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Abstract: Federated incremental learning best suits the changing needs of common Federal Learning
(FL) tasks. In this area, the large sample client dramatically influences the final model training
results, and the unbalanced features of the client are challenging to capture. In this paper, a federated
incremental learning framework is designed; firstly, part of the data is preprocessed to obtain the
initial global model. Secondly, to help the global model to get the importance of the features of the
whole sample of each client, and enhance the performance of the global model to capture the critical
information of the feature, channel attention neural network model is designed on the client side,
and a federated aggregation algorithm based on the feature attention mechanism is designed on
the server side. Experiments on standard datasets CIFAR10 and CIFAR100 show that the proposed
algorithm accuracy has good performance on the premise of realizing incremental learning.

Keywords: federated learning; dual attention mechanism; incremental learning

1. Introduction

Federal learning (FL) can make full use of all data while keeping participants” data
confidential to train a better global model than the local model that each participant trains
separately using their own data. Google proposed an FL algorithm for mobile terminals
in 2016 [1], each client trains each local model, then aggregates all local models to obtain
a better global model. The process of exchanging model information between clients is
carefully designed so that clients can learn the private data content of other clients. When
the global model is obtained, the data information sources seem to be integrated; this is the
core idea of Federated Learning.

After the concept of FL was proposed by Google, H. Brendan McMahan et al. pro-
posed a practical method for the FL of deep networks based on iterative model averaging in
2017 [2]. This algorithm uses relatively small communication rounds to train a high-quality
model, which is the classic federated averaging algorithm. In the later period, many feder-
ated learning algorithms were further developed, and many excellent branch algorithms
were formed [3-9]. Liu, Y. et al. proposed a federated transfer learning framework that
can be flexibly adapted to various multi-party secure machine learning tasks in 2018 [10].
The framework enables the target domain to build a more flexible and efficient model by
leveraging many tags in the source domain. Yang, Q. et al. proposed to build a data network
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based on a federation mechanism in 2019 [11]; it can allow knowledge sharing without com-
promising user privacy. Zhuo HH and others proposed a federated reinforcement learning
framework in 2020 [12]; this framework adds Gaussian interpolation to shared information
to protect data security and privacy. Peng Y et al. proposed a federated semi-supervised
learning method for network traffic classification in 2021 [13]; it can effectively protect data
privacy and does not require a large amount of labeled data.

Traditional FL can only be trained in a batch setting, classification information for all
samples is known beforehand, model’s classify ability is also fixed. In the face of new tasks
and data, it has to re-train totally. Among the many directions of FL at present, research
on incremental tasks is rare [14,15]. Luo [16] pointed out that traditional data processing
technologies have outdated models, weakened generalization capabilities, and do not
consider the security of multi-source data. They proposed an online federated incremental
learning algorithm for blockchain in 2021. During incremental learning, there will be a
problem of unbalanced client samples. Clients with a large sample size have greater weight
and significantly impact the final model training results.

Given the above discussion, to dynamically handle the increase of resources without
retraining, reduce the impact of large sample clients on the final model training results,
and the problem of feature imbalance when model aggregation is elusive. We propose
a federated incremental learning algorithm based on a dual attention mechanism. This
algorithm can dynamically handle the increase in resources without retraining while
mining the characteristics of the overall client-side samples; it can enhance the capture
performance of the model training server for the key information of client-side features.
The contributions of this paper are as follows:

(1) We design a federated incremental learning framework. First, the framework ran-
domly sampling the same number of samples from each client, to ensure the balance of
pre-training samples, and trains with the federated averaging model to obtain the prelim-
inary period global model on the server. Then the iCaRL strategy [17] is applied to the
traditional FL framework; this strategy can classify samples according to the nearest mean
rule, use preferential sample selection based on herd behavior, perform representation
learning for knowledge distillation, and dynamically handle resource increases without
retraining. Therefore, the federated incremental learning framework can take the dynamic
changes in training tasks and keep the data confidential.

(2) The dual attention mechanism is added to the federated incremental learning
framework. A channel attention neural network model is designed on the client-side and
used as the FL's local model. This model adds the SE module [18] based on the classic
Graph Convolutional Neural (GCN) network, which can help the model to obtain the
importance of the features of the overall samples of each client during model training and
can effectively reduce the influence of noise. In the global model, a federated aggregation
algorithm based on the feature attention mechanism is designed to provide appropriate
attention weights for each local model. This weight corresponds to the model parameters
of each layer of the neural network. The attention weight value is used as the aggregation
coefficient, which can enhance the c global model’s capture performance for the key features’
key information.

