
Citation: Aguayo, O.; Sepúlveda, S.

Variability Management in Dynamic

Software Product Lines for

Self-Adaptive Systems—A

Systematic Mapping. Appl. Sci. 2022,

12, 10240. https://doi.org/10.3390/

app122010240

Academic Editor: Vito Conforti

Received: 19 August 2022

Accepted: 29 September 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Variability Management in Dynamic Software Product Lines for
Self-Adaptive Systems—A Systematic Mapping
Oscar Aguayo and Samuel Sepúlveda *

Departamento de Ciencias de la Computación e Informática, Centro de Estudios en Ingeniería de Software,
Universidad de La Frontera, Temuco 4811230, Chile
* Correspondence: samuel.sepulveda@ufrontera.cl

Abstract: Context: Dynamic software product lines (DSPLs) have considerably increased their
adoption for variability management for self-adaptive systems. The most widely used models for
managing the variability of DSPLs are the MAPE-K control loop and context-aware feature models
(CFMs). Aim: In this paper, we review and synthesize evidence of using variability constraint
approaches, methodologies, and challenges for DSPL. Method: We conducted a systematic mapping,
including three research questions. This study included 84 papers published from 2010 to 2021.
Results: The main results show that open-dynamic variability shows a presence in 57.1% of the
selected papers, and on the other hand, closed-dynamic variability appears in 38.1%. The most
commonly used methodology for managing a DSPL environment is based on proprietary architectures
(60.7%), where the use of CFMs predominates. For open-dynamic variability approaches, the MAPE-
K control loop is mainly used. The main challenges in DSPL management are based on techniques
(28.6%) and open variation (21.4%). Conclusions: Open-dynamic variability has prevailed over the
years as the primary approach to managing variability in DSPL, where its primary methodology is
the MAPE-K control loop. Response RQ3 requires further review.

Keywords: dynamic software product lines; self-adaptive systems; runtime variability; reconfiguration;
systematic mapping

1. Introduction

The software constantly evolves due to constant technological changes and diversifica-
tion in their needs, either from the customer or the execution environment. This evolution
leads to self-adaptive software systems, whose main feature is adapting the system to the
different needs at runtime, either through customer requirements or the environment [1].
In [2], the authors state that facing the challenges associated with changes in runtime
system variability has led to the development of various approaches to adapt to changing
needs. These approaches include the self-adaptive, agent-based, autonomous, emergent,
and bio-inspired systems. Dynamic software product lines (DSPL) are one approach to
meet these needs by providing a conceptual framework for managing variability in such
systems, generating runtime variability changes, and managing system change according
to the needs of the problem context [3].

DSPLs are usually not concerned with pre-runtime system variability, allowing mixed
approaches, incorporating points of variation related to the environment’s static properties
prior to runtime and others related to dynamic properties at runtime [4]. Therefore, variabil-
ity management throughout the DSPL lifecycle is a central task, where the user, application,
or generic middleware can perform these tasks manually or automatically [2]. Schmid and
Eichelberger grouped several challenges related to DSPL variability [5]. These challenges
include detection of feature removal for DSPL approaches, reconfiguration of components,
state transfer derived from reconfigurations, the adaptation of interfaces, management of
processing contexts, and handling references that are no longer available. Therefore, study-
ing runtime variability through reconfigurations becomes an important issue when it is

Appl. Sci. 2022, 12, 10240. https://doi.org/10.3390/app122010240 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010240
https://doi.org/10.3390/app122010240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8079-0545
https://orcid.org/0000-0002-0369-7750
https://doi.org/10.3390/app122010240
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010240?type=check_update&version=2

Appl. Sci. 2022, 12, 10240 2 of 40

required to correctly design, build and produce software artifacts using the DSPL approach.
Quinton et al. [3] mention similar challenges associated with managing runtime variability,
such as the need to support evolution regardless of the domain, implementation technique,
or modeling approach in DSPL. Securing consistency of the models and the running system
to manage runtime variability and support evolution activated by the running system or
model, i.e., if the system or model changes its variability, it must be visualized.

Over the years, several methodologies have emerged to manage system variability
using the DSPL approach, which can be grouped into three major groups [3]. The first
approach is related to changes in system customization manually, e.g., updating a soft-
ware code base. The second approach allows changes to be made manually, while the
adaptation process is automated, e.g., through a DevOps process. The third approach
presents an autonomous execution environment that automatically allows variability
changes and subsequent reconfigurations, providing an optimal execution environment for
self-adaptive systems.

Variability management in self-adaptive systems using DSPL typically manages adap-
tation using a MAPE-K approach [3]. This approach provides a framework for logical
adaptation of a system based on four phases Monitoring, Analysis, Planning, and Execu-
tion that are executed in a particular order and access a shared Knowledge component [6].
Several problems with this approach are presented in [7], such as the need for significant
training data and low initial performance due to the online learning of the approach. These
problems are similar to those encountered in machine-learning and a massive amount of
data, such as the problems reported in using machine-learning in agricultural big data [8].

This work aims to collect several proposed approaches, methodologies, or design
patterns for managing runtime variability through software reconfigurations in DSPL for
self-adaptive systems present in the literature. It will seek to analyze various proposals
of constraints in the reconfiguration process, main errors during the system adaptation
process, or also some notion on how to maintain the stability and reliability of the system
during the evolution of variability, ensuring the consistency of the software concerning
the models and the system in operation [3]. The research will address the challenges
mentioned by [5], specifically variability management through component reconfiguration.
For this purpose, a systematic mapping study (SMS) for the most relevant articles of the
last 11 years will be carried out. This SMS pretends to collect as much data as possible on
the proposals to analyze the methodological approach used to manage runtime variability
by reconfiguring the solution domain of software in an execution environment.

We expect the results of this systematic mapping contribute to the research-oriented
scientific community of SPLs and, eventually, DSPLs, synthesizing what has happened
during the last 11 years in the evolution of runtime reconfiguration approaches for DSPLs
in the context of self-adaptive systems, both at the theoretical-practical and bibliometric
levels. The research questions (RQs) corresponding to this systematic mapping study are
as follows:

RQ1: What approach was used to apply constraints during software reconfigurations in
DSPL?

RQ2: What methodologies are currently used to manage DSPL variability during reconfigu-
rations?

RQ3: What are the current challenges in the management of DSPL?

Answering RQ1 will allow us to catalog the main approaches for managing runtime
variability through software reconfigurations. In this sense, we want to understand how
DSPL variability is currently managed, e.g., whether constraint languages, reasoning
engines, and optimization models, among others, are occupied. RQ2 will provide us with
information on the execution environments of DSPLs, analyzing, for example, whether
proprietary architectures, execution environments under some autonomous control loop,
or third-party software are proposed. RQ3 will focus on the search and analysis of the main
constraints in developing a DSPL, whose primary focus is runtime variability.

Appl. Sci. 2022, 12, 10240 3 of 40

The study will be conducted between 2010 and 2021 since the systematic mapping
study by Guedes et al. examines variability management for DSPL from 2006 to 2015 [9].
The authors expose that the area of runtime variability development is not explored in-
depth, concluding that most articles do not address the reconfiguration process. Further-
more, in the bibliometric analysis of the articles, an increase in the number of articles is
obtained from 2010 onwards.

The remainder of this paper is structured as follows. We present the background of
the DSPLs and their context in Section 2. Section 3 presents some related work relative to
SPLs or DSPLs. Section 4 presents the methodology for the SMS. Sections 5 and 6 present
the results and discussion, respectively. Finally, Section 7 presents the conclusions and
future work.

2. Background

The contents of this section report on the theoretical framework of SPLs and their
variability. Also, DSPLs and their runtime variability are defined. Finally, self-adaptive
systems are presented.

2.1. Software Product Lines

SPLs are defined as a software production methodology in which a set of software
systems share common characteristics for a specific domain in a defined process [10].
Software development through SPLs is divided into two stages, domain engineering and
application engineering [11]. The domain engineering stage refers to activities that concern,
among others, the identification of commonalities and differences between product family
members and the implementation of a set of shared software artifacts (e.g., components).
The application engineering stage refers to activities that concern product derivation, i.e.,
the construction of individual products using a subset of the shared software artifacts [12].
Figure 1 shows the SPL framework, including the domain and application engineering
stages and their respective interactions.

Requirements Implementation Reusable tests Design

Domain
implementation

Domain
analysis

Domain
design

Domain
testing

Product
analysis

Product
 design

Product
implementation

Product
testing Product

An
al

ys
is

 fo
r p

ot
en

tia
l r

eu
se

(s
co

pi
ng

)

• Business planning
 • Product information

• New requirements

Domain-specific (reusable) artifacts

Domain engineering

Application engineering

Development
domain activity Reusable artifactsTraceability Information/Product flow

Feedback as development evolves

Software Product Lines
Framework

Development
application

activity

Figure 1. SPL framework, stages and interactions.

2.2. Variability

One of the most relevant aspects of SPLs is variability, which can be defined as the
ability of an SPL to be subject to changes, customizations, configurations, or extensions for
its particular use in a specific context, providing the SPLs framework with the necessary
flexibility to achieve product diversification and differentiation [13]. We can introduce
the variability in the SPL through the definition of reusable artifacts. These artifacts are
included as part of the definition of a software family and, based on the inclusion or
exclusion of features in the final product, allow for the creation of different products

Appl. Sci. 2022, 12, 10240 4 of 40

from the generic set [12]. Several authors have proposed various models to manage the
variability of an SPL at the domain engineering stage [14,15], most of them are based on
the FODA analysis method [16].

We can find feature models (FM) based on the FODA method. An FM is a tree graph,
where the root node represents the family of products, and the features of this family are
grouped along the tree. These features can be assembled so that certain software products
can be generated. The FMs have been a relevant topic in the study of SPL variability,
showing the best evolution in terms of the number of articles and references published in
the SPL [17]. Specific proposals on automatic construction and reasoning on FM can be
found in [18,19].

2.3. Dynamic Software Product Lines

A static generative approach is generally used to develop an SPL, i.e., when attempting
to reconfigure a given product built through an SPL, the product is required to be redevel-
oped or instantiated [20]. Nowadays, there are continuous changes in the requirements of
a software product, which raises the need to adapt at runtime, expecting a certain degree of
autonomy in the software to respond to the evolution of market conditions [21]. DSPLs
extend existing approaches in today’s product line engineering by moving their capabilities
to runtime variability management, helping to ensure that system adaptations lead to
desirable properties [2]. DSPLs are composed of two stages, the engineering stage, where
the aim is to develop the execution environment, and the stage of managing the variability
of the system in use [2]. Table 1, shows the differences between SPL and DSPL approaches.

Table 1. Differences between SPLs and DSPLs.

Software Product Lines Dynamic Software Product Lines

SPLs are used in systems where variability
behaves statically.

DSPLs are used in software systems where
variability is constantly changing.

Variability management provides a description
of the possible systems that can be produced.

Variability management provides the definition
of various system adaptations at runtime.

Market segment identifies the common set of
software products to be developed using the
SPL approach.

Variation points specified identifies the level of
reconfigurations supported by the DSPL.

The approach provides a framework for a set of
individual software systems with common
features.

The approach provides a unique system, which
describes the basis for possible adaptations.

SPLs has two stages, domain and application
engineering.

DSPLs have two life cycles, the engineering
stage and runtime variability management.

2.4. Runtime Variability

Due to the difficulty anticipating all the variability required by SPLs, we can consider
using DSPLs. The main challenge for DSPLs is runtime variability, which can be defined
as the ability of software to adapt to fluctuations in the needs of the environment, user
requirements and evolving resource constraints [4]. Variability is managed by creating
runtime variation points [3]. Several approaches express changes in variability as a function
of context [22] (e.g., in feature modeling [23]). Other approaches consider reconfiguration
management based on machine learning using the MAPE-K control loop, which is an
architectural approach to managing system variability through machine learning [24].
Table 2 shows the differences between runtime variability for SPLs and DSPLs.

Appl. Sci. 2022, 12, 10240 5 of 40

Table 2. Differences between runtime variability for SPLs and DSPLs.

