by PCC is relatively small compared to the WC analysis.
Therefore, the PCC undergoes only ANOVA-SVM. In addition, by comparing the accuracy
results of PCC and WC from ANOVA-SVM, as covered in Table 3, it is clear that the WC
method is superior to PCC. Hence, correlation analysis with SRS is not applied to PCC but
only to WCF.
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Table 3. Number of significant FC patterns of WCF and PCC based on classification accuracy (%)
evaluated for 10-fold CV at different p-values (0.01–0.05) using ANOVA-SVM algorithm.

p-Value
WCF PCC

FCs AccU FCs AccU

0.01 51 91.1 ± 0.3 47 90.3 ± 0.6
0.02 93 93.2 ± 0.2 87 91.8 ± 0.4
0.03 119 92.1 ± 0.2 131 86.5 ± 0.8
0.04 179 91.9 ± 0.1 168 82.7 ± 0.9
0.05 212 93.7 ± 0.3 204 87.6 ± 0.4

3.4. Principal Components of Wavelet Coherence

To further improve the classification of ASD using 2D matrices of WC analysis, we
applied singular value decomposition (SVD) to extract the significant coherent components
from the WC matrix [42]. This technique is known as principal wavelet coherence (PWC)
and is illustrated in Figure 4. SVD basically decomposed the WC matrix into three matrices:
U, S and V as follows

WC(TPt×F) = U(TPt×TPt).S(TPt×F).V
T
(F×F) (9)

Here, the semi-unitary matrices U and V are real orthogonal matrices, and matrix S is
real pseudo diagonal elements with non-negative diagonal entries. The measure S is used
to determine when a single or a particular group of SVD components is dominant in the
WC matrix. The diagonal entries S are called the singular values of the original WC matrix
and are arranged in decreasing order. The ui and vi columns of U and V are called the
left-singular and right-singular vectors of the matrix, respectively. The si values are ordered
so that the one with the highest magnitude has the smallest index i. It is assumed that most
of the coherence values of the SVD matrices are contained in the first principal component
of the SVD. Hence, the output of the PWC stage is WC matrices reconstructed using first
principal components. This means that apart from the first singular value, the rest of the
singular values are set to zero. PWC is based on the development of our previous method
for identifying ASD based on WC of rs-fMRI BOLD signals [32].

Figure 4. The formation of principal wavelet coherence (PWC) images as the input feature for training
and testing of CNN. Here, TPt indicates the length of the BOLD signals, and F is the number of
frequency bands from 0.01 Hz to 0.08 Hz.

In the next step, the FC matrices based on SFC and DFC are separately converted into
2D images of size 224× 224 to be used as input to CNN for ASD classification. A total of
90% of the images per each type are used for training and validation, and the remaining
10% are used for blind testing. The steps to prepare the images for ASD classification are
shown in Figure 4.
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3.5. Classification Using CNN

Convolutional neural networks (CNNs) are one of the most important deep neural
networks; they uses local convolutional filters to extract regional image information [43,44].
In this study, we propose a three-layer CNN (3L-CNN) architecture, as shown in Figure 5
for ASD classification based on FC images. The proposed 3L-CNN consists of three
convolutional blocks (ConLs) with filter size of 7× 7. The ConLs blocks are connected
to batch normalization (BanoL) to speed up training by reducing the internal shift of
covariance within the network. In addition, these layers improve training speed while
reducing the possibility of overfitting. Then, the rectifier function (ReLU) is implemented
to determine whether the information contained in a BanoL node is useful, and based on
this, it will decide whether the neural node should be activated or deactivated. After that, a
max pooling layer (MPL) is applied to extract the maximum value of the rectified BanoL
nodes. The output of the last MPL layer is then fed into the fully connected layer (FCL).
The FCL output is set for binary classification to distinguish between ASD and NC by using
a softmax layer.

Figure 5. Structure of 3L-CNN for ASD diagnosis using FC-images of BOLD rs-fMRI signals.