This paper is organized as follows: The Section 2 introduces the relevant background
information; the Section 3 elaborates on our proposed algorithm; the Section 4 is the
experiment performance of this algorithm, and these results are discussed; the Section 5
summarizes the paper.

2. Background
2.1. Federated Averaging Algorithm

In the classic FL algorithm, the federated averaging algorithm is generally used for
model training of federated learning. The federated averaging algorithm is mainly model
averaging. In the federated averaging algorithm, each client locally performs stochastic
gradient descent on the existing model parameters w; using local data [19], the updated
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(k)

model parameter w,; ’; is sent to the server, the server aggregates the received model
parameters, that is, uses a weighted average of the received model parameters, and the
updated parameters w; is sent to each client. This method is called model averaging [20].
Finally, the server checks the model parameters, and if it converges, the server sends a
signal to each participant to stop the model training.

wt(i)l = Wi — ka (1)
_ Kone
Wiy = k; kai&r)l (2)

In Formula (1), # is the learning rate, Vj is the local gradient update of the kth
participant, ny is the local data volume of the kth participant, n is the local data volume of
all participants, wt@l are the parameters of the local model of the kth participant at this

time, and Wy are the aggregated global model parameters.

2.2. The Basic Structure of Federated Learning

Federated learning is an algorithm that does not need to directly fuse multi-party data
for training and only needs to encrypt and exchange client model parameters to train a high-
performance gl. Therefore, federated learning can meet the requirements of user privacy
protection and data security. Figure 1 is an example of a federated learning architecture
that includes a coordinator. In this scenario, the coordinator is an aggregation server, which
can send the initial random model to each client. The clients use their respective models to
train the model and send the model weight updates to the aggregation server. After that,
the aggregation server aggregates the model updates received from the client and sends
the aggregated model updates back to the client. Under this architecture, the client’s origin
is always stored locally, which can protect user privacy and data security [21-26].

Stepl: Sever distributes the initial model to client
Step2 A . ¢
i Step2: Client uses its own data to train the local model
Q Step3: Client sends model parameter update to sever
— 8% Step4: Sever merges the received model parameters
< Step5: Sever distributes the fused model parameters to client
Client 1
[] \
= Step4
]§§\\\§l \ § 3
I s \
Step5 Client 2 Sten3 h §
e
0 P
B —
Client 3 / \
0
]83§ Sever
—— 838
Client 4 Stepl

Figure 1. The federated learning framework proposed in this paper.

2.3. Class Incremental Learning

Class incremental methods [27-32] learn from non-stationary distributed data streams,
and these methods should be suitable for a large number of tasks without adding excessive
computation and memory. Their goal is to use old knowledge to improve the learning
of new knowledge (forward transfer), and to use new data to improve performance on
previous tasks (backward transfer). During each training phase, the learner only has access
to data for one task [33]. The task consists of multiple classes, allowing the learner to process
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the training data for the current task numerous times during training. A typical class increment
setup consists of tn task sequences.

ts = [(C!, DY), (C?,D?), .., (C!", D) (3)

where C is the class, D is the data, and each task ts is represented by a set of classes and
training data. Today, most classifiers for incremental learning are trained with a cross-
entropy loss, the cross-entropy of all classes for the current task. The loss is calculated
as follows:

i exp(hj)

(x,y,0%) = ) yjlog—a——

j=1 ZNtS ( ) (4)

where x is the input feature of the training sample, and y € 0,1V * is a truth label vector
corresponding to x;. N is used to represent the total number of classes for the ts task,
N = Y5 |C!|, data D* = (x1,y1), (x2,42), s (Xpyts, Yyuts )- We consider incremental learn-
ers that are deep networks parameterized by weights 6, and we further split the neural
network into a feature extractor f with weights ¢ and a linear classifier g with weights Z ac-
cording to h(x) = g(f(x; ¢); Z). But in this case, since softmax normalization is performed
on all classes seen in all previous tasks, errors during training will be backpropagated from
all outputs, including the output of those classes that do not correspond to the current
task. Therefore, we can only consider the network output belonging to the class in the
current task, and define the cross-entropy loss as follows, because this loss only considers
the softmax-normalized prediction of the class in the current task; therefore errors are only
backpropagated from the probabilities associated with these classes in task ts [34].

|| exp(hys—1,)
lc* (x/y/ Gts) = Z nys—lJrjlog ‘Cts‘ Rl
j=1 Yioq exp(hyes-1))

(5)