Variability in SPL Runtime Variability in DSPL

Activation/deactivation of system features
prior to deployment.

Activation/deactivation of system features
after deployment.

Adding and removing features in SPL design
engineering.

Adding and removing features at runtime.

To make a change to the system variability, the
product must be instantiated from the design
engineering phase in SPL.

Provide optimal reconfiguration of the possible
points of variation of the system.

2.5. Self-Adaptive Systems

A self-adaptive system is a closed-loop system with a feedback loop intended to adjust
to runtime changes [25]. To develop a self-adaptive system suitable for changes in software
variability, understanding the nature of the system will help determine the process change
and the factors affecting the change [26].

Weyns proposes two principles for determining what a self-adaptive system is [1]:

• External principle: A self-adaptive system can autonomously manage changes and
uncertainties due to the requirements of the environment, the system itself and its
objectives.

• Internal principle: A self-adaptive system contains two components for managing
communication with and monitoring of the environment, as well as for executing
changes in runtime variability.

As self-adaptive systems increasingly require autonomous behavior, runtime variabil-
ity mechanisms must provide multiple binding options after implementation. The binding
options can be satisfied using DSPLs. The mentioned conditions address the challenges
of creating highly configurable software using runtime variability mechanisms to support
automatic decision-making [27].

3. Related Work

Several secondary studies have been published on managing variability in SPL [17,28–30].
However, no secondary studies have been reported for variability management in DSPL for
self-adaptive systems, obtaining only one systematic mapping study related to DSPL [9]
that will be discussed below. Next, we present a summary of five proposals related to
managing variability in SPLs or DSPLs [9,13,31–33]. Table 3 shows the overlapping RQs for
related work (X: fully answered, ∼: partially answered). For details on these related works
(goals, RQs, and results), see the Appendix A.

Table 3. Overlapping RQs for related work.

Ref. RQ1 RQ2 RQ3

[9] ∼
[31] ∼
[32] X
[13] ∼
[33] X

Guedes et al. [9] present an SMS on variability management in DSPLs, specifically
on runtime variability modeling and configuration in DSPLs. The study was conducted
between 2006 and 2015. The authors conclude that feature model are the primary approach
to model variability in DSPLs, and most proposals do not refer to process configuration.
Also, the authors declare that reconfiguration is triggered based on context, non-functional
requirements, or user requirements through utility function or Constraint Satisfaction
Problems (CSP).

Appl. Sci. 2022, 12, 10240 6 of 40

Geraldi et al. [31] present an SMS for SPLs interacting with IoT technologies, seeking to
identify approaches that manage the variability required by cyber-physical systems as their
requirements evolve. This study analyzes the architectures used for IoT systems in which
SPL manages variability between 2006 and 2018. The authors argued that several proposals
seek to manage the variability of these systems in both runtime and SPL design, evolving
towards a DSPL environment to manage variability through software reconfigurations.

Da Silva et al. [32] expose through a systematic literature review of the literature the
most used practices in the product derivation stage in the DSPL approach. They identified
several proposals, which base their reconfigurations on the system’s architecture to be
developed, from the software system’s behavior, architecture, and components, which were
mapped based on the MAPE-K control loop.

Chen and Ali Babar [13] present a systematic literature review in which they analyze
various proposals to manage variability in SPL, obtaining that the feature models are the
primary approach to manage variability in SPL, where in second place is the use of UML
and its extensibility. Although this proposal does not focus on DSPL, it establishes an
evolution of DSPL between the years 1990 to 2010, showing that the DSPL was not yet at
the peak it is today.

Mohabbati et al. [33] present an SMS, looking for the main application areas of SPLs.
This work is based on a service orientation from 2001 to 2011, describing that many of
the software services created from SPLs are adaptive systems and, to a lesser extent, the
DSPL approach. It presents a series of challenges for the integration of SPL and service-
orientation, from theoretical models, taxonomies, or categorization of concepts, confirming
that in SPL research, the goal is to achieve consistent and adequate modeling for service-
oriented systems, supporting the configuration of dynamic and adaptive systems, reducing
system complexity.

Finally, we can remark that our study shares a context with the previous articles.
However, this SMS is explicitly oriented to dynamic variability management in DSPL in the
context of self-adaptive systems. In addition, it considers approaches constraining runtime
variability, methodologies used to manage the DSPL environment, and the main challenges.

4. Methodology

In order to obtain the status of DSPL variability management, an SMS was conducted
according to the guidelines defined by Petersen [34]. In this section, we will describe the
search and filtering process and then classify each item according to the research questions
designed to study the dynamic variability management offered by DSPL. This protocol is
based on a revised version published in arXiv [35], in which some sections were updated,
such as the classification schema of RQs. Section 4.1 presents the definition of the protocol.
Section 4.2 presents the process of the pilot selection of papers. Section 4.3 presents the
classification scheme and data extraction from the papers. Section 4.4 presents the tools
used during the elaboration of the SMS. Figure 2 presents a step by step summary of
the methodology.

4.1. Protocol Definition

Next, we present the main phases to define the SMS protocol. The initial stage consists
of determining the study’s aim and need (Section 4.1.1). Then, the RQs and PQs associated
with the fulfillment of the study objective will be defined (Sections 4.1.2 and 4.1.3). From
the RQs, the search string (Section 4.1.5) will be generated to search for relevant articles in
the data sources, in which the results will subsequently be filtered based on inclusion and
exclusion criteria (Section 4.1.6). This process will end with validating the defined protocol
(Section 4.1.7).

Appl. Sci. 2022, 12, 10240 7 of 40

Define aim and need

Define RQs and PQs

Define data sources

Define exclusion and
inclusion criteria Threats & limitations

Define search string

Snowballing first
review

Data extraction
protocol

Search process

Protocol validation

Answer the PQs

Answer the RQs

Synthesize data

Disseminate results

Check report quality

Draw conclusions

SMS start

SMS
Completion

Figure 2. SMS process.

4.1.1. Aim and Need

The SMS aims to capture several approaches, methodologies, or design patterns for
managing variability in DSPL, contextualized in self-adaptive systems. It is intended
to map the most used practices to restrict and ensure the correct operation of software
reconfigurations in DSPL. This mapping includes analyzing what types of approaches are
used to manage variability at runtime, maintaining the stability and reliability of the system
during the constant evolution of variability. Also, the SMS allows obtaining the main errors,
difficulties, or challenges in developing DSPL and the process of system adaptation.

It is expected that the publication of the systematic mapping will contribute to iden-
tifying several challenges in managing variability for the DSPL scientific community, as
well as contribute to the integral development of the DSPL through the generation of a line
of research. This work is the initial part of a proposal that seeks to build and develop an
architecture to manage variability in DSPL during the software reconfiguration process for
self-adaptive systems, where it is necessary to know in detail the proposals that exist today
in the area, as this will allow:

• Identify the requirements to generate a software reconfiguration while maintaining
stability in the running system during the process.

• Know which technologies, tools, approaches, or others are used during the system
reconfiguration process in DSPL and understand the justifications for use in each case.

• Avoid activities or processes already performed by other authors.
• Identify existing challenges in the area of reconfigurations for DSPL.

Moreover, the latest study collecting this information is seven years old [9], which
mentions that DSPLs are still in a state of maturation; as far as variability runtime config-
uration is concerned, most proposals do not address process reconfiguration. This study
will be contextualized in self-adaptive systems because this type of system correctly links
the properties provided by DSPLs, delivering a high level of automation in managing
runtime variability.

The importance of this study resides in systematically collecting and reporting an
up-to-date view of the state of the art of leading approaches to manage runtime variability
in DSPL, and this will be stored in terms of origin, type of approach to reconfiguring the
system, the methodology used to implement the such approach and the latent challenges
in DSPL. We have included other bibliometric aspects in this study, such as the article’s
origin, publisher, year of publication, and target group.

Providing an overview of all these features can help practitioners lower the risks
associated with selecting an approach to managing variability in a self-adaptive system
using DSPL. It can also contribute to the growth of the DSPL field by providing a framework
in which different proposals for managing variability dynamically using this approach can
be compared. It is intended to encourage discussion among the community on the practices

Appl. Sci. 2022, 12, 10240 8 of 40

that should be deepened in the management of the DSPL, collecting various challenges
proposed in the literature to mature the state of the art of DSPL.

4.1.2. Definition of Research Questions

The research will provide background on how variability is managed in DSPL’s
main challenges and constraints. The main question of our research refers to What are the
main difficulties of the approaches proposed in the literature to manage runtime variability during
reconfiguration of dynamic software product lines in self-adaptive systems? Then, it is necessary
to know the existing proposals in the literature related to approaches for making changes
in runtime variability. The generation of new information through this study will allow
us to learn about the most relevant technologies and the context in which the respective
approaches have been used. The general question was broken down into three questions
related to the runtime variability management approach, the methodology used to manage
the DSPL environment, and the main challenges encountered in the area. Table 4 shows the
RQs, their aim, and a possible classification scheme.

Table 4. Research Questions, aim and classification scheme.

Research Questions Aim and Classification Schema

RQ1. What approach was used to
apply constraints during software
reconfigurations in DSPL?

Collect information on the type of practices used to maintain
system stability during DSPL reconfigurations: Closed Dy-
namic Variability, Open Dynamic Variability, Collaborative
features, No proposed approach.

RQ2. What methodologies are cur-
rently used to manage DSPL vari-
ability during reconfigurations?

Identify how the variability model communicates with the
running system to visualize reconfiguration changes: Propri-
etary architecture, MAPE-K, Agent-oriented software engi-
neering, Third-party software, No specific methodology.

RQ3. What are the current chal-
lenges in the management of DSPL?

Highlight the main challenges to properly manage the dy-
namic variability of DSPL: Techniques, Open variation , Ex-
plicit variation points, Support of defaults, Binding time,
Variant isolation, Proposal validation, Granularity, Non-code
artifacts, No challenges mentioned.

4.1.3. Definition of Publication Questions

Additionally to the RQs, we included a set of publication questions (PQs) to com-
plement the information collected and characterize the bibliographic and demographic
space. These PQs include the type and place where papers are published and the number
of papers per year. Table 5 show the details.

Table 5. Publication Questions and main goals.

Publication Questions Aim and Classification Schema

PQ1. What year was the article published?

Highlight how DSPL research has evolved over
the years. Years with more publications:
2010–2021

PQ2. Where was the article published?
Identify the journals and conferences most
interested in the study of the DSPL, analyzing
the most predominant of them and publishers.

4.1.4. Data Sources

According to [36,37] we consider the data sources detailed in Table 6, that are recog-
nized among the most relevant in the Software Engineering community.

Appl. Sci. 2022, 12, 10240 9 of 40

Table 6. Publication Questions and main (Accessed Thursday 5th May 2022).

Library URL

ACM Digital Library dl.acm.org
IEEE Xplore ieeexplore.ieee.org
Science Direct sciencedirect.com
Springer Link springer.com
Wiley Inter-Science onlinelibrary.wiley.com

4.1.5. Search Strategy

The search strategy begins with elaborating the search string, which has been defined
according to the steps defined by [36]. Through the context and RQs, a set of keywords
has been extracted. Then, a set of synonyms has been proposed for each keyword to
widen the search range. Using PICOC (Population—Intervention—Comparison—Outcomes—
Context) [38], the search string for the systematic mapping is constructed.

• Population: In the Software Engineering community, the population includes a specific
role, category, application area, or industry group. We selected an application area,
specifically runtime variability management in DSPLs.

• Intervention: An intervention consider a methodology, procedure, technology, or tool
that addresses a specific issue. We selected a procedure, specifically the proposals for
runtime variability management.

• Comparison: We do not consider comparing the selected papers against a specific
variability management proposal (control condition). Then, these criteria do not apply
to our study.

• Outcomes: The outcomes of our RQs are the approach to managing variability and
the architecture used for the problem solved in each proposal.

• Context: The context for this study are DSPL, reconfiguration proposals to manage
runtime variability, and self-adaptive systems.