3.6. ASD Diagnosis and Performance Evaluation

To practically evaluate the performance of our proposed CNN models, we compute the
metrics given in Equations (10)–(13). Here, the True Positives (TPs) are the ASD patients that
are correctly identified by the classifier, while False Negatives (FNs) are the normal cases
(NC) that are incorrectly classified as positive. On the other hand, True Negatives (TNs) are
negative images that are correctly classified as negative. In contrast, False Positives (FPs)
are predictions that are incorrectly classified as positive.

Accuracy (AccU) =
TP + TN

TN + FN + FP + TP
(10)

Sensitivity (SenS) =
TP

FN + TP
(11)

Specificity (SpeC) =
TN

FP + TN
(12)

Precision (PreC) =
TP

FP + TP
(13)

In general, AccU in classification problems is the total number of correctly predicted
ASD and NC subjects versus the total observed data. SenS measures the effectiveness of the
proposed models in correct identification of the WC images of ASD, and SpeC measures
the effectiveness of the models in identifying WC images of NC. Moreover, the receiver
operating characteristic curve (ROC) and the area under curve (AUC) are also used for
better visualization of the performance of a binary classifier. The ROC is a representation
of sensitivity to specificity, and the AUC shows how well a method makes positive and
negative categorical distinctions. A larger AUC is better and indicates the model’s ability
to distinguish between ASD and NC.
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4. Results and Discussion

This section evaluates the performance of the proposed methods in identifying im-
portant FC patterns in classifying autism. Comparisons are made with the basic approach
of previous studies using Pearson’s correlation connectivity. In selecting the significant
FCs, evaluation using ANOVA-SVM and subsequent correlation analyses are conducted
using the LEUVEN dataset, which comes with the SRS scores. After selection of the most
significant FCs, the proposed ASD classification framework is evaluated experimentally
using 1035 subjects of the ABIDE dataset. Comparison is made between classifications
based on three types of 2D image inputs: (1) DFC patterns using WC, (2) DFC patterns
using PWC and (3) SFC patterns using PCC.

4.1. Identification of Top FC Features Using ANOVA-SVM Algorithm

For DFC, the connectivity of 90 regions generates 4005 images for each subject based on
WC. This is a relatively large number of images compared to the number of subjects in each
class. Selecting the best FCs from the 4005 values not only improves the training time of the
CNN, but also improves classification performance. Further, the large number of images
complicates the ability of the CNN models to correctly perform the classification task. For
SFC, using all 4005 PCC scores may have a negative impact on classification performance.
Therefore, the ANOVA-SVM algorithm is used to reduce the size of FC patterns based on
the WCF and PCC scores. In addition, we hypothesized that the significant correlation
between FCs and SRS scores provides better identification of neuronal biomarkers of
ASD. Since only the LEUVEN dataset provides SRS scores, these subjects are used for
this experiment. LEUVEN participants were recruited by a multidisciplinary team that
included a psychiatrist and a neurologist who used the SRS tool to meet DSM criteria.
Table 2 shows the details of the dataset and the SRS scores of the two groups as well as the
results of the ANOVA tests showing significant differences (p-value <= 0.05).

The ANOVA-SVM algorithm is used to select the best subset of WCF and PCC features
based on SVM accuracy, as shown in Section 3.3.2. Table 3 shows the average classification
accuracy of each subset of connections using 10-fold CV. Table 3 shows that the SVM
accuracy based on WCF ranges from 91.1% to 93.7% and based on PCC scores ranges
from 87.6% to 91.8%. On the other hand, the variance of the accuracy values is lower for
the WCF method than for the PCC method based on the standard deviations. According
to these findings, WCF outperformed PCC in identifying ASD connectivity. This could
be due to the fact that WCF better represents the neural activity of the brain, as WCF
scores are determined using WC, which is a multivariate estimator. WCF is determined by
averaging the correlation between two BOLD signals in the time–frequency domain, while
PCC is evaluated in the time domain. Further, WCF overcomes the challenges mentioned
by [24,25] in scaling analysis of the extensive information generated by WC. Compared to
other DFC studies [19–21], the WCF metric is useful in providing information about the lag
or lead of coherence between signals from multiple subjects and brain regions based on
time–frequency analysis.