3. Federated Incremental Learning Algorithm

In addition to data privacy protection in FL, dealing with the dynamic changes in
training tasks is also essential to research content. For example, in recommender systems,
user data will be updated dynamically. The traditional training model is in the face of new
tasks and data. Retraining all the old and new data will cost much training. Therefore,
whether the user data can be dynamically updated has become the key to measuring the
pros and cons of an algorithm. We need a federated learning algorithm that can cope with
the dynamic changes in training tasks and keep the data confidential. In FL, scholars have
found that large-sample client weight parameters are large and have a significant impact on
the final model training. The imbalance of importance, and the problem that the importance
of features is difficult to capture. This paper introduces a dual attention mechanism in the
federated incremental learning framework. We hope to reduce the impact of considerable
sample client data noise on the global model, improve the ability of the global model to
capture essential client features, and achieve more excellent business value. The idea of
this algorithm is as follows:

(1) As traditional federated learning can only be trained in a batch setting and needs to
be retrained in the face of new tasks and data, more flexible strategies are required to handle
large-scale and dynamic real-world object classification situations. This paper proposes
a federated incremental learning framework that can cope with the dynamic changes in
training tasks and keep the data confidential. We combine the care strategy with a federated
learning framework, and dynamically classify samples based on the nearest mean rule to
handle resource increases without retraining dynamically. Therefore, the framework can
reduce the cost of data storage and model retraining when adding classes, and also reduce
the risk of data leakage due to model gradient updates.

(2) Aiming at the problem of sample imbalance in each client, the client with a large
sample size greatly significantluences the final model training result. On the federated
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incremental learning framework, this paper designs a channel attention neural network
model on the client-side and uses it as a local model for federated learning. This model
adds the SE module based on the classical graph convolutional neural network, which can
help the model to obtain the importance of the features of the respective overall samples of
each client during model training and can effectively reduce the influence of noise.

(3) For traditional federated learning, the initial parameters of the global model are
randomized, and the initial randomized parameters will affect the convergence speed of
the global model. A pre-training module is added to the federated incremental learning
framework, and the same number of samples are extracted from each client as pre-training
data. The federated averaging model is used for training to obtain a global model on
the server, which can speed up the model convergence. In addition, extracting the same
number of samples from each client can ensure the balance of pre-training samples, to the
impact of large sample clients on the global model.

(4) The federated learning design aims to jointly train a high-quality global model for
the client. Still, when the client data is unbalanced, the significant sample client weight pa-
rameter significantly impacts the final model training result. On the federated incremental
learning framework, this paper designs a federated aggregation algorithm based on the
feature attention mechanism in the global model to provide appropriate attention weights
for each local model. This weight corresponds to the model parameters of each layer of the
neural network, and the attention weight value is used as the aggregation coefficient, which
can enhance the capture performance of the global model for key feature information.

3.1. Federated Incremental Learning Framework

In addition to data privacy protection in FL, dealing with the dynamic changes in
training tasks is also essential to research content. For example, in recommender systems,
user data will be updated dynamically. The traditional training model is in the face of
new tasks and data. Retraining all the old and new data will cost much training. There-
fore, whether the user data can be dynamically updated has become the key to measuring
the pros and cons of an algorithm. We need a federated learning algorithm that can cope with
the dynamic changes in training tasks and keep the data confidential. Because incremental
learning can continuously learn new concepts in the data stream [35-37], we consider
introducing incremental learning in federated learning to help each client first train data
when there are only a few classes initially, and then add classes can be gradually added
for learning. Still, incremental learning has the problem of historical forgetting. Therefore,
we consider adding a new training strategy iCaRL strategy to incremental learning to
classify according to the nearest mean rule of samples, use preferential sample selection
based on herd behavior, and perform representation learning for knowledge extraction
and prototype rehearsal, without retraining Increases in dynamic processing resources.
Adding incremental learning to traditional federated learning can reduce the cost of data
storage and model retraining when adding classes and reduce the risk of data leakage due
to model gradient updates.

In addition, in traditional federated learning, the initial parameters of the global
model are all randomly generated numbers, which will affect the convergence speed of the
model. To speed up the convergence speed of the model, this paper considers adding a
pre-training module. Generally, the pre-training module uses 1% of all data as pre-training
data. However, this method can easily expand the influence of clients with large sample
sizes on the global model, especially the influence of non-important features [38—47] of
large samples in incremental learning. We plan to extract the same number of samples from
each client as pre-training data to ensure the balance of pre-training samples and reduce
the impact of large-sample clients on the global model. The federated incremental learning
framework is shown in Figure 2.
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Figure 2. Federated incremental learning framework.

The client first uses a fixed number of samples of class 1 for training and aggregation
to obtain pre-trained global model parameters, which can speed up the convergence of
the model and reduce the impact of non-important features in large-sample client data
on the global model. The global model parameters are distributed to the client, and the
client uses the remaining samples of class 1 for training. After the training, the client model
parameters of the tth communication are sent to the server, and the server sends the fused
model parameters to the client. Then the client uses the class 2 samples and some old data
to form a training set for training, uses the feature extractor to extract feature vectors from
the old and new data, and calculates the respective average feature vectors. The predicted
value is brought into the loss function of the combination of distillation and classification
loss for optimization. The client model parameters at the (t + 1)th communication are
obtained and sent to the server, so storage until the incremental learning of all classes
is completed.