The list of keywords and synonyms is defined as follows:

• adaptation, reconfiguration
• dynamic software product lines, software product lines
• self-adaptive systems, adaptive systems, evolution

It was decided to add the term “evolution” to the keywords because it is mentioned
by several authors to refer to the evolution of SPLs towards DSPLs [3,39,40]. The search
string changed its structure since, in the beginning, it contained terms associated with the
classification of research questions, such as “framework”, “methods”, “tools”, “classification”,
“architecture”, “restrictions”. It was decided to exclude these terms since they did not influ-
ence the number of articles found in the different data sources. The final query string is
described as follows:
(“self-adaptive systems” OR “self-adapting systems” OR “auto-adaptive systems” OR “self-
adaptive" OR “self-adapting” OR “adaptive systems” OR “self-adaptation” OR “adaptation”)
AND
(“dynamic software product line” OR “dynamic software product lines” OR “dynamic product
family” OR “dynamic product families” OR “dynamic product line” OR “dynamic product lines"
OR “Software product line" OR “software product lines" OR “product family” OR “product
families" OR “product line" OR "product lines”)
AND
(“system reconfiguration” OR “reconfiguration” OR “reconfiguration rules” OR “configuration
rules” OR “adaptation rules” OR “evolution”)

It is essential to mention that due to the limitations of some search engines, we have to
adapt the search [41]. However, these adaptations do not add or remove any filters. Table 7
shows the search string results used in the selected data sources. Due to the restriction in

https://dl.acm.org
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.sciencedirect.com
https://link.springer.com
https://onlinelibrary.wiley.com/search/advanced

Appl. Sci. 2022, 12, 10240 10 of 40

the search string of the Science Direct data source, where a maximum of eight key terms is
allowed, the following search string is used:

(“self-adaptive systems” OR “self-adaptive” OR “auto-adaptive systems” OR “adaptation”)
AND (“dynamic software product line” OR “dynamic software product lines” OR “software product
lines” OR “software product line”)

Table 7. Search string, total results (Accessed Thursday 5th May 2022).

Library Result

ACM Digital Library 765
IEEE Xplore 74
Science Direct 485
Springer Link 5511
Wiley Inter-Science 1011
Total Result 7846

4.1.6. Selection Process

The search process begins with an automatic search using the selected data sources
and the search string defined in Section 4.1.5. The goal is to obtain the first collection of
articles to be distributed among the team’s researchers. Once the first collection of articles
has been obtained, each researcher must independently filter each article according to the
following inclusion/exclusion criteria, which allow us to determine whether an article is
relevant to our study or not. This process is determined by reviewing only each article’s
title, abstract, and keywords. Inclusion criteria (IC) and exclusion criteria (EC) will be
applied to each selected article. These criteria are shown in Tables 8 and 9. To avoid
excluding relevant articles, we will occupy a first snowballing search review according to
the guidelines proposed by Wohlin [42]. The search range will be extended by reviewing
for every selected article the references of each article (backward snowballing) and the
citations obtained by the articles (forward snowballing).

Table 8. Inclusion criteria.

ID Criteria

IC1 Articles published between 2010–2021.
IC2 Papers written in English.
IC3 Type of paper:

• Proceeding.
• Journal.
• Conference Paper.
• Chapter LNCS (Lecture Notes in

Computer Science).
IC4 Papers with more than one version, only the latest version will be included.
IC5 Papers whose abstracts deal with Dynamic Software Product Lines or reconfigurations in

Software Product Lines for self-adaptive systems.
IC6 Topic:

• Computer Science.

4.1.7. Protocol Validation

Validation was performed by defining and reviewing each step of the protocol. This
review was carried out by one of the authors, who has extensive experience conducting sec-
ondary studies. An initial version of this protocol was published on the arXiv platform [35].
The protocol presented in this paper corresponds to each step’s final result (definition
plus validation). During the search process, weekly meetings were held to discuss doubts
in selecting papers applying inclusion and exclusion criteria. These meetings were held
through the Zoom platform.

Appl. Sci. 2022, 12, 10240 11 of 40

Table 9. Exclusion criteria.

ID Criteria

EC1 Articles written before 2010.
EC2 Articles not related to Software Product Lines.
EC3 Secondary researches (If they exist and are relevant to the research, they will be added as

related work).
EC4 Papers without access.
EC5 Duplicate papers will be excluded.
EC6 The following types of items will be excluded:

• Tutorials.
• Short papers with less than four

pages.
• Abstract.
• Poster.
• Paper in progress (incomplete).
• Book and book chapter.

4.2. Pilot Selection

Before the selection process and subsequent classification of papers, we conducted a
pilot screening and extraction process among the investigators to ensure the reliability of
the protocol.

To avoid any possible bias due to each investigator examining a different set of
articles, we confirmed that the application of the IC and EC was similar between the
two investigators and the assistant (inter-rater agreement). This check was carried out
individually by each team member, verifying compliance with each IC and EC over a set of
12 papers chosen randomly from among those recovered in this pilot selection process.

As a means of verification, we performed a concordance test based on Fleiss’ Kappa
statistic [43]. We obtained a Kappa = 0,81 in the concordance check between the team
members. This value suggests that the criteria were clear enough for the research team to
apply the IC and EC consistently [44].

4.3. Classification Scheme and Extraction

We seek to compile a complete list of articles related to DSPL proposals, where there
is a component dedicated to managing runtime variability. This SMS will seek to map
articles between the years 2010 to 2021, since according to a study conducted by Guedes [9],
between the years 2006 to 2010, the DSPL area was not booming, containing a minimal
amount of articles in those years. We searched from January to July 2022. Once the protocol
was validated, we began the phase of retrieval of primary studies and data extraction. The
first step to perform the extraction corresponds to the execution of the search string in the
data sources, where we obtained 7.846 papers, which can be seen in Table 7. At this stage, a
decrease in the number of papers in the IEEE Xplore data source can be visualized due to
the second segment of the search string related to software reconfigurations.

Next, the papers were filtered in three stages, according to the priority defined in
Figure 3. The first stage consisted of direct filtering of the data sources, such as year and
topic, resulting in 1.829 papers. The second stage consisted of the execution of basic filters,
such as the verification of the type of article, the articles relevant to the research topic, and
the exclusion of secondary studies, resulting in 352 papers. The third filter was based on
excluding duplicate papers and articles focused on the software reconfiguration process
using DSPL, obtaining a final result of 68 relevant papers.

Appl. Sci. 2022, 12, 10240 12 of 40

Stage 1
EC1

IC1-IC2-IC6

Stage 2
EC2-EC3

IC3

Stage 3
EC4-EC5-EC6

IC4-IC5

 7.846
Initial

papers

68
papers

1.829
papers

352
papers

84
Selected
papers

Stage 4
Backward

snowballing

Stage 5
Forward

snowballing

Stage 6
Inclusion and

Exclusion criteria

2.113
papers

504
papers

16
papers

765

ACM Digital
Library

485

Science
Direct

74

IEEE Xplore

5.511

Springer
Link

1.011

Wiley Inter-
Science

Figure 3. SMS Selection process.

After obtaining the relevant articles from the data sources, a complimentary search
was carried out through snowballing. This process reviews the citations and references of
the first selection of articles. In the references of each article (backward snowballing), a total
of 2.113 papers were obtained. On the other hand, in the citations of each article (forward
snowballing), a total of 504 papers were obtained. In the case of the forward snowballing
search, the Scopus data source was used as support (scopus.com, accessed 1 June 2022). This
support was considered because there were some papers with inconsistencies between the
number of citations concerning what was reflected by their data source (e.g., the proposal
of Rosenmuller et al. was cited by 32 papers [22], but the data source provides only eight
papers). We applied the same IC and EC to the papers obtained through the snowballing
process, resulting in 16 relevant papers. Then, we obtained 84 papers for the SMS. For
details of selected papers, see Appendix B.

The articles that meet the IC and EC mentioned in Section 4.1.6 will be stored in a
Google spreadsheet in which the following information from the metadata collected for
each article will be entered:

• Title.
• Authors (each one).
• Year of publication.
• Publication type and classification (conference, journal).
• Approach used to manage runtime variability in DSPL.
• methodologies used to manage variability.
• Challenges in DSPL management.
• Results and future work.

https://www.scopus.com

Appl. Sci. 2022, 12, 10240 13 of 40

4.4. SMS Tool Support

We used the following support tools to facilitate online collaboration among team mem-
bers. Google Drive (drive.google.com) and Google Sheets (docs.google.com/spreadsheets)
were used to search, document, analyze, filter and classification of papers. Google Scholar
(scholar.google.com) was used for testing and validating the search string. Overleaf (over-
leaf.com) was used to edit and manage the article writing process. Based on the condi-
tions imposed by the Coronavirus pandemic, the team used Slack (slack.com) and Zoom
(zoom.us) tools to communicate and coordinate the work. We use another set of tools for
bibliometric analysis. To create the word cloud tag, we used TagCrowd (tagcrowd.com),
and for the Sankey diagram, we used Sankeymatic (sankeymatic.com). To find relationships
between the collected data and for subsequent visualization in figures, we used TerMine
(TerMine) and VOSviewer (vosviewer.com). Cabuplot (cabuplot.herokuapp.com) was used
to generate the bubble chart [45].

5. Results

This section reports the results to the RQs (Section 5.1) and PQs (Section 5.2) raised by
this SMS.

5.1. Answers to RQs

In the following, we report the results for RQ1 (Section 5.1.1), in which we will report
the main approaches used to manage runtime variability. For the results for RQ2, which
seeks to obtain the primary methodologies to manage DSPLs, see Section 5.1.2. Answering
RQ3 is based on finding the main challenges in managing DSPLs see Section 5.1.3.

5.1.1. RQ1: What Approach Was Used To Apply Constraints during Software
Reconfigurations in DSPL?

We check the constraints on runtime variability to learn about the most commonly
used approaches and their context. When classifying the papers, a significant problem
arose related to the initial classification of this RQ presented in the SMS protocol [35], since
there were dimensions with different granularity (some very specific and others general).
Therefore, to answer this RQ, the classification was based on the guidelines by Mens
et al. [46], in which the authors present a taxonomy of software variability approaches.

• Closed Dynamic Variability: This approach aims to support the dynamic activation
and deactivation of features that have been predefined in advance in the runtime vari-
ability design. A potential execution scenario can be a smart home system, where the
context data collected by the installed sensors activate or deactivate some predefined
features within the system, allowing it to be implemented in any smart system using
sensors. In order to apply new variants to the system would require redesigning the
feature model, as this approach does not support unforeseen scenarios, contexts, or
features.

• Open Dynamic Variability: This approach allows for unforeseen changes in the de-
sign variability at runtime, supporting the addition, removal, and modification of
features dynamically, facilitating its application in systems that may need to cope with
unforeseen scenarios (e.g., smart cities, robots). This variability mechanism supports
unforeseen scenarios in a controlled manner.

• Collaborative features: Seeks to represent features that can exchange context infor-
mation at runtime for specific purposes, e.g., for real-time and critical systems or
swarm systems. The main limitation of this approach is that dynamic changes are not
supported.

• No proposed approach.

Forty-eight papers (57.1%) present an approach based on Open Dynamic Variability.
Thirty-two papers (38.1%) present an approach based on Closed Dynamic Variability. Three
papers (3.6%) present a Collaborative features approach and one paper (1.2%) No proposed

https://drive.google.com/
https://docs.google.com/spreadsheets
https://scholar.google.com
https://www.overleaf.com
https://www.overleaf.com
https://slack.com
https://zoom.us
https://tagcrowd.com
https://www.sankeymatic.com/
http://nactem.ac.uk/software/termine/
https://www.vosviewer.com/
https://cabuplot.herokuapp.com

Appl. Sci. 2022, 12, 10240 14 of 40

approach. See details in Figure 4 and the classification of each item according to the criteria
previously defined in Table 10.

0

10

20

30

40

50

Closed Dynamic
Variability

Open Dynamic
Variability

Collaborative features No proposed approach

Figure 4. Approaches to managing runtime variability in DSPL.

Table 10. Selected papers and approaches to managing runtime variability in DSPL.