The improved representation of brain neural activity by WCF is useful for identifying
neural biomarkers of ASD, which can be shown by correlation analysis with SRS scores in
the next section. The high classification accuracy shown in Table 3 suggests that the severity
of ASD symptoms is reflected by 212 brain connectivity functions. However, to determine
which of these connections should be considered neural biomarkers for ASD, correlation
analysis is performed between the WCFs of 212 connections and the ASD symptom scores
of the SRS tool.

4.2. Correlation Analysis between WCF and SRS Scores

In this section, using the 212 FCs obtained using the ANOVA-SVM algorithm as
described in the previous section, correlation analysis between WCF of the 212 FCs and
SRS is conducted. This allows us to select the most important brain connections from
the 212 connections that are more indicative of being ASD biomarkers. The results of the
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correlation analysis are given in Table A2. Clearly, out of 212 connections, 35 connections
are highly correlated with ASD symptoms. The criteria for selecting highly correlated
pairwise WCFs are high correlation at >95% confidence level and SRS scores higher than
four. Accordingly, there are five pairwise positive correlations and six pairwise negative
correlations with ASD symptoms, as given in Table A2 in the Appendix A.

Plots of the main connections that positively and negatively correlate with SRS scores
in the left and right hemispheres and all four lobes of the brain are shown in Figure 6a,b,
respectively. These include the frontal lobe (MFG, SFGmed, SFGdor, ORBsup and ROL), the
parietal lobe (SPG, PCUN and SMG), the occipital lobe (SOG and CAL) and the temporal
lobe (STG, TPOmid, THA, HIP and OLF). For further validation, we compare the selected
connections with the results of previous neuroscience studies [45–47]. It is noteworthy
that the abnormality in FCs between MFG-HIP and THA-TPOmid is consistent with the
results of [45,46]. In addition, Wy et al. [47] confirmed the presence of abnormalities in the
functional connectivity of regions in the parietal lobe that correlate with performance of
social skills of ASD subjects. According to these results, the selected autistic neural patterns
based on WCF analysis can be used as biomarkers to better understand the dynamic neural
mechanisms of ASD.

(a) (b)
Figure 6. Brain nodes with (a) positive and (b) negative correlation with autism severity symptoms
(SRS score) as listed in Table A2.

4.3. Classification Evaluation Using PWC Matrices Reconstructed by Increasing Number of
Principal Components

In this section, we present the results of an experiment to verify that the first principal
component of a WC matrix is the one that carries the most important feature and provides
the best classification accuracy. The FC matrix from the PWC block as illustrated in Figure 4
is WC, but it is reconstructed using only the first component, as in Equation (9). The
performance of the 3L-CNN using WCs reconstructed using the first principal component
through the first ten principal components is given in Figure 7.

It can be seen in Figure 7 that the classification accuracy decreases significantly as
the number of principal components increases. It is clear that the first principal subspace,
spanned by the first, leftmost eigenvector, senses the maximal oriented energy of the
images, a concept that was highly discussed in [48]. It is then expected that the first
principal component yields better accuracy than subsets with more than one of the leftmost
eigenvectors. This trend is clearly evident from the plot of accuracy vs. number of principal
components, i.e., the number of the leftmost eigenvectors, as shown in Figure 7.
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Figure 7. Classification accuracy (%) of 3L-CNN using PWC images reconstructed using first principal
component through the first ten principal components. When using WC without application of SVD
as input to the CNN, the classification accuracy of the 3L-CNN is 86.6%, as listed in Table 4.

Table 4. Percentage of average AccU, SenS, SpeC and PreC (±standard deviation) of the 3L-CNN
using SFC, WC and PWC images based on 10-fold CV framework.