3.2. Dual Attention Mechanism Module

The original design concept of federated learning aims to jointly train high-quality
global models on the client side without revealing privacy. For example, mobile shopping
malls, banks, and other apps with high-quality customer information can recommend
suitable shopping and financial products through joint model training without revealing
user information. Many large enterprises have trained high-performance global models to
help small and medium-sized enterprises in their later development. However, due to the
imbalance of samples between clients, there will be a problem that the noise generated by
clients with a large sample size when participating in the training will also significantly
impact the results of the final trained global model. To this end, given the problem of large
samples and considerable noise, consider adding a channel attention mechanism on the
client-side, perform feature compression in the spatial dimension to obtain a feature map
with a global receptive field, and then learn through fully connected layers (FC) relationship
between channels. Finally, multiplying the learned weight coefficients of each channel with
all the elements of the corresponding channel can help to minimize the impact of noise
on the final model training results while obtaining the characteristics of the respective
overall samples of each client. At the same time, federated learning joins incremental
learning [48,49] to perform dynamic task training. Learning at the same tsimultaneouslyi-
catmttttion increments, will lead to the imbalance of sample importance and the problem
that the importance of features is difficult to capture. For this reason, it is difficult to capture
the imbalance of features. We consider adding a feature attention mechanism [50,51] when
the global model is aggregated, to enhance the capture performance of the model training
for critical feature information. Therefore, we consider adding a dual attention mechanism
module that simultaneously channels attention and features attention to the federated
learning framework. The dual attention mechanism module is shown in Figure 3.
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Figure 3. Dual attention mechanism module.

In Figure 3, the first dual attention mechanism module is to add a channel attention
mechanism to the client to help obtain the characteristics of the overall samples of each
client while minimizing the impact of noise on the final model training results. There are
many models of the local model of the client, such as LSTM, CNN, and other algorithms
combined with the SE channel attention module. The architecture of CNN combined
with channel attention is shown in Figure 4. The specific process of the client-side neural
network model is shown in Figure 5.
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5 — O
wis2 1x1 56 1 5x5 FC Fclo|Fcl®| softmax Y
conv o 16 conv 26 conv| 36 o
[}
Figure 4. Neural network model.
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Figure 5. Neural network model flow chart.

As shown in Figure 4, the SE module is added after the first convolutional layer of the
local model, because the number of channels in the layers too far behind is too large, which
is easy to cause overfitting. If the feature map is too small, we use Improper operation
will introduce a large proportion of non-pixel information. More importantly, close to
the classification layer, the effect of attention is more sensitive to the classification results,
and it is easy to affect the decision of the classification layer. Therefore, after placing it in
the first convolutional layer, each layer of the convolutional network has 16 convolution
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kernels, and each convolution kernel corresponds to a feature channel. Channel attention
can allocate resources between each convolution channel. The final output is obtained
by learning the degree of dependence of each channel and adjusting different feature
maps according to the degree of dependence. Therefore, we can add the channel attention
mechanism to help focus on the overall characteristics of the sample and reduce the impact
of noise on the final model training results. As shown in the figure, the input image size is
32 x 32, that is, M = 32, the number of channels C is 3, and it is input to the convolution
layer 1. The convolution layer contains 16 convolution kernels, and the convolution kernel
sizes 1 x 1, that is, kernel = 1, and no pixels are filled around the input image matrix, that
is, P = 0. We can think of the convolution kernel as a sliding window, which slides forward
with a set step size, set the step size to 1, that is, bu = 1. According to the output calculation
Formula (6) of the convolutional layer, the size of the output image can be calculated as
32 x 32, that is, Ne = 32, and the number of channels C is 16.