Approaches for Applying Runtime
Variability Constraints in DSPL

Selected Papers

Closed Dynamic Variability SP1, SP4, SP5, SP6, SP7, SP10, SP11, SP12, SP13, SP14, SP15,
SP17, SP18, SP19, SP20, SP21, SP24, SP27, SP29, SP32, SP37,
SP44, SP46, SP49, SP55, SP59, SP62, SP68, SP69, SP70, SP73,
SP78.

Open Dynamic Variability SP2, SP3, SP8, SP22, SP23, SP25, SP26, SP28, SP30, SP31, SP33,
SP34, SP36, SP38, SP39, SP40, SP41, SP42, SP43, SP45, SP47,
SP48, SP50, SP51, SP52, SP53, SP54, SP56, SP57, SP58, SP60,
SP61, SP63, SP64, SP65, SP67, SP71, SP72, SP74, SP75, SP76,
SP77, SP79, SP80, SP81, SP82, SP83, SP84.

Collaborative features SP9, SP16, SP35.

No proposed approach SP66.

5.1.2. RQ2: What Methodologies Are Currently Used to Manage DSPL Variability during
Reconfigurations?

RQ2 seeks to obtain further indications on the most used methodologies in the man-
agement of DSPLs and their runtime variability, mainly visualizing their application in
self-adaptive systems. This research question will be classified according to five dimensions,
which were grouped once each article was analyzed.

• Proprietary architecture: Methodologies proposed by the authors are mainly com-
posed of context-aware feature models. The variability in execution time is specified
during the design stage. It also contains proposals for reconfigurations based on
optimization models or constraint language in variability modeling.

• MAPE-K control loop: Control loop for self-adaptive systems presented by Kephart
and Chess [6], which allows managing runtime variability through machine learning.

Appl. Sci. 2022, 12, 10240 15 of 40

This loop consists of five stages [7]. The stages of MAPE-K control loop are presented
in Figure 5.

1. Monitor: Module in charge of monitoring managed resources and collecting,
grouping and filtering data. Monitoring is done through sensors, e.g. IoT devices.

2. Analyze: Module responsible for analyzing the data provided by the monitor,
understanding what the current status is and whether measures should be taken
to mitigate needs.

3. Plan: Module responsible for developing an action plan based on the results of
the analysis, this being a set of measures that will take the system from its current
state to the desired state.

4. Execute: Module responsible for the execution of the action plan and the follow-
up of the measures adopted in the managed element.

5. Knowledge: Knowledge is the central node of the control loop and is accessible
to all components of the loop, incorporating in addition to the data collected and
analyzed, additional elements such as architectural models (in the DSPL context,
feature or goal models), policies and change plans [6].

Sensors Effectors

Sensors Effectors

Adaptive management layer

Analyse Plan

Monitor
Knowledge Base

Execute

Application layer

Figure 5. MAPE-K control loop.

• Third-party software: DSPL proposals that require the use of external software for
their main operation.

• Agent-Oriented Software Engineering: Proposals in which methodologies associated
with software agents are applied, such as multi-Agent Systems Product Lines.

• No specific methodology.

Fifty-one (60.7%) papers present a Proprietary architecture for managing a DSPL ex-
ecution environment. Twenty-one (25%) papers present the MAPE-K control loop as a
runtime reconfiguration engine. Seven papers (8.3%) present an architecture based on
Agent-Oriented Software Engineering to manage DSPL environments. Four papers (4.8%)
use Third-party software to manage a DSPL environment and one paper (1.2%) presents No
specific methodology. See details in Figure 6 and the classification of each item according to
the criteria previously defined in Table 11.

Appl. Sci. 2022, 12, 10240 16 of 40

0

20

40

60

Proprietary
architecture

MAPE-K control
loop

Third-party
software

Agent-Oriented
Software

Engineering

No specific
methodology

Figure 6. Methodologies for managing DSPLs.

Table 11. Selected papers and methodologies for managing DSPLs.

Methodologies Used to Manage
DSPL Runtime Variability

Selected Papers

Proprietary architecture SP1, SP4, SP5, SP6, SP7, SP9, SP10, SP11, SP13, SP15, SP17,
SP18, SP19, SP20, SP21, SP24, SP26, SP27, SP29, SP31, SP32,
SP35, SP37, SP41, SP43, SP44, SP45, SP46, SP48, SP49, SP52,
SP54, SP55, SP59, SP60, SP62, SP63, SP64, SP65, SP66, SP67,
SP68, SP70, SP71, SP72, SP73, SP74 SP78, SP81, SP83, SP84.

MAPE-K control loop SP2, SP3, SP8, SP23, SP28, SP30, SP33, SP34, SP36, SP39, SP40,
SP42, SP50, SP57, SP58, SP61, SP75, SP77, SP79, SP80, SP82.

Third-party software SP12, SP14, SP25, SP69.

Agent-Oriented Software Engineer-
ing

SP16, SP38, SP47, SP51, SP53, SP56, SP76.

No specific methodology SP22.

5.1.3. RQ3: What Are the Current Challenges in the Management of DSPL?

Finding the most relevant challenges will serve to develop a continuous improvement
in the development of the DSPL and satisfy the main problems mentioned by the authors.
Similar to question RQ1, a change was made concerning the initial classification in the
SMS protocol since it was not known what challenges precisely existed in managing the
DSPL. Therefore, to answer this research question, the classification will be based on
the guidelines proposed by Zhang et al. [47], which proposes areas of application of the
variability mechanisms. Additionally, a section related to the validations of the proposal,
either in different application areas or in industrial systems, was added.

• Techniques: While some mechanisms use general techniques supported by almost
all programming languages (e.g., cloning, conditional, and module execution), other
mechanisms can only be applied in programming languages or even require a specific
environment or tool (Aspect Aspect Orientation, Frame Technology).

• Open variation: Mechanisms that allow open variability can enable external devel-
opers to provide software artifacts that extend the system after compilation while
allowing the kernel to be treated as a “black box” with additionally defined points of
variation.

• Explicit variation points: These are mechanisms in which the possible changes it may
contain in its variability are explicitly defined.

Appl. Sci. 2022, 12, 10240 17 of 40

• Support of defaults: Seeks to support and mitigate possible errors that runtime vari-
ability can generate. For example, Zhang mentions that in some cases where the
default selection at a variation point can reduce the number of variants (by one) and
simplify the variation logic [47].

• Binding time: In the software lifecycle, specific features are instantiated and bound
to a variant at a specific time, either at build time (preprocessing and compilation) or
run time. Maintaining a mechanism to manage binding times allows variability to be
configured in advance and reconfigurations to be optimized.

• Variant isolation: The code variants for each point of variation are written in a source
file or isolated modules or files, allowing grouping, for example, of backup systems.

• Proposal validation: Proposed frameworks to manage variability in execution time,
where the methodology must be validated in several areas because they are laboratory
tests.

• Granularity: Depending on the variability mechanism used, the granularity of variants
differs. Some mechanisms are based on textually describing variants or variation
points, admitting any granularity in a source file. In contrast, other mechanisms
impose a specific size or shape of variants within the code structure (e.g., a function, a
class, or a file).

• Non-code artifacts: Software systems include several types of artifacts in addition to
code, for example, variability modeling, data files, or text files. However, some of the
mechanisms presented are applicable only to code.

• No challenges mentioned.

Twenty-four (28.6%) papers present challenges associated with Techniques. Eighteen
papers (21.4%) present challenges in the area of Open variation. Fifteen papers (17.9%)
present as a result the validation of the proposal. Four papers (4.8%) present challenges in
the area of Explicit variation points. Three papers (3.6%) present challenges with binding
time in DSPLs. Two papers (2.4%) show challenge the Variant isolation. One paper (1.2%)
has challenges with Non-code artifacts. One paper (1.2%) contains challenges related to
feature Granularity. One paper (1.2%) presents challenges in the area of Support of defaults
and fifteen papers (17.9%) have No challenges mentioned. See details in Figure 7 and the
classification of each item according to the criteria previously defined in Table 12.

0

5

10

15

20

25

Techniques Open
variation

Explicit
variation
points

Support of
defaults

Binding
time

Variant
isolation

Proposal
validation

Granularity Non-code
artifacts

No
challenges
mentioned

Figure 7. Challenges in managing DSPLs.

Appl. Sci. 2022, 12, 10240 18 of 40

Table 12. Selected papers and DSPL management challenges.

DSPL Management Challenges Selected Papers

Techniques SP1, SP3, SP4, SP5, SP6, SP7, SP9, SP10, SP12, SP15, SP19,
SP20, SP22, SP25, SP27, SP42, SP46, SP50, SP53, SP63, SP64,
SP65, SP70, SP78.

Open variation SP2, SP8, SP23, SP26, SP30, SP32, SP35, SP36, SP38, SP40,
SP54, SP57, SP66, SP67, SP68, SP72, SP80, SP81.

Explicit variation points SP11, SP14, SP24, SP39.

Support of defaults SP13.

Binding time SP16, SP18, SP49.

Variant isolation SP21, SP59.

Proposal validation SP34, SP43, SP44, SP45, SP48, SP55, SP60, SP61, SP69, SP74,
SP75, SP76, SP79, SP82, SP84.

Granularity SP37.

Non-code artifacts SP58.

No challenges mentioned SP17, SP28, SP29, SP31, SP33, SP41, SP47, SP51, SP52, SP56,
SP62, SP71, SP73, SP77, SP83.

5.2. Answers to PQs
5.2.1. PQ1: What Year Was the Article Published?

To highlight the evolution of DSPL-oriented proposals in recent times, we identified
the year in which each paper was published, in this case, between the years 2010 and 2021.
See Figure 8 for details. For papers published each year, see Figure 9.

0

5

10

15

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Figure 8. Number of papers published by year.

Appl. Sci. 2022, 12, 10240 19 of 40

SP17

SP4,SP8,
SP19,SP23,
SP44,SP54

SP15,SP20,
SP21,SP26,
SP32,SP53,
SP82,SP83

SP7,SP10,
SP27,SP31,

SP55

SP11,SP12,
SP34,SP75,
SP80,SP81

SP13,SP35,
SP46,SP50,
SP60,SP73,

SP84

SP2,SP5,
SP18,SP24,
SP25,SP28,
SP29, SP36,
SP37,SP39,
SP43,SP47,

SP74

SP1,SP6,
SP16,SP38,
SP40,SP42,
SP49,SP57,
SP58,SP70,
SP72,SP77,

SP79

SP3,SP9,SP14,
SP33,SP41,SP45,
SP48,SP51,SP59,

SP62,SP76

SP22,SP30,
SP56,SP61,

SP78

SP52,
SP71

SP63,SP64,
SP65,SP66,
SP67,SP68,

SP69

0

2

4

6

8

10

12

14

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Figure 9. Selected papers published by year.

5.2.2. PQ2: Where Was the Article Published?

To assist researchers in identifying where there are more papers in the area of DSPLs,
we classified the journals or conferences that were most interested in our area of study
by checking where the papers were published. The ranking of the publication question
considers the Conference and Journal dimensions. Fifty-six (66.7%) papers belong to
Conferences, and twenty-eight (33,3%) papers were published in Journals. The detail can
be seen in Figure 10.

56

28

Journal
33.3%

Conference
66.7%

Figure 10. Number of articles according to the sources where they are published.

Moreover, we identify the publisher of each article. Thirty-five (41.7%) papers are
published in ACM. Although few articles were obtained in the search performed in the IEEE
data source, twenty-one papers (25%) were obtained, validating the search string. Fifteen
papers (17.9%) were published in Science Direct. Nine papers (10.7%) were published in
Springer, and two papers (2.4%) were published in Wiley. Due to the snowballing process,
two more dimensions were obtained, obtaining one paper (1.2%) in World Scientific and
MDPI, respectively. Details can be seen in Figure 11.

Also, we identified the journal or conference in which each article was published.
For articles published in journals, see Figure 12; for those published in conferences, see
Figure 13. The definition of each acronym will remain in Appendix C.