Metric SFC WC PWC

AccU 72.3 ± 0.9 86.6 ± 1.6 95.2 ± 1.7
SenS 72.4 ± 1.3 84.8 ± 1.9 96.7 ± 2.4
SpeC 73.2 ± 1.1 88.4 ± 1.8 94.3 ± 4.5
PreC 72.8 ± 1.1 85.4 ± 1.3 94.8 ± 3.7

4.4. Classification of ASD Using PWC FC Images

In this experiment, we evaluate the performance of FC images generated from DFC
patterns, plus SFC patterns separately for ASD classification using CNNs. It is important
to highlight that the full ABIDE dataset is a combination from 17 sites, giving a total
of 505 ASD subjects and 530 NC subjects. The 3L-CNNs are trained using 90% of the
data, consisting of 454 ASDs and 477 NCs under the framework of 10-fold CV, whereas,
the test dataset comprising the remaining 10% of the data contains 51 ASD subjects and
53 NC subjects. The test data (10%) are considered outside the training dataset to validate
generalization of the trained classifier model on unseen data. Here, the CNN models play
the role of feature extraction and classification of the FC images and are able to capture
high-ranking time–frequency features of WC and PWC images, as well as the features of
SFC images.

For the DFC patterns, i.e., WC and PWC, 11 images of size 224× 224× 3 are generated
from each subject for the BOLD signals of the node pairs listed in Table A2. The total
number of FC images for training are 4994 for ASD and 5247 for NC. At the same time,
561 ASD images and 583 NC images are generated for the test dataset. Comparison is made
with the conventional method of previous studies by using SFC images as input for the
CNN [17,18]. The best PCC matrix has 87 significant connections out of a total of 90, as
identified by the ANOVA-SVM algorithm and listed in Table 3. As input to the 3L-CNN, the
PCC matrices are converted to 2D images of size 224 × 224 × 3. Furthermore, the proposed
CNN models are trained and tested on a computer equipped with an Nvidia GeForce RTX
2060 SUPER GPU. The model parameters were set as 7 × 7 CNN filter size, batch size of
8 and ADAM optimizer based on the experimental results tabulated in Table A3 in the
Appendix B.

4.4.1. Evaluation of PWC-Based ASD Classification Using 10-Fold Cross Validation

In this section, we evaluate the performance of SFC, WC and PWC images for ASD
classification. Essentially, this experiment is about observing the impact of PWCs on



Appl. Sci. 2022, 12, 9339 14 of 20

classification performance. Table 4 shows the results of ASD classification of SFC, WC
and PWC images using our proposed 3L-CNN model in terms of accuracy, sensitivity,
specificity and precision using a 10-fold CV framework. From Table 4, classification using
images from PWC outperforms images from SFC and WC, with the best average accuracy,
sensitivity and specificity of 95.2%, 96.7% and 94.3%, respectively. ASD classification using
PWC images was 8.6% and 22.9% higher than the WC and SFC images, respectively, based
on 10-fold CV. The model performance based on the images from WC achieved 86.6%
accuracy, which is a good result compared to the SFC images’ 72.3% accuracy. However, it
is worth noting that the use of SFC images achieves marginal improvement compared to
previously published outcomes [18].

In addition, Figure 8 shows the ROC curve for the 3L-CNN model using SFC, WC and
PWC images, indicating the value of the AUC. The ROC curve evaluates the correlation
between sensitivity and specificity at different cut-points, which allows better assessment
of the accuracy of the classification algorithm. Figure 8 shows lower AUC values for the
images of SFC (0.72) and WC (0.86), while the highest value is for the images of PWC (0.95).
These results indicate that ASD has the highest discriminatory power using PWC images.
It is possible that the SVD helped to show the distribution of time–frequency components
more consistently. Figure A1 in the Appendix B shows the differences in the distribution of
the time–frequency components for one of the biomarkers in one of the subjects with ASD
and a subject with NC before and after SVD.

Figure 8. ROC curve and AUC of 3L-CNN using SFC, WC and PWC images.

4.4.2. Evaluation of PWC-Based ASD Classification Using Testing/Unseen Images

The 10-fold CV method basically pools samples from all individuals and then separates
them into 10-folds. The risk of bias in this strategy is due to inclusion of samples from the
same person in both the training and test data, so the network can easily recognize the
test data. While this type of bias leads to excellent performance, it can also be misleading,
as the same network may not produce the same results on unseen data. Moreover, as the
results would be clinically unreliable, this method is not suitable for ASD diagnosis. To
address this problem, we use 10-fold cross validation on 90% of the dataset, while the
remaining 10% of the data are completely unseen during training and are used to assess
the performance of the trained network.