M — kernel + 2P
o bu

After that, we perform global average pooling on it, perform feature compression
on the output image obtained through convolutional layer one along the spatial dimen-
sion, and turn each two-dimensional feature channel into an actual number, which has a
global effect to some extent. The receptive field and t output dimension match the input’s
feature channels put, and the number of channels C is 16. After global average pooling,
the feature dimension C = 16 is reduced to the dimension C = 8 through the fully connected
layer 1, and then activated by ReLU. Then the dimension C = 8 is raised back to the origi-
nal dimension 16 through the fully connected layer 2, which is used here. The two fully
connected layers can better fit the complex correlation between channels with more nonlin-
earities, and significantly reduce the number of parameters and computation. After the
fully connected layer 2, a sigmoid activation function is used to obtain a normalized weight
between 0 and 1, and finally, a Scale operation is used to weight the normalized channel
attention weight to the features of each channel; it can help focus on the overall feature
importance of the sample and reduce the impact of noise on the final model training results.
The Scale operation refers to the channel-by-channel weighting of the previous features
through multiplication to complete the re-calibration of the original feature map in the
channel dimension. After that, we continue using convolutional layer 2 and convolutional
layer 3 for feature extraction on the noise-reduced feature map. And adding add activation
function ReLU and MaxPool between convolutional layer 2 and convolutional layer 3.
The activation function can extract helpful feature information and make the model more
discriminative, and the pooling layer can avoid overfitting by down-sampling. Finally,
because two or more fully connected layers can solve the nonlinear problem satisfactorily,
we input the features of the convolutional layer 3 into the fully connected layer 3 and
the fully connected layer 4 to obtain a 512-dimensional vector, then go through the full
connection layer. Connection layer 5 receives a c-dimensional vector (c is the number of
classes in the current dataset), then inputs it into the softmax classifier for classification,
and outputs the predicted value y.

As shown in Figure 3, the second dual attention mechanism module considers that
incremental learning, when learning at the same time as incremental classification learning,
it the problem of unbalanced features and difficulty in capturing important featurefea-
turesd a feature-space attention mechanism to enhance the grasping performance of key
information. Feature attention mechanism based global aggregation is shown in Figure 6.

Ne

+1 (6)
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Figure 6. Feature attention mechanism based global aggregation.

As shown in the figure above, to enhance the capture performance of key information
and solve the problem that the respective features are unbalanced and the importance is
difficult to capture in the incremental learning with the incremental learning of classification
and learning at the same time, this paper introduces the feature attention mechanism
for the model aggregation of the client, we improve model performance by capturing
the importance of neural network layers in multiple local models. This mechanism can
automatically consider the weight of the relationship between the server model and the
client. In iterative training, continuously updating the parameters reduces the weighted
distance between the server and the client model, and the expected distance between the
server and the client model is minimized. The optimization objective is calculated as shown
in Formula (7).

| 2
(W, i1, W) = arg min Z[EattkD(wi,wa) ] (7)
Wit] k=1

Among them, wj is the model parameter of the server in the tth communication,
and wk, ; is the model parameter of the client k in the (¢ + 1)th communication. D(-,-)
is the distance between the two sets of neural parameters calculated using the Euclidean
distance formula, att; is the important weight of the client model. The hierarchical soft
attention method is used to capture the hierarchical importance of the neural network
in multiple local models, and it is aggregated into the global model as feature attention
to achieve the optimal server and client. The distance between the models is minimized,
the expected function of the previous formula is derived to obtain the gradient, and K
clients perform gradient descent to update the parameters of the global model.

K

g= Y ath(wi — k) (8)
k=1
Wiy = W)~ ag (9)

The importance weight of the client model att; is calculated by hierarchical soft
attention. The server-side model is used as a query value, and the client-side model is
used as a key value to calculate the attention score of each layer in the neural network.
The attention formula is shown in Equation (10). It should be noted that due to the
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incremental learning, the number of neurons output by the last layer of the model fully
connected is the number of dataset classes, which changes dynamically, resulting in loading
the local model parameters at this time to the server. When calculating the attention score of
each layer together with the global model in the last communication, there will be a problem
of weight mismatch. Therefore, before calculating the attention score of each layer, we need
to average the weights of the last fully connected layer in all client models, and then assign
them to the previous layer parameters of the global model of the latest communication.

tty = softmax(|lw' — will,) = el ~ el (10)
att, = soyimaxy ||w Wy =
P T exp(llot = will)

wh = (W} + ..+ wh)/K (11)

where K is the number of clients, w! is the model parameter of the /th layer of the server,
w! is the model parameter of the /th layer of the kth local client, | € [1,L]. We take the
p-norm of the difference between the matrices as the similarity value of the query and
key values of the /th layer and use the softmax function for the similarity value to obtain
the attention value of the /th layer of client k, and the feature attention of the entire client
atty = {att},att?, ..., attl}.

4. Experimental Analysis

CPU: AMD R5-3600, memory: 16G DDR4, GPU: NVIDIA Geforce RTX2070S, operat-
ing system: 64-bit Windows 10; the experimental framework is the Pytorch open-source
framework. Stochastic gradient descent is used as the learning rate; the initial learning
rate is 0.2, the weight attenuation coefficient is set to 0.00001, the training batch size is
128, the number of local clients is 2, and each class of the Cifar10 and Cifar100 datasets is
randomly divided into 2 copies, and sent to each local client in class increment. The lo-
cal client performs incremental learning for Cifar10 according to 2 classes and 5 classes,
and incremental learning for Cifar100 according to 10 classes, 20 classes, and 50 classes.
This paper’s experiments mainly verify the influence of the two structures on accuracy.