Next, we present a thorough analysis of the journals and conferences. First, in the case
of the journals, twenty-eight papers came from eighteen journals, which were classified
according to their indexing (Wos or Scopus). Figure 14 shows the distribution of the journals

Appl. Sci. 2022, 12, 10240 20 of 40

according to their indexing. Figure 15 shows the distribution of the journals indexed in
WoS JCR quartiles.

0

5

10

15

20

25

30

35

40

45

ACM IEEE Springer Wiley Science Direct World Scientific MDPI

Figure 11. Number of papers according to publisher.

0

1

2

3

4

5

AC
M-
SN

So
Sy
M

JS
ER
D

SE
aP JS

S
So
CP KB

S
C&
EE IS

T
AH
N

PC
S

CH
B

IE
EE
-S

JB
CS

IJS
EK
E

ES
A

CO
M

SE
N

Figure 12. Papers published in journals.

0

2

4

6

8

10

12

SBES

SEAMS
SPLC

FOSD

VaM
oS

RAM-S
E

UCC

W
AS4F

I-M
as

hu
ps SAC

ECSAW
VACE IR

I
IC

IS
A

SCC

SANER

FAS*W

IC
OSST

IN
TECH

AIC
CSA

CEIT

Cyb
er

Inc
ide

nt

IIA
I-A

AI

IC
SR

AFRIC
ATEK

ECSA

MATES
DAIS

HASE
EMAS

IC
AC

IN
FOCOM W

KSHPS

COMPSAC

Figure 13. Papers published in conferences.

Appl. Sci. 2022, 12, 10240 21 of 40

0

5

10

15

WoS Scopus N/C

Figure 14. Journals according to their indexing.

0

1

2

3

4

5

Q1 Q2 Q3 Q4

Figure 15. Journals according to WoS JCR quartil indexation.

Secondly, in the case of the conferences, fifty-six papers came from thirty-two confer-
ences, which were classified according to their classification (ranking Qualis). Figure 16
shows the distribution of the papers, according to the Qualis ranking.

0

5

10

15

20

A1 A2 B1 B2 B3 B5 n/c

Figure 16. Conferences according to their indexing in Qualis ranking.

Appl. Sci. 2022, 12, 10240 22 of 40

6. Discussion

This section analyzes the previous results. Section 6.1 provides an interpretation to
handle the responses to the RQs and PQs. Section 6.2 analyzes the relationships between
the RQs and the identified categories. A bibliometric analysis is presented in Section 6.3.
Finally, Section 6.4 debates the main threats to the validity of this SMS.

6.1. Interpreting Answers to RQs and PQs

According to [3], the methodologies for managing runtime variability are in line
with our classification, within which there are several challenges and execution sce-
narios for DSPL environments. Each of the RQs and PQs are discussed in detail in
Sections 6.1.1 and 6.1.2 below.

6.1.1. Interpreting Answers to RQs
Interpreting Answers for RQ1

According to the collected evidence for answering RQ1, the two main approaches to
managing reconfigurations are: (i) closed dynamic variability (38%) and (ii) open dynamic
variability (57%).

Most authors present constraints on modeling variability for closed dynamic variability
in either context-aware feature or objective models. Both seek to model possible adaptation
rules for the system [24,48]. Also, there are proposals related to optimization models, for
example, a prediction module to plan system adaptations [49], and reasoning engines [50],
such as a SAT solver to check the satisfaction of the required reconfiguration concerning
the feature model, seeking to analyze if any rule integrated into the model does not break.

In the case of open dynamic variability, there are several proposals; where most of them
are based on learning future reconfigurations through machine learning [7,39,40,51–61],
or some variant through software agents, generating Multi-Agent Systems Product Lines
(MAS-PL) environments to manage the system through autonomous agents [62,63]. There
are proposals associated with modeling constraints, such as [64], which proposes an ap-
proach to unify design and runtime adaptation based on aspect-oriented modeling through
a metamodel of unified aspects of a platform that performs processes to achieve design
and runtime adaptations. The approach associated with collaborative features, proposes
a family-based analysis that simulates all product variants of a DSPL simultaneously, at
runtime, on recent environmental inputs to obtain an estimate of the quality of service that
each variant of the product would have had if it had been run at runtimeref [65].

Finally, the Figure 17 shows an increase in approaches based on open dynamic vari-
ability. Also, we can observe a decrease in proposals based on closed dynamic variability.
This decrease could be due to the limitations generated by limiting the number of reconfig-
urations for self-adaptive systems.

Interpreting Answers for RQ2

According to the evidence provided by RQ2, most authors use their own methodology
to manage a DSPL environment (61%). Most of these proposals are based on constraints
mentioned in the variability modeling, using context-aware feature models, optimization
models, or adaptation rules, among others. For example, the DAMASCo proposal seeks to
provide reconfiguration to support specific runtime failure situations, grouping services
into families that facilitate the selection and use of similar services in case of failures [66].
There are also DevOps-based architectures for reconfiguring self-adaptive systems [67].

The second majority of the work is in the MAPE-K control loop (25%). Shen presents
variations of the control loop, including a metamodel to express the variability between
the SPL and the self-adaptive system [68]. An instantiated model includes the business
requirements, context, and adaptation logic. Nascimiento designs the variability of SPLs
with the common variability language (CVL), which communicates with an architectural
tool diagram similar to the UML component diagram, which communicates with the

Appl. Sci. 2022, 12, 10240 23 of 40

MAPE-K control loop for reconfiguration [69]. Most articles in the Agent-Oriented Software
Engineering category worked under the MAS-PL methodology to manage variability.

Figure 17. Relationship between approaches to managing runtime variability and the evolution of
challenges to manage DSPLs between the years 2010 to 2021.

The above classification identifies two main approaches for managing variability: the
MAPE-K control loop and FMs.

As mentioned in Section 5.1.2, the MAPE-K control loop corresponds to an autonomous
control loop. Its main objective is to propose a framework to monitor, analyze, plan and
execute reconfigurations in the software, storing the log of each step in a knowledge node,
promoting the linkage with Machine Learning techniques.

Runtime variability management techniques associated with FMs have several varia-
tions, with several approaches having the same goal of managing the runtime variability
of a system. Most of these systems store within the models specific variation points that
the software can assume. For example, FCORE, a model-based approach, facilitates the
coordination of adaptations between variability-intensive systems [70]. The allowable
runtime reconfigurations of each system are specified using an FCORE model, combining
the FMs used in the DSPL with the goal models. Then, the previous models are converted
to constraint satisfaction problems for determining conflicts and synergies between system
adaptations during execution. Lochau et al. [71] propose an approach based on extended
feature models (EFMs) for simple FMs with feature attributes, binding times, and corre-
sponding constraints. All model transformations have been implemented using eMoflon, a
meta-CASE tool for model-based software development.

Among the most used approaches based on FMs to manage software reconfigurations
are the Context-aware Feature Models (CFMs). This approach contains two modeling stages,
the FM and the context model, which allows for providing an autonomous (pre) planning

Appl. Sci. 2022, 12, 10240 24 of 40

and execution of the reconfiguration of a product at runtime according to contextual
requirements identified for the DSPL [72]. An extended context-aware feature modeling
(eCFM) is proposed by [73], which can identify common design flaws in DSPL FMs by
identifying how these features behave over time.

Although the MAPE-K control loop and CFMs are two independent approaches,
combined proposals address both CFMs and the MAPE-K control loop [74]. Table 13 shows
a contrast between the proposed approaches with FMs and the MAPE-K control loop. In
Figure 17, we can observe that the principal methodology applied to manage DSPLs is the
MAPE-K control loop, the most widely used to manage dynamic environments.

Table 13. Comparison between feature model-based approaches and the MAPE-K control loop.

Criteria FM-Based Approaches MAPE-K Control Loop

Allows describing possible system states X
Allows to change the variability of a system
at runtime

X X

Allows to store the record of changes in
variability

X

Interpreting Answers for RQ3

Based on the gathered evidence for RQ3, it is possible to state that the main chal-
lenges in the management of DSPLs are based on techniques. According to [75], empirical
research should be performed to obtain more realistic probability distributions of real-
time constraints because most proposals are performed in a test environment, affirming
what was mentioned by [13]. Also, there is a need to validate the proposals, either in an
industrial environment or in different test cases, expanding the application areas of the
proposed approach.

In the case of challenges related to the area of open variation, most proposals seek
to improve existing approaches. For example, the proposal of Sharifloo to implement
the evolution model offered by MAPE-K and automating the support for learning and
evolution, defining three edges associated with the definition of safe operational limits,
sandboxing, and verification of the variability associated with a self-adaptive system at
runtime [39]. According to [76], it is necessary to use some mechanism to recognize new
context entities and insert them into the adaptation rules.

From Figure 17, we can visualize an increase in the challenges associated with open
variation and a decrease in static approaches, such as the definition of explicit variation
points. Finally, we can state that the area of open dynamic variability is constantly increas-
ing, and attempts are made to minimize the use of closed dynamic variability due to its
limitations in reconfigurations. The works that do not mention challenges are related to
applying an open dynamic variability.

6.1.2. Interpreting Answers to PQs
Interpreting Answers for PQ1

According to the gathered evidence to answer PQ1, we can note that from 2010 to
2018, there was a continuous growth in the number of published papers. Then, between the
years 2019 to 2020, the number of articles did not exceed five per year, obtaining a notorious
decrease in the year 2020, recovered in the year 2021 with seven papers. A possible
interpretation could be that management of DSPLs is still booming, and the pause in
the publication for 2019 and 2020 may be due to external causes, such as the pandemic
generated by COVID-19. Another cause could be that the research led to more specific
subtopics that we have not captured in this paper due to the limitation of the application
area towards self-adaptive systems. Whether these ideas are confirmed or not, much more
extensive bibliometric research is required.

Appl. Sci. 2022, 12, 10240 25 of 40

Interpreting Answers for PQ2

Based on the evidence collected to answer PQ2, we can remark that more than 65% of
the papers were published at conferences. The SPLC (twelve papers), SEAMS (five papers),
VaMoS (four papers), and SBES (four papers) seem to be the most relevant conferences
for variability management in DSPL. The rest of the conferences only registered two or
one paper each. On the other hand, approximately 30% of the papers were published in
a journal. The most important journals seem to be Journal of Systems and Software (five
papers), ACM SIGPLAN Notices and Science of Computer Programming (three papers each),
IEEE Software and Journal of Software: Evolution and Process (two papers each). The remains
of the journals register only one paper each. Finally, the most relevant publishers were
ACM, IEEE, and Science Direct. In the classification of the conferences according to the
Conference ranks web site http://www.conferenceranks.com/, under the Qualis ranking
(accessed May 2022). Sixteen conferences or workshops are not classified because several
workshops are inactive and therefore are not indexed under the CORE or Qualis ranking.
For details, see Figure 16.

6.2. Relationships between RQs

Next, we refer to how selected papers respond to each RQ. A Sankey diagram is shown
in Figure 18. This diagram represents the relationships between the approaches to runtime
variability management (RQ1), the applied methodology (RQ2), and the existing challenges
mentioned by the authors (RQ3). The Sankey diagram allows focusing on the flows within
a system.

Closed Dynamic Variability: 32

Proprietary architecture: 51

Third-party software: 4

Open Dynamic Variability: 48

Agent-Oriented Software Engineering: 7

MAPE-K control loop: 21

No specific methodology: 1

Collaborative features: 3

No proposed approach: 1

Binding time: 3

Open variation: 18

No challenges mentioned: 15

Techniques: 24

Proposal validation: 15

Explicit variation points: 4

Non-code artifacts: 1

Support of defaults: 1

Variant isolation: 2

Granularity: 1

Figure 18. Relationships between approaches to runtime variability management (RQ1), applied
methodology (RQ2), and challenges mentioned by the authors (RQ3).

http://www.conferenceranks.com/

Appl. Sci. 2022, 12, 10240 26 of 40

The first vertical axis represents the approaches defined for RQ1. These approaches
consider closed dynamic variability, open dynamic variability, collaborative features, and
No proposed approach to manage runtime variability. The second vertical axis represents
the methodology defined for RQ2. The methodologies comprise a Proprietary architecture,
the MAPE-K control loop, Agent-Oriented Software Engineering, the use of Third-party
software, and works with No specific methodology presented. The third vertical axis repre-
sents the challenges defined for RQ3. These challenges considered Techniques, Open Varia-
tion, Proposal Validation, Explicit Variation Points, Support of defaults, Variant Isolation,
Granularity, Binding Time, Non-code Artifacts, and works that do not mention challenges.