The classification results are given in Figure 9, which shows the confusion matrix
of the 3L-CNN in detecting the PWC test images. From this confusion matrix, 525 ASD
and 542 NC PWC images were correctly predicted by the model, while 36 ASD and
41 NC images were incorrectly predicted. Accordingly, these results yielded an overall
accuracy, sensitivity and specificity of 93.3%, 93.6% and 93.0%, respectively, for ASD
classification based on the test dataset. The results of this experiment show that our
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proposed classification framework based on PWC images and 3L-CNN is a robust and
effective ASD classification model for completely unseen data.

Figure 9. Confusion matrix for classification of PWC images of ASD and NC using the testing dataset.

4.5. Comparison with Related Works

In recent years, several attempts have been made to develop computer-assisted diag-
nosis of ASD patients. In general, these studies have focused on rs-fMRI and related FC
features with classification using classical ML techniques. The application of FC image-
based deep learning algorithms for ASD diagnosis has recently shifted the focus of re-
search, including in our work. To demonstrate the feasibility of our proposed framework,
Table 5 compares the performance of existing models in ASD classification using the
ABIDE dataset.

Good classification accuracies for the diagnosis of ASD based on SFC images have
been obtained in previous studies [17,18] and are comparable to our results using SFC
images with the proposed 3L-CNN model. However, these results are inferior to our results
using dynamic FC images. Our proposed method using PWC images of ASD biological
markers in CNN results in good accuracy of 95.2% based on 10-fold CV, e.g., 25.2%, 25% and
18.8% higher, respectively, than the methods proposed in [16–18]. On the other hand, our
results outperform those of Wang et al. [22] by 2%. Accordingly, the dynamic FC features
using PWC images play an important role in developing ASD classification performance
compared to static FC features, which have a relatively small impact on ASD detection.
Furthermore, the ASD biomarkers identified in our study can be utilized individually for
ASD diagnosis. In conclusion, the PWC-based approach proposed in this study can help
physicians with automatic and accurate detection of ASD in patients.

Table 5. Benchmarking with existing ASD classification methods using ABIDE dataset.

No. References Sample Size FC Patterns AI Algorithms Accuracy

1 Chen (2016) [19] 368 Dynamic SVM 10-fold CV 79.2%
2 Bernas (2018) [20] 29 Dynamic SVM 10-fold CV 86.7%
3 Heinsfeld (2018) [16] 1035 Static DNN 10-fold CV 70.0%
4 Wang (2019) [22] 1054 Static DNN 10-fold CV 93.2%
5 Sherkatghanad (2020) [17] 1035 Static CNN 10-fold CV 70.2%
6 Huang (2020) [18] 1035 Static DBN 10-fold CV 76.4%
7 Ma (2021) [21] 90 Dynamic SVM 10-fold CV 78.9%
8 Subah (2021) [23] 866 Static DNN 5-fold CV 87.9%
9 Our method 1035 Dynamic CNN 10-fold CV 95.2%
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5. Conclusions and Future Works

In this paper, an ASD classification framework comprising principal wavelet coher-
ence (PWC) and a 3L-CNN is developed and thoroughly evaluated. In essence, PWC
connectivity provides the neuronal biomarkers that are input to the 3L-CNN, which ex-
tracts and classifies features. The advantage of PWC to represent dynamic connectivity
lies in the fact that it provides both time and frequency domain features that carry critical
characteristic for discriminating ASD from NC subjects. Further, PWC is fundamentally the
most discriminative feature of WC for ASD classification, as determined by a three-stage
process: First, by ANOVA-SVM, providing 212 FCs, which were further distilled using
correlation analysis between WCF and SRS scores, resulting in 11 FC. Lastly, application
of SVD on the 11 FCs extracted the first principal subspace that sensed the maximal ori-
entation energy of the PWC images. In other words, the input images of the 3L-CNN
carry the most significant time–frequency information of the PWC and can be used as the
biomarker for diagnosis of ASD. Evaluation of the proposed framework was conducted
using the full ABIDE dataset, which includes 1035 individuals. PWC + 3LCNN achieved
classification with the highest accuracy of 95.2% with a low error rate (4.8%). Comparison
with state-of-the-art ASD classification models show the PWC method performs better than
recently developed approaches.