This experiment uses the classic CNN as the network model in the architecture of
this article (CNN construction model code reference: https://github.com/jhjiezhang/
FedAvg/blob/main/src/models.py, accessed on 1 March 2022). It comparesit with the
Federated Averaging model, which uses the same structure of test set CNN. The result of
the experiment is an average of 10 times.

The datasets used in this experiment are two public datasets, CIFAR-10 and CIFAR-
100. CIFAR-10 is a small dataset for recognizing ubiquitous objects organized by Hinton
students Alex Krizhevsky and Ilya Sutskever. The dataset contains a total of 10 classes of
RGB color images: airplanes, cars, birds, cats, deer, dogs, frogs, horses, boats, and trucks.
The image size is 32 x 32, and there are a total of 50,000 training images and 10,000 test
images in the dataset. The CIFAR100 dataset has 100 classes. Each class has 600 color
images of size 32 x 32, of which 500 are used as training set and rest 100 are used as test
set. The 100 class is composed of 20 classes (each class contains 5 subclasses). To better
evaluate the model, set TP to represent the actual class, that is, the positive samples that the
model correctly predicts, and FP to represent the actual actualized class, that is, the positive
samples that are predicted to be negative by the model. The accuracy formula is as follows:

TP

Accuracy = TP+ FP

(12)

4.1. Ablation Experiment—Rationality Analysis of Pre-Training Module

This experiment is an ablation experiment. To only use the CNN model combined
with the pre-training module, instead of the model framework of the second innovation in
this algorithm, the traditional Fed Avg aggregation method is used to verify the effect of the
CNN model combined with the pre-training on the accuracy improvement.


https://github.com/jhjiezhang/FedAvg/blob/main/src/models.py
https://github.com/jhjiezhang/FedAvg/blob/main/src/models.py
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Figures 7 and 8 are the test results of the Incre-FL algorithm and the Icarl-FedAvg
algorithm with the pre-training module added to the two test sets, where the x-axis rep-
resents the number of classes, the y-axis represents the test accuracy. The number of
different classes During the incremental learning process, the average accuracy of the
algorithm in this paper is slightly better than the Icarl-Fed Avg algorithm. The accuracy of
the CIFAR10 dataset when the classification increments are 2 and 5 reaches 43.45% and
63.16%. The accuracy rates on the CIFAR100 dataset with classification increments of 10,
20, and 50 reach 30.03%, 39.35%, and 39%. The algorithm proposed in this paper has made
a series of improvements, and finally, the algorithm’s formance per has been improved to a
certain extent. The influence of the pre-training module on the Incre-FL algorithm is shown
in Table 1. We add the pre-training module to speed up the convergence of the model.
The module plays a certaspecific in improving the accuracy of image classification tasks.
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Figure 7. The accuracy curve of the pre-training module in the test set Cifar10. (a) Accuracy graph
when the class increment is 2. (b) Accuracy graph when the class increment is 5.
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Figure 8. The accuracy curve of the pre-training module in the test set Cifar100. (a) Accuracy graph
when the class increment is 10. (b) Accuracy graph when the class increment is 20. (c) Accuracy
graph when the class increment is 50.

Table 1. The influence of the pre-training module.

Dataset Increments/Test Classes Model Accuracy (%)
Icarl-Fed Avg 42.14
2/10 I FL 43.45
CIFARI10 nere :
Icarl-FedAvg 61.49
5/10

Incre-FL 63.16
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Table 1. Cont.

Dataset Increments/Test Classes Model Accuracy (%)
Icarl-Fed Avg 29.44
10/100
Incre-FL 30.03
Icarl-Fed Avg 38.65
CIFAR100 20/100
Incre-FL 39.35
Icarl-FedAvg 38.42
50/100
Incre-FL 39.00

4.2. Ablation Experiment—Rationality Analysis of Dual Attention Mechanism Module

There is a problem of sample imbalance in each client in federated learning. A client
with a large sample size has a significant weight parameter, which significantly impacts the
final model training result. At the same time, federated learning adds incremental learning
for dynamic task training and learns at the same time in classification increments. When
the sample importance is unbalanced, the matter is challenging to capture. This experiment
is an ablation experiment. To use only the dual attention mechanism method of innovation
2, without using the pre-training module, it is compared with the Icarl-Fed Avg learning
algorithm to verify the effect of the dual attention mechanism on the accuracy improvement.
Figures 9 and 10 show the accuracy curves of the dual attention mechanism module in test
set Cifar10 and Cifar100.