The variability mechanisms (RQ1) and the methodology applied to manage DSPL
(RQ2) are intrinsically related. Twenty-nine papers related to closed dynamic variability
are managed based on a proprietary architecture, where variability modeling constraints
and optimization models to improve the variant selection process predominate. To a lesser
extent, three papers used third-party software. In the case of open dynamic variability,
twenty-one papers considered the MAPE-K control loop. Nineteen papers are under a
proprietary architecture, most of which are based on optimization models to compute
the best reconfiguration that satisfies the environment requirements. Proposals managed
under Agent-Oriented Software Engineering, with six papers, ending with one work
associated with third-party software and non-specific methodology. The management of
runtime variability through Collaborative features is addressed in two papers with their
own architectures to manage a DSPL environment. One paper presents an approach based
on Agent-Oriented Software Engineering. Finally, the paper that does not propose an
approach to manage variability because it only presents problems and challenges exposes a
theoretical model with the edges the architecture should contain.

The relationship between the methodologies for managing DSPLs (RQ2) and their
challenges (RQ3) presents seventeen papers defining a Proprietary architecture. Also, these
papers highlight challenges in Techniques, such as [48], that present the need to apply
DSPL concepts to build adaptive multi-cloud environments, i.e., cloud systems composed
of services that operate through different providers. Nine papers present challenges
concerning Open variation, seeking to extend the concept of closed dynamic variability
towards an open one. Proposal Validation is highlighted by eight authors, who mention
that such an architecture should be validated in the industry or the application areas
should be extended. To a lesser extent, there are challenges in the area of Explicit variation
points, where the need to apply the context variability approach presented for the dynamic
behavior of the features is exposed. It mentions that the context functions must be activated
and deactivated depending on the context conditions [77]. Two papers present the need for
challenges in Variant isolation and Binding times in their architectures. One architecture
presents the need to apply defined granularity to variants and Support defaults. This need
considers traceability and history of DSPL evolutions to support the reversal of faulty
reconfigurations or to apply proactive adaptations [78]. Finally, nine architectures do not
mention challenges.

The challenges for methodologies using the MAPE-K control loop include eight papers
presenting challenges in Open variation. According to [7], we must consider four main
problems for automatic reconfigurations using MAPE-K: the need for extensive training
data, low initial performance in the case of online learning, active exploration, and the
fact that real-world problems are not necessarily Markov Decision Processes (MDP). The
validation of the proposal is linked to five papers. Three authors mention challenges
concerning Techniques; how is the case of [51] that proposes to apply online learning
algorithms to continuously refine the performance influence models to changing context
specifications at runtime. To a lesser extent, there are challenges with non-coded artifacts,
where [79] proposes to extend the compiler’s static analysis to perform other relevant
analyses, such as consistency checks and the integrity of DSL instances. Challenges are
also expressed concerning explicit variation points, a proposal to improve the models by
taking into account the need to add or modify variants and variation points of a feature

Appl. Sci. 2022, 12, 10240 27 of 40

model in conjunction with the MAPE-K control loop [57]. Finally, three papers do not
mention challenges.

The methodologies associated with Third Party Software present two challenges in
the area of techniques: explicit variation points and one proposal validation. The Agent-
Oriented Software Engineering, only one challenge is mentioned in the areas of Binding
Time, Open Variation, Techniques, and Proposal validation. Lastly, three documents are
intended to validate the proposal. Within the proposal that does not mention methodology,
it presents as a challenge in the area of Techniques; the problem of the SCT language
(State to Constraint Transition) occupied in the open dynamic variability approach is still
related to the time requirements. This limitation comes from the inability of the constraint
programming paradigm to support the various aspects of time [80].

6.3. Bibliometric Analysis

We conducted an initial bibliometric analysis of the selected papers. This analysis pre-
tends to achieve knowledge of the most relevant terms and authors and their relationships.
Figure 19 allows a first impression of the scope of the selected papers showing a simple
weighted word cloud. This word cloud was generated from the titles of the selected papers,
considering the fifty most relevant terms. The results align with this study’s scope (e.g.,
adaptation, configuration, dynamic, reconfiguration, runtime, self-adaptive, and variability,
among others).

Figure 19. Weighted word cloud from titles of selected papers.

In addition, the most relevant concepts were extracted from the titles of the selected
papers. To do this, we used a web service called Termine, which is freely available from
the academic domain of the University of Manchester, and it is based on the C-/NC-value
method [81]. A total of 153 relevant terms was obtained. A top 40 list of terms is shown
as an example in Table 14, ordered by relevance (score) in descending order. Through the
bibliographic analysis obtained by keywords and terms, we visualize topics associated with
DSPLs to model variability mainly through feature models and their subsequent adaptation
through constraints. Software Product Lines is considered the most relevant term since
DSPLs are a specialized area.

The results support the appropriateness of the inclusion of the selected papers in our
study. Next, Figures 20 and 21 show two maps about the most relevant terms and authors.
We used the VOSviewer tool to build them.

Appl. Sci. 2022, 12, 10240 28 of 40

Table 14. Weighted concepts extracted from the titles of the selected papers.

Rank Term Score Rank Term Score

1 software product line 53.12 21 component-based adaptation approach 1.58
2 dynamic software product line 49.41 21 model-based runtime adaptation 1.58
3 product line engineering 4.71 21 dynamic aspect variability 1.58
3 dynamic software product lines 4.71 21 reified contextual information 1.58
4 feature model 4 21 industrial cyber-physical system 1.58
6 adaptive software architecture 3.17 21 runtime software adaptation 1.58
7 software product line design based approach 2.58 21 adaptive fault tolerance 1.58
8 dynamic software product line approach 2.32 21 brazilian female perspective 1.58
8 maintainable dynamic software product line 2.32 21 self-adapting mobile system 1.58
8 goal-driven software product line approach 2.32 21 product derivation process 1.58
8 dynamic software product lines based 2.32 21 modeling contextual variability 1.58
12 software product line engineering 2 21 multiobjective evolutionary algorithm 1.58
12 clustering feature model based 2 21 self-adaptive software system 1.58
12 runtime variability mechanism based 2 21 multiobjective optimization algorithm 1.58
12 autonomic web service composition 2 21 efficient consistency checking 1.58
12 software product line-based approach 2 21 feature-oriented variability reconfiguration 1.58
12 software product line infrastructure 2 21 safe runtime adaptation 1.58
12 state-constraint transition modelling language 2 21 multimedia content adhering 1.58
12 cyber-physical system 2 21 dynamic adaptive system 1.58
20 feature models 1.95 40 dynamic modeling 1

6.3.1. Most Relevant Terms

Figure 20 shows the relationship between the most relevant terms for variability
management in DSPL for self-adaptive systems from the keywords of the selected papers.
The relevance of each term corresponds to the circle size. The color of each circle shows
the evolution of terms over time. The Figure considers 6 clusters, including the 25 most
relevant terms. Furthermore, we built a thesaurus to focus on specific methodological and
technological concepts, unifying the terms and all their variants under a single term (e.g.,
terms such as runtime adaption, runtime adaptability, and runtime reconfiguration).

Through the clusters, a connection between keywords and titles can be visualized,
keeping as the main axis of the DSPLs the modeling and management of runtime variability,
there being a strong connection between self-adaptive systems, variability and the MAPE-K
loop. Between 2010 and 2015, a connection between service-based software systems and
self-adaptive systems is generated, observing topics such as constraint programming or
formal languages. Between 2015 and 2017, a boom is visualized in DSPLs proposals with
main focus on runtime variability and its modeling. There is a connection between DSPL
proposals with the MAPE-K control loop, to manage system reconfigurations. Between
2017 and 2022, there is a connection of DSPLs with cyber-physical systems that required
dynamic management of requirements, generating an evolution of DSPL application areas.
Certain Software Engineering criteria are also taken into account, such as the design
and development stages through reuse, touching on topics such as optimization through
mathematical models to manage variability.

Appl. Sci. 2022, 12, 10240 29 of 40

staged configuration

mas-pl

smart devices

optimization

model-driven

model checking

component based software engin

services

cyber-physical systems

constraint programming

cloud computing

autonomic computing

adaptiveness

iot

evolution

formal languages

software engineering

context-aware

mape-k

spl

adaptive systems

runtime variability

variability modeling

dspl

VOSviewer

Figure 20. Relationship between the 25 most relevant terms.

6.3.2. Most Relevant Authors

Figure 21 shows the relationships between the 100 most relevant authors in the vari-
ability management in DSPL for the domain of the self-adaptive system. The size of the
circles corresponds to each author’s number of published papers, and their color shows the
evolution of these collaborations over time. The clusters show the interactions between
authors working together.

zunino, alejandro

yue, tao

werner, claudia

trujillo, salvador

schuhmayer, christian

sawyer, pete

rigault, jean-paul

pessoa, leonardo

pascual, gustavo g

murguzur, aitor

monteil, julien

mokhtari, aicha

moisan, sabine

matar, mohammad abu

mahmoud, zaid al

maazoun, jihen

lu, hong

lopes, frederico

kluge, roland

iglesias, aitziber

goltz, ursula

doyle, daniel

costa, paulo

clarke, siobhán

castro, thiago

berens, markus

bayer, andreas

andrade, rossana

alves, vander

alves oliveira, thalisson

ali, shaukat

shen, liwei

seinturier, lionel

saller, karsten

rabiser, rick

pukall, mario

pfannemüller, martin

peng, xin

metzger, andreas

lopez-herrejon, roberto e

de sousa santos, ismayle

de castro andrade, rossana maria

cetina, carlos

becker, christian

salinesi, camille

rubira, cecília

roudies, ounsa

romero, daniel

mazo, raúl

capilla, rafael

baresi, luciano

schürr, andy

quinton, clément

pinto, mónica

gámez, nadia

amor, mercedes

lochau, malte

duchien, laurence

fuentes, lidia

VOSviewer

Figure 21. The most relevant authors and their relationships.

Appl. Sci. 2022, 12, 10240 30 of 40

6.4. Threats to Validity

This section will discuss mitigation techniques to minimize the effects of some well-
known limitations and threats to the validity of the secondary studies [82].

6.4.1. Descriptive Validity

This validity criterion ensures that observations are described objectively and accu-
rately independent of the researcher. The mitigation techniques considered:

• The information to be collected was structured using various forms of data extraction
(for RQs and PQs) through a Google Sheets data spreadsheet to support uniform data
recording and ensure the objectivity of the data extraction process.

• Weekly meetings were carried out to unify critical concepts with the research and
classification criteria, answer any questions and demonstrate how to carry out the
process. All the researchers and assistants participated in these meetings.

6.4.2. Theoretical Validity

This validity criterion is associated with the ability to obtain the information to be
captured. The associated mitigation actions considered:

• We built a search string and adapted it to the five data sources defined.
• We defined a set of exclusion and inclusion criteria to ensure objectivity in the selection

process, in addition to performing cross-checks among researchers to visualize the
applicability of the criteria.

• We considered that including articles written in English and discarding studies in
other languages could have a minimal impact on this criterion.

• The scope of the study was expanded with a first snowballing search review, according
to the guidelines provided by Wohlin [42], obtaining sixteen additional papers for the
study.

6.4.3. Generalizability

This validity criterion refers to the ability to generalize the results to the entire domain.
The associated mitigation actions considered:

• We assured that the scope of RQs was broad enough to identify and classify results
on different DSPL approaches, regardless of specific cases, and industry type, among
others.

• We used taxonomies by other authors to classify two of the three RQs.

6.4.4. Interpretive Validity

Given the data, this validity criterion is met when the study’s conclusions are reason-
able. The associated mitigation actions considered:

• Both researchers reviewed and validated the conclusions of the study.
• A researcher with expertise in the area of variability management in SPL assisted us

in interpreting the data.