Although PWC is promising for using fMRI features for ASD subtype diagnosis, it
still has space for improvement. Furthermore, there is evidence that ASD and ADHD have
overlapping symptoms, such as social withdrawal and communication difficulties [25,49].
ADHD is defined by a chronic pattern of inattention and/or hyperactivity and impulsivity
that interferes with development. The overlap of symptoms in different brain disorders
makes clinical diagnosis challenging, and classification models with multiple classes are
needed for future studies of neurodevelopmental disorders. Future research on PWC
images using CNN models could lead to a method for diagnosing ASD individuals using
rs-fMRI data. To improve performance in multi-class classification, the use of different brain
atlases, such as Craddock (CC200, CC400), that extract more information from the BOLD
signals could be considered. Moreover, PWC images can also be trained and tested on
other CNN architectures such as residual or inception blocks to achieve better classification
of ASD subtypes. In addition, the proposed technique sheds light on computer-aided
diagnosis of other psychological problems such as depression, schizophrenia and early
Alzheimer’s disease.
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Abbreviations
AAL automated anatomical labeling
ABIDE Autism Brain Image Data Exchange
ANOVA-SVM analysis of variance-support vector machine
BOLD blood oxygen level-dependent
DFC dynamic functional connectivity
SFC static functional connectivity
SVD singular value decomposition
PCC Pearson correlation coefficients
PWC principal wavelet coherence
WC wavelet coherence
WCF wavelet coherence fluctuations
3L-CNN three-layer convolutional neural network

Appendix A

Table A1. Summary of previous AI algorithms in ASD classification using ABIDE rs-fMRI data.

No. References Sample Size FC Patterns FC Selection AI Algorithms Accuracy

1 Chen (2016) [19] 368 Dynamic F-score SVM 10-fold CV 79.2%
2 Heinsfeld (2018) [16] 1035 Static — DNN 10-fold CV 70.0%
3 Bernas (2018) [20] 29 Dynamic — SVM 10-fold CV 86.7%
4 Wang (2019) [22] 1054 Static SVM-RFE DNN 10-fold CV 93.2%
5 Sherkatghanad (2020) [17] 1035 Static — CNN 10-fold CV 70.2%
6 Huang (2020) [18] 1035 Static Filter DBN 10-fold CV 76.1%
7 Ma (2021) [21] 90 Dynamic PCA SVM 10-fold CV 78.9%
8 Subah (2021) [23] 866 Static — DNN 5-fold CV 87.9%

Table A2. Brain node connections with more than four significant positive or negative WCF correla-
tions with SRS scores. The number in brackets is the p-value, which has a threshold at 95% confidence
level, and the bold values are the p-values that exceed 0.05.

# 1st Node Link 2nd Node SRS_TOT SRS_AWA SRS_COG SRS_COM SRS_MOT SRS_MAN

N
eg

at
iv

e

1 Rolandic_Oper_L (ROL.L) ⇐⇒ Rolandic_Oper_R (ROL.R) −0.4 (0.02) −0.4 (0.04) −0.4 (0.02) −0.4 (0.02) −0.3 (0.09) −0.4 (0.05)
2 Frontal_Mid_R (MFG.R) ⇐⇒ Hippocampus_R (HIP.R) −0.5 (0.01) −0.3 (0.12) −0.4 (0.04) −0.5 (0.01) −0.5 (0.00) −0.4 (0.02)
3 Frontal_Sup_Medial_R (SFGmed.R) ⇐⇒ Calcarine_L (CAL.L) −0.4 (0.02) −0.3 (0.14) −0.4 (0.05) −0.4 (0.04) −0.4 (0.02) −0.4 (0.04)
4 Frontal_Sup_L (SFGdor.L) ⇐⇒ Parietal_Sup_L (SPG.L) −0.5 (0.01) −0.5 (0.01) −0.3 (0.15) −0.5 (0.01) −0.4 (0.01) −0.3 (0.08)
5 Olfactory_L (OLF.L) ⇐⇒ SupraMarginal_R (SMG.R) −0.5 (0.00) −0.4 (0.05) −0.5 (0.01) −0.5 (0.00) −0.4 (0.03) −0.4 (0.02)
6 Occipital_Sup_R (SOG.R) ⇐⇒ Angular_L (ANG.L) −0.4 (0.04) −0.3 (0.14) −0.4 (0.02) −0.4 (0.06) −0.3 (0.18) −0.3 (0.13)