The influence of the dual attention mechanism module in this paper is shown in Table 2.
In the improved Incre-FL algorithm in this paper, the channel attention mechanism is added
to the client; we can obtain the characteristics of the overall samples of each client, reduce
the influence of noise, and add a feature space attention mechanism during federated
aggregation, which can enhance the global model. The capture performance of the client’s
critical information will ultimately improve the accuracy of the image classification task.
The dual attention mechanism in the experiment of this chapter includes the channel
attention mechanism and the feature attention mechanism. Next, we verify the accuracy
improvement effect of adding the channel attention mechanism and the feature attention
mechanism separately.
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Figure 9. The accuracy curve of the dual attention mechanism module in the test set Cifar10.
(a) Accuracy graph when the class increment is 2. (b) Accuracy graph when the class increment is 5.
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Figure 10. The accuracy curve of the dual attention mechanism module in the test set Cifar100.
(a) Accuracy graph when the class increment is 10. (b) Accuracy graph when the class increment is
20. (c¢) Accuracy graph when the class increment is 50.

Table 2. The influence of the dual attention mechanism module.

Dataset Increments/Test Classes Model Accuracy (%)
Icarl-FedAvg 42.14
2/10 I FL 48.01
CIFAR10 feres :
Icarl-FedAvg 61.49
5/10
Incre-FL 65.11
Icarl-Fed Avg 29.44
10/100
Incre-FL 32.22
Icarl-FedAvg 38.65
CIFAR100 20/100
Incre-FL 40.62
Icarl-Fed Avg 38.42
50/100
Incre-FL 41.72

Figures 11 and 12 show the test results of the Incre-FL algorithm, the Icarl-FedAvg
algorithm, the SE-Icarl algorithm, and the Earl algorithm with the channel attention mecha-
nism added separately on the CIFAR10 and CIFAR100 standard test sets. It can be seen
from the figure that the accuracy of the algorithm in this paper is significantly better than
the Icarl-Fed Avg algorithm, and the SE-Icarl algorithm with the channel attention mech-
anism alone is better than the Icarl algorithm. The algorithm’s accuracy in this paper on
the CIFAR10 dataset is 47.53% and 64.47% when the classification increments are 2 and
5. The accuracies on the CIFAR100 dataset with classification increments of 10, 20, and 50
reach 32.09%, 40.20%, and 41.23%.The influence of the channel attention mechanism in this
paper is shown in Table 3. The channel attention mechanism can model the dependencies
between channels in the external network, help to focus on the importance of the overall
features of the samples, and reduce the impact of noise on the final model training results.
We add it to the Earl algorithm and the Icarl-Fed Avg algorithm to improve the accuracy of
image classification tasks.
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Figure 11. The accuracy curve of the channel attention mechanism module in the test set Cifar10.
(a) Accuracy graph when the class increment is 2. (b) Accuracy graph when the class increment is 5.
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Figure 12. The accuracy curve of the channel attention mechanism module in the test set Cifar100.
(a) Accuracy graph when the class increment is 10. (b) Accuracy graph when the class increment is
20. (c) Accuracy graph when the class increment is 50.

Table 3. The influence of the dual attention mechanism module.

Dataset Increments/Test Classes Model Accuracy (%)
Icarl-FedAvg 42.14
2/10 I FL 47.53
CIFARI10 nerer :
Icarl-Fed Avg 61.49
5/10
Incre-FL 64.47
Icarl-Fed Avg 29.44
10/100
Incre-FL 32.09
Icarl-FedAvg 38.65
CIFAR100 20/100
Incre-FL 40.20
Icarl-FedAvg 38.42
50/100
Incre-FL 41.23

Figures 13 and 14 show the test results of the Incre-FL algorithm and the Icarl-Fed Avg
algorithm with the feature attention mechanism added separately on the CIFAR10 and
CIFAR100 standard test sets. It can be seen from the figure that the accuracy of the algorithm
in this paper is significantly better than that of the Earl-Fed Avg algorithm. The algorithm’s
accuracy in this paper on the CIFAR10 dataset when the classification increments are 2
and 5 reaches 45.40% and 63.73%. On the CIFAR100 dataset, the accuracy rates when the
classification increments are 10, 20, and 50 reach 31.02%, 39.86%, and 40.32%.
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Figure 13. The accuracy curve of the feature attention mechanism module in the test set Cifar10.
(a) Accuracy graph when the class increment is 2. (b) Accuracy graph when the class increment is 5.
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Figure 14. The accuracy curve of the feature attention mechanism module in the test set Cifar100.
(a) Accuracy graph when the class increment is 10. (b) Accuracy graph when the class increment is

20. (c) Accuracy graph when the class increment is 50.