6.4.5. Repeatability

This validity criterion ensures that the research process is sufficiently detailed and that
its results can be replicated comprehensively. The associated mitigation actions considered:

• We designed a detailed protocol (see Section 4), so those other researchers can repeat
the whole process.

• We published the protocol through the arXiv platform [35], so those other researchers
can replicate the process and corroborate the results.

7. Conclusions

This article presented a systematic mapping study on variability management in
DSPLs for Self-Adaptive Systems from 2010 to 2021. We selected 84 articles that met

Appl. Sci. 2022, 12, 10240 31 of 40

the inclusion and exclusion criteria. We defined three RQs to summarize the proposals
according to approaches to manage runtime variability, the methodology used to manage
the DSPL environment, and the current challenges generated by that application. Also, we
defined two PQs to show some bibliographic characteristics of the collected papers.

We found that within the approaches to manage runtime variability, open dynamic
variability predominates and, to a lesser extent, closed dynamic variability. Within the
methodologies for managing DSPLs, it can be stated that the MAPE-K control loop is the
backbone of most proposals associated with open dynamic variability. Concerning closed
dynamic variability, some proprietary architecture is usually used, of which the generation
of constraints in the modeling, through context-aware feature models, predominates. As
the main areas of challenges, the need to improve techniques to manage variability stands
out, either through the application of optimization models [23], validation in model con-
sistency [79], improving the quality of service to seek more optimal reconfigurations [65],
among others. Secondly, one can visualize challenges with open variation due to optimiza-
tion issues in reconfigurations with open dynamic variability [51], one seeks to change from
a system with closed variability to an open one. We observed that papers related to DSPLs
are usually published in conferences, with a comparison of 70% versus 30% of publications
in journals. The bibliographic analysis shows that the SPLC is the most relevant conference,
and the Journal of Systems and Software is the most relevant journal in the area.

In future work, we plan to generate an architecture that meets the challenges men-
tioned in this SMS. Specifically, to generate a hybrid reconfiguration engine, which allows
describing static reconfigurations in a context-aware feature model with adaptation rules
and also the MAPE-K control loop, merging the closed and open dynamic variability
methodologies, avoiding the problems associated with the limitation in reconfigurations
and the problems mentioned by [7,83,84]. We also intend to conduct an empirical study
on validating the proposals to manage variability in DSPLs, similar to [13], because we
repeatedly found in this study papers mentioning the need to validate the proposal.

Author Contributions: Conceptualization, O.A. and S.S.; methodology, O.A.; validation, S.S. and
O.A.; formal analysis, S.S.; investigation, O.A.; resources, O.A.; data curation, S.S.; writing—original
draft preparation, O.A.; writing—review and editing, S.S.; visualization, O.A.; supervision, S.S.;
project administration, S.S.; funding acquisition, S.S. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This research was funded by Universidad de La Frontera, Vicerrectoría de Investigación
y Postgrado together with Vicerrectoría de Pregrado. Samuel Sepúlveda thanks to research project
DIUFRO IF22-0006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Special thanks to Camila Muñoz for her helpful technical support in this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1 presents a summary of the related work, considering the goal, RQs, time
span, the number of papers included, and the main results.

Appl. Sci. 2022, 12, 10240 32 of 40

Table A1. Summary of related work.

Ref. Goal RQs Time Span
and #Papers

Results

[9] Provide a review on how to
capture variability in DSPLs
and how these models behave
at runtime.

RQ1: How is requirements variabil-
ity modelled in approaches for Dy-
namic software product lines?
RQ2: How does the variability con-
figuration process occur in dynamic
software product lines?

2006–2015
#54 papers

The author states that most studies
use feature models to capture the
variability of DSPLs. For changes in
system variability, we obtained that
12 studies occupy NFRs as a guide.
However, there are 12 studies that
do not specify how they would ad-
dress this issue.

[31] This research aims to identify
how SPL engineering has been
applied along with the IoT
paradigm.

RQ1: How are software product
lines (SPL) being applied in the con-
text of the Internet of Things (IoT)
systems?
RQ2: How is the variability man-
agement (VM) of SPL carried out in
IoT systems?
RQ3: Which approaches, frame-
works or platforms use SPL in IoT
systems?

2006–2018
#56 papers

In the SPL context, through domain
engineering, a problem space is
described to represent customized
SPL products for IoT through fea-
ture models that extend to a multi-
perspective process with variation
points, variants, relationships and
constraints, applied in application
engineering.

[32] The study seeks to understand
how dynamic derivation is
performed in DSPL, by defin-
ing the inputs needed to per-
form dynamic derivation, de-
scribing what makes up these
inputs, and understanding the
process for performing dy-
namic derivation.

RQ1: What are the needed inputs
to perform the dynamic derivation
in DSPL?
RQ2: How do the models, ap-
proaches and methods of software
engineering address the dynamic
derivation problem in DSPL?
RQ3: Are the inputs to the dynamic
derivation generated in an auto-
matic way?

2005–2012
#20 papers

The entries for dynamic derivation
can be grouped into two parts. The
first, a reconfiguration plan that has
information about the changes to
be made at runtime. The second
part are the features that are the arti-
facts that change at runtime, where
to perform the dynamic derivation
a configurator is used, where the
most used is the MAPE-K loop.

[13] To provide a review the status
of the evaluation of reported
Variability Management (VM)
approaches and synthesize
the available evidence on the
effects of the reported ap-
proaches.

RQ1: How have the variability
management approaches in SPLE
been evaluated?
RQ2: What is the quality of the re-
ported evaluations of the variability
management approaches?
RQ3: What evidence is available
about the effects of variability man-
agement approaches?

1990–2007
#97 papers

The authors state that the evalua-
tion of the presented approaches is
less rigorous from a scientific point
of view, such as "application of ex-
amples", "experience report" and
"discussion". This finding indicates
a general lack of robust evaluation
of most approaches.

[33] To provide a study that aims
to characterize and identify ex-
isting research on the use and
exploitation of Software Engi-
neering and SPL engineering.

RQ1: In which fora is research on
integrating or combining SO and
SPLE principles and practices pub-
lished?
RQ2: What is the focus and ob-
jective (motivation) of the existing
research results on integrating or
combining SO and SPLE principle
and practices? what are the identi-
fied characteristics of the possible
exploitation?
RQ3: What are the domains and
contexts applied in these propos-
als?
RQ4: What types of research and
contribution are represented?

2000–2011
#81 papers

The main research focus of the
identified studies have been service
variability modeling, service reuse,
service identification, service con-
figuration and customization, dy-
namic software product line and
adaptive systems, where most of
the studies have focused on service
variability modeling and adaptive
systems, applying SPLE principles
and approaches. In addition, most
of the studies are solution propos-
als (41.4%) and conceptual propos-
als (23.4%), with the main focus on
modeling and variability manage-
ment.

Appl. Sci. 2022, 12, 10240 33 of 40

Appendix B

Table A2 presents some details on the selected papers, including paper ID, title,
authors, publication year, source, and publisher.

Table A2. List of selected papers.

ID Title Authors Year Source Publisher

SP1 Comparing Configuration Approaches for Dynamic Software Product Lines. Guedes G, Silva C, Soares M. 2017. SBES’17:
Proceedings of the 31st Brazilian Symposium on Software Engineering.

SP2 Learning and Evolution in Dynamic Software Product Lines. Sharifloo AM, Metzger A, Quinton C, Baresi L, Pohl K, 2016,
SEAMS, ACM.

SP3 Optimal Reconfiguration of Dynamic Software Product Lines Based on Performance-Influence Models. Weckesser M, Kluge
R, Pfannemüller M, Matthé M, Schürr A, Becker C, 2018, SPLC, ACM.

SP4 Tailoring Dynamic Software Product Lines Rosenmüller M, Siegmund N, Pukall M, Apel S, 2011, ACM-SN, ACM.

SP5 Model Verification of Dynamic Software Product Lines Santos IS, Rocha LS, Neto PA, Andrade RM, 2016, SBES, ACM.

SP6 Extending Dynamic Software Product Lines with Temporal Constraints Sousa G, Rudametkin W, Duchien L, 2017, SEAMS,
IEEE.

SP7 Using Document-Oriented GUIs in Dynamic Software Product Lines Kramer D, Oussena S, Komisarczuk P, Clark T, 2013,
ACM-SN, ACM.

SP8 Towards Autonomic Software Product Lines. Abbas N, 2011, SPLC, ACM.

SP9 Trace Checking for Dynamic Software Product Lines Olaechea R, Atlee J, Legay A, Fahrenberg U, 2018, SEAMS, ACM.

SP10 Executable Modelling of Dynamic Software Product Lines in the ABS Language Muschevici R, Clarke D, Proença J, 2013,
FOSD, ACM.

SP11 Context Variability Modeling for Runtime Configuration of Service-Based Dynamic Software Product Lines. Murguzur A,
Capilla R, Trujillo S, Ortiz Ó, Lopez-Herrejon RE, 2014, SPLC, ACM.

SP12 Staged Configuration of Dynamic Software Product Lines with Complex Binding Time Constraints. Bürdek J, Lity S, Lochau
M, Berens M, Goltz U, Schürr A, 2014, VaMoS, ACM.

SP13 Dynamically Evolving the Structural Variability of Dynamic Software Product Lines. Baresi L, Quinton C, 2015, SEAMS,
IEEE.

SP14 N-Dimensional Tensor Factorization for Self-Configuration of Software Product Lines at Runtime. Pereira JA, Schulze S,
Figueiredo E, Saake G, 2018, SPLC, ACM.

SP15 A Formal Foundation for Dynamic Delta-Oriented Software Product Lines. Damiani F, Padovani L, Schaefer I, 2012, GPCE,
ACM.

SP16 Product Line Engineering of Monitoring Functionality in Industrial Cyber-Physical Systems: A Domain Analysis. Iglesias A,
Lu H, Arellano C, Yue T, Ali S, Sagardui G, 2017, SPLC, ACM.

SP17 Using Reified Contextual Information for Safe Run-Time Adaptation of Software Product Lines. Sunkle S, Pukall M, 2010,
RAM-SE, ACM.

SP18 Towards a Software Product Line-Based Approach to Adapt IaaS Cloud Configurations. Ruiz C, Duran-Limon HA,
Parlavantzas N, 2016, UCC, ACM.

SP19 Dynamic Software Adaptation for Service-Oriented Product Lines. Gomaa H, Hashimoto K, 2011, SPLC, ACM.

SP20 Constraint-Based Self-Adaptation of Wireless Sensor Networks. Gamez N, Romero D, Fuentes L, Rouvoy R, Duchien L,
2012, WAS4FI-Mashups, ACM.

SP21 Reducing Feature Models to Improve Runtime Adaptivity on Resource Limited Devices. Saller K, Oster S, Schürr A,
Schroeter J, Lochau M, 2012, SPLC, ACM.

SP22 Evaluation of the State-Constraint Transition Modelling Language: A Goal Question Metric Approach. Achtaich A, Roudies
O, Souissi N, Salinesi C, Mazo R, 2019, SPLC, ACM.

SP23 An SPL Approach for Adaptive Fault Tolerance in SOA. Nascimento AS, Rubira CM, Lee J, 2011, SPLC, ACM.

SP24 Dynamic Variability Management Supporting Operational Modes of a Power Plant Product Line. Capilla R, Bosch J, 2016,
VaMoS, ACM.

Appl. Sci. 2022, 12, 10240 34 of 40

Table A2. Cont.

ID Title Authors Year Source Publisher

SP25 Using Dynamic Adaptive Systems in Safety-Critical Domains. McGee ET, McGregor JD, 2016, SEAMS, ACM.

SP26 Using Constraint-Based Optimization and Variability to Support Continuous Self-Adaptation. Parra C, Romero D, Mosser S,
Rouvoy R, Duchien L, Seinturier L, 2012, SAC, ACM.

SP27 Context-Aware DSPLs: Model-Based Runtime Adaptation for Resource-Constrained Systems. Saller K, Lochau M, Reimund
I, 2013, SPLC, ACM.