Po
si

ti
ve

7 Postcentral_R(PoCG.R) ⇐⇒ Parietal_Sup_R (SPG.R) 0.4 (0.05) 0.2 (0.33) 0.3 (0.09) 0.4 (0.05) 0.4 (0.05) 0.4 (0.04)
8 Frontal_Sup_Orb_R(ORBsup.R) ⇐⇒ Precuneus_L(PCUN.L) 0.4 (0.02) 0.1 (0.51) 0.4 (0.05) 0.4 (0.03) 0.4 (0.03) 0.4 (0.02)
9 Angular_R(ANG.R) ⇐⇒ Precuneus_R(PCUN.R) 0.5 (0.00) 0.3 (0.11) 0.4 (0.02) 0.6 (0.00) 0.4 (0.02) 0.5 (0.00)

10 Thalamus_R(THA.R) ⇐⇒ Temporal_Sup_R(STG.R) 0.5 (0.00) 0.5 (0.01) 0.4 (0.03) 0.5 (0.00) 0.5 (0.01) 0.4 (0.04)
11 Angular_R(ANG.R) ⇐⇒ Temporal_Pole_Mid_L(TPOmid.L) 0.5 (0.01) 0.3 (0.09) 0.5 (0.00) 0.4 (0.02) 0.3 (0.11) 0.5 (0.01)

Bold values indicate insignificant correlation.

Appendix B

Table A3. Classification performance of 3L-CNN using SFC images. The CNNs are evaluated based
on the accuracy, sensitivity and specificity of 10-fold CV at different convolutional filter sizes (F.size),
batch sizes (B.size) and optimization algorithms. Accordingly, the CNN achieved high scores based
on F.size 7 × 7, B.size = 8 and ADAM optimizer.

B.Size F.Size

Optimizer

ADAM SGDM Rmsprop

AccU SenS SpeC AccU SenS SpeC AccU SenS SpeC

8
7 × 7 72.3 72.4 73.2 71.5 75.5 67.6 66.2 66.9 65.5
5 × 5 71.0 73.9 69.1 68.1 71.1 64.0 64.1 58.5 69.6
3 × 3 70.0 69.6 70.5 67.7 68.3 67.1 65.6 64.6 66.6
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Table A3. Cont.

B.Size F.Size

Optimizer

ADAM SGDM Rmsprop

AccU SenS SpeC AccU SenS SpeC AccU SenS SpeC

16
7 × 7 70.8 69.7 71.9 59.9 60.2 59.5 54.3 55.0 53.6
5 × 5 70.5 67.8 73.2 65.1 68.0 62.1 54.3 51.4 57.2
3 × 3 68.0 81.8 54.2 66.8 73.7 59.9 62.0 60.5 63.3

24
7 × 7 69.9 74.7 65.1 64.1 56.0 57.7 58.2 57.2 60.0
5 × 5 70.4 73.3 67.0 61.1 71.2 61.1 57.1 51.3 62.5
3 × 3 61.0 63.0 60.0 63.6 70.4 56.9 58.1 55.1 61.1

32
7 × 7 71.9 78.6 65.2 57.7 65.8 49.6 52.3 58.0 46.7
5 × 5 71.6 75.1 68.2 60.7 65.3 56.0 59.1 56.6 61.6
3 × 3 67.4 66.6 68.3 63.4 74.7 52.1 59.1 52.1 67.1

Appendix C

Figure A1. Samples of FC images for ASD and NC: (a) PCC, which is a type of SFC; and (b) WC and
PWC, which is a type of DFC.
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