The influence of the feature attention mechanism in this paper is shown in Table 4. It
can be seen from the table that adding the feature space attention mechanism can improve
the accuracy of image classification tasks in incremental learning by enhancing the capture
performance of crucial information.

Table 4. The influence of the dual attention mechanism module.

Dataset Increments/Test Classes Model Accuracy (%)
Icarl-FedAvg 42.14
2/10 I FL 45.40
CIFARI10 nerer :
Icarl-FedAvg 61.49
5/10
Incre-FL 63.73
Icarl-FedAvg 29.44
10/100
Incre-FL 31.02
Icarl-FedAvg 38.65
CIFAR100 20/100
Incre-FL 39.86
Icarl-FedAvg 38.42
50/100
Incre-FL 40.32
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4.3. Comparative Experiment—CQuerall Accuracy Analysis

Figures 15 and 16 show the test results of the algorithm in this paper, the pure Icarl
strategy, and the federated averaging algorithm with the Icarl method on the CIFAR10 and
CIFAR100 standard test sets. It can be seen from the figure that the average accuracy of the
algorithm in this paper is significantly better than the federated averaging algorithm with
the Icarl strategy and lower than the incremental learning algorithm Earl. The accuracy
rate of Incre-FL is lower than that of the total learning algorithm Icarl because the gradual
learning algorithm Icarl directly uses the neural network CNN to train the dataset. In feder-
ated learning, the participants will not expose the data to the server or other parties. Hence,
the federated learning model performs slightly worse than the centrally trained model,
and the additional security and privacy protection are undoubtedly more valuable than the
loss of accuracy.
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Figure 15. Cifar10 accuracy curve. (a) Accuracy graph when the class increment is 2. (b) Accuracy
graph when the class increment is 5.
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Figure 16. Cifar100 accuracy curve. (a) Accuracy graph when the class increment is 10. (b) Accuracy
graph when the class increment is 20. (c¢) Accuracy graph when the class increment is 50.

Table 5 shows the accuracy of our algorithm on the two datasets. Its test accuracy is
higher than the separate addition of the two modules and lower than the test accuracy
of CNN training with the Icarl strategy after all client data sets are collected in one place.
At the same time, a comparison is made with the Icarl-Fed Avg algorithm, the number of
clients is set to 2, the client data are all independent and identically distributed, and the
comparison is made on two real data sets. Overall, Incre-FL maintains good performance
in almost all scenarios. Compared with the Icarl-FedAvg algorithm, the performance
improvement of Incre-FL. mainly comes from the addition of the pre-training module,
which ensures the balance of the pre-training samples and reduces the impact of the large
sample client on the global model. We designed a dual attention mechanism module
and added the SE module based on the classic graph convolutional neural network. This
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module can help the model to obtain the characteristics of the overall samples of each client
during model training and effectively reduce the impact of noise. The federated aggregation
algorithm based on the feature attention mechanism is added to the global model to enhance
the capture performance of the global model for critical feature information from three
perspectives. Since a blockchain-oriented online federated incremental learning algorithm
proposed by Luo Changyin et al. [16] is not a class incremental method, it is not used as
comparative data.

Table 5. The influence of the dual attention mechanism module.

Dataset Increments/Test Classes Model Accuracy (%)
Icarl-Fed Avg 42.14
2/10 I FL 48.24
CIFAR10 nerer :
Icarl-FedAvg 61.49
5/10
Incre-FL 65.90
Icarl-FedAvg 29.44
10/100
Incre-FL 32.94
Icarl-FedAvg 38.65
CIFAR100 20/100
Incre-FL 41.15
Icarl-Fed Avg 38.42
50/100
Incre-FL 42.19

5. Conclusions

In business, people not only need one to ensure data security but also need to be able
to cope with the dynamic changes in training tasks. We need an algorithm that can solve
the cost loss caused by retraining all old and new data in the traditional training model
in the face of new tasks and data. Therefore, whether the user data can be dynamically
updated has become the key to measuring the pros and cons of an algorithm. To study the
federated learning algorithm that can cope with the dynamic changes of training tasks and
keep the data confidential, this paper proposes a federated incremental learning framework,
adding a pre-training module to it, which can improve the convergence speed of the model,
and proposes a fusion based on a dual attention mechanism. The strategy can help reduce
the impact of considerable sample noise on the final model training results. At the same
time, it can strengthen the capture of the importance of features and alleviate the feature
imbalance problem when adding incremental learning for dynamic task training to classify
incremental learning. The experimental data implemented on the standard data set show
that the algorithm can improve the accuracy of the common dataset.
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