SP28 Research Contributions on Adaptive Software Architectures: A Brazilian Female Perspective at UNICAMP. Venero SK,
Eleutério JD, Rubira CM, 2016, ECSAW, ACM.

SP29 Coordinated Run-Time Adaptation of Variability-Intensive Systems: An Application in Cloud Computing. Metzger A, Bayer
A, Doyle D, Sharifloo AM, Pohl K, Wessling F, 2016, VACE, ACM.

SP30 Runtime Monitoring of Behavioral Properties in Dynamically Adaptive Systems. dos Santos EB, de Castro Andrade RM, de
Sousa Santos I, 2019, SBES, ACM.

SP31 Modeling Dynamic Adaptations Using Augmented Feature Models. Jean-Baptiste L, Maria-Teresa S, Jean-Marie G, Antoine
B, 2013, SAC, ACM.

SP32 Safe Adaptation in Context-Aware Feature Models. Marinho FG, Maia PH, Andrade RM, Vidal VM, Costa PA, Werner C,
2012, FOSD, ACM.

SP33 Towards an Architecture Model for Dynamic Software Product Lines Engineering. Santos E, Machado I, 2018, IRI, IEEE.

SP34 An Approach to Clustering Feature Model Based on Adaptive Behavior for Dynamic Software Product Line. Boonon P,
Muenchaisri P, 2014, ICISA, IEEE.

SP35 Reconfiguration of Service Failures in DAMASCo Using Dynamic Software Product Lines. Cubo J, Gamez N, Pimentel E,
Fuentes L, 2015, SCC, IEEE.

SP36 Achieving Knowledge Evolution in Dynamic Software Product Lines. Arcega L, Font J, Haugen , Cetina C, 2016, SANER, IEEE.

SP37 A Runtime Variability Mechanism Based on Supertypes. Capilla R, Valdezate A, Díaz F, 2016, FAS*W, IEEE.

SP38 Creating adaptive software architecture dynamically for recurring new requirements. Ali N, Hong J, 2017, ICOSST, IEEE.

SP39 Combining variability, RCA and feature model for context-awareness. Amja A, Obaid A, Mili H, 2016, INTECH, IEEE.

SP40 Towards a DSPL for Context Aware BPM. Khiari B, ; Jilani L, 2017, AICCSA, IEEE.

SP41 Dynamic Constraint Satisfaction Algorithm for Online Feature Model Reconfiguration. Entekhabi S, Karataş A, Oğuztüzün
H, 2018, CEIT, IEEE.

SP42 Dynamic adaptation and reconfiguration of security in mobile devices. Amoud M, Roudies O, 2017, Cyber Incident, IEEE.

SP43 Dynamic SPL and Derivative Development with Uncertainty Management for DevOps. Nakanishi T, Furusho H, Hisazumi
K, Fukuda A, 2016, IIAI-AAI, IEEE.

SP44 Towards Feature-Oriented Variability Reconfiguration in Dynamic Software Product Lines. ShenXin L, Zhao P, 2011, ICSR,
Springer.

SP45 Designing a Framework for Smart IoT Adaptations. Achtaich A, Souissi N, Mazo R, Salinesi C, Roudies O, 2018, AFRICATEK,
Springer.

SP46 SmartyCo: Managing Cyber-Physical Systems for Smart Environments. Romero D, Quinton C, Duchien L, Seinturier L,
Valdez C, 2015, ECSA, Springer.

SP47 Using Models at Runtime to Adapt Self-managed Agents for the IoT. Ayala I, Horcas JM, Amor M, Fuentes L, 2016, MATES,
Springer.

SP48 Autonomic Adaptation of Multimedia Content Adhering to Application Mobility. Velázquez-García F, Halvorsen P, Stensland
H, Eliassen F, 2018, DAIS, Springer.

SP49 Specification and automated validation of staged reconfiguration processes for dynamic software product lines. Lochau M,
Bürdek J, Hölzle S, Schürr A, 2017, SoSyM, Springer.

SP50 An approach based on feature models and quality criteria for adapting component-based systems. Sanchez L, Diaz-Pace J,
Zunino A, Moisan S, Rigault J, 2015, JSERD, Springer.

SP51 Context-dependent reconfiguration of autonomous vehicles in mixed traffic. Horcas JM, Monteil J, Bouroche M, Pinto M,
Fuentes L, Clarke S, 2018, SEaP, Wiley.

Appl. Sci. 2022, 12, 10240 35 of 40

Table A2. Cont.

ID Title Authors Year Source Publisher

SP52 ASPLe: A methodology to develop self-adaptive software systems with systematic reuse. Abbas N, Andersson J, Weyns D,
2020, JSS, Science Direct.

SP53 Automating the product derivation process of multi-agent systems product lines. Cirilo E, Nunes I, Kulesza U, Lucena C,
2012, JSS, Science Direct.

SP54 Unifying design and runtime software adaptation using aspect models. Parra C, Blanc X, Cleve A, Duchien L, 2011, SoCP,
Science Direct.

SP55 Prototyping Dynamic Software Product Lines to evaluate run-time reconfigurations. Cetina C, Giner P, Fons J, Pelechano V,
2013, SoCP, Science Direct.

SP56 A goal-driven software product line approach for evolving multi-agent systems in the Internet of Things. Ayala I, Amor M,
Horcas JM, Fuentes L, 2019, KBS, Science Direct.

SP57 Achieving autonomic Web service compositions with models at runtime. Alférez GH, Pelechano V, 2017, C&EE, Science Direct.

SP58 Building reliable and maintainable Dynamic Software Product Lines: An investigation in the Body Sensor Network domain.
Pessoa L, Fernandes P, Castro T, Alves V, Rodrigues GN, Carvalho H, 2017, IST, Science Direct.

SP59 Context-aware reconfiguration in evolving software product lines. Mauro J, Nieke M, Seidl C, Chieh Yu I, 2018, SoCP,
Science Direct.

SP60 Applying multiobjective evolutionary algorithms to dynamic software product lines for reconfiguring mobile applications.
Pascual GG, Lopez-Herrejon RE, Pinto M, Fuentes L, Egyed A, 2015, JSS, Science Direct.

SP61 Context-aware energy-efficient applications for cyber-physical systems. Horcas JM, Pinto M, Fuentes L, 2019, AHN, Science
Direct.

SP62 Self-adaptation of service compositions through product line reconfiguration. Bashari M, Bagheri E, Du W, 2018, JSS, Science
Direct.

SP63 DyMMer 2.0: A Tool for Dynamic Modeling and Evaluation of Feature Model. Bezerra C, Lima R, Silva P, 2021, SBES, ACM.

SP64 Static Analysis Techniques for Efficient Consistency Checking of Real-Time-Aware DSPL Specifications. Göttmann H, Bacher
I, Gottwald N, Lochau M, 2021, VaMoS, ACM.

SP65 ProDSPL: Proactive self-adaptation based on Dynamic Software Product Lines. Ayala I, Papadopoulos AV, Amor M, Fuentes
L, 2021, JSS, Science Direct.

SP66 Towards Mastering Variability in Software-Intensive Cyber-Physical Production Systems. Rabiser R, Zoitl A, 2021, PCS,
Science Direct.

SP67 A Software Product Line Design Based Approach for Real-time Scheduling of Reconfigurable Embedded Systems. Gharsel-
laoui H, Maazoun J, Bouassida N, Ahmed SB, Ben-Abdallah H, 2021, CHB, Science Direct.

SP68 Evolution in dynamic software product lines. Quinton C, Vierhauser M, Rabiser R, Baresi L, Grünbacher P, Schuhmayer C,
2021, SEaP, Wiley.

SP69 Transfer learning for multiobjective optimization algorithms supporting dynamic software product lines. Ballesteros J,
Fuentes L, 2021, SPLC, ACM.

SP70 Dynamically Adaptable Software Is All about Modeling Contextual Variability and Avoiding Failures. de Sousa Santos I, de
Jesus Souza M, Luciano Carvalho M, Alves Oliveira T, de Almeida E and de Castro Andrade R, 2017, IEEE-S, IEEE.

SP71 A study on dynamic aspects variability in the SOLAR educational software ecosystem. Coutinho E, Bezerra C, 2020, JBCS,
Springer.

SP72 Variable Recovery and Adaptation Connectors for Dynamic Software Product Lines. Albassam E, Gomaa H and Menascé D,
2017, SPLC, ACM.

SP73 Creating Self-Adapting Mobile Systems with Dynamic Software Product Lines. Gamez N, Fuentes L, Troya J, 2015, IEEE-S, IEEE.

SP74 A Matter of the Mix: Integration of Compile and Runtime Variability. Eichelberger H, 2016, FAS*W, IEEE.

SP75 ArCMAPE: A Software Product Line Infrastructure to Support Fault-Tolerant Composite Services. Nascimento A, Rubira C,
Castor F, 2014, HASE, IEEE.

SP76 Towards a MAS Product Line Engineering Approach. Boufedji D, Guessoum Z, Brandão A, Ziadi T, Mokhtari A, 2018,
EMAS, Springer.

Appl. Sci. 2022, 12, 10240 36 of 40

Table A2. Cont.

ID Title Authors Year Source Publisher

SP77 Dynamic Software Product Line Engineering: A Reference Framework. Bashari M, Bagheri E, Du W, 2017, IJSEKE, World
Scientific.

SP78 Using dynamic software product lines to implement adaptive SGX-enabled systems. Krieter S, Thiem T, Leich T, 2019,
VaMoS, ACM.

SP79 A Dynamic Software Product Line Approach for Adaptation Planning in Autonomic Computing Systems. Pfannemüller M,
Krupitzer C, Weckesser M, Becker C, 2017, ICAC, IEEE.

SP80 A component-based adaptation approach for multi-cloud applications. Almeida A, Cavalcante E, Batista T, Cacho N, Lopes
F, 2014, INFOCOM WKSHPS, IEEE.

SP81 A framework for context-aware self-adaptive mobile applications SPL. Mizouni R, Abu Matar M, Al Mahmoud Z, Alzahmi
S, Salah A, 2014, ESA, Science Direct.

SP82 Software Product Line Engineering for Developing Self-Adaptive Systems: Towards the Domain Requirements. Shen L,
Peng X, Zhao W, 2012, COMPSAC, IEEE.

SP83 Using constraint programming to manage configurations in self-adaptive systems. Sawyer P, Mazo R, Diaz D, Salinesi C,
Hughes D, 2012, Computer, IEEE.

SP84 Dynamic Reconfiguration of Security Policies in Wireless Sensor Networks. Pinto M, Gámez N, Fuentes L, Amor M, Horcas
JM, Ayala I, 2015, Sensors, MDPI.

Appendix C

Tables A3 and A4 presents the acronyms used in the study to indicate conferences and
journals.

Table A3. List of conferences and workshops.

Acronym Conference/Workshop Title

AFRICATEK International Conference on Emerging Technologies for Developing Countries
AICCSA ACS/IEEE International Conference on Computer Systems and Applications
CEIT International Conference on Control, Engineering & Information Technology
COMPSAC Annual International Computer Software and Applications Conference
Cyber Incident International Conference on Cyber Incident Response, Coordination, Containment & Control
ECSA European Conference on Software Architecture
ECSAW European Conference on Software Architecture Workshops
EMAS International Workshop on Engineering Multi-Agent Systems
DAIS IFIP International Conference on Distributed Applications and Interoperable Systems
FAS*W International Workshops on Foundations and Applications of Self Systems
FOSD International Workshop on Feature-Oriented Software Development
HASE International Symposim on High Assurance Systems Engineering
ICAC International Conference on Autonomic Computing
ICISA International Conference on Information Science and Applications
ICOSST International Conference on Open Source Systems and Technologies
ICSR International Conference on Software Reuse
IIAI-AAI IIAI International Conference on Advanced Applied Informatics
INFOCOM WKSHPS Conference on Computer Communications Workshops
INTECH International Conference on Innovative Computing Technology
IRI International Conference on Information Reuse and Integration
MATES German Conference on Multiagent System Technologies
RAM-SE Workshop on Reflection, AOP and Meta-Data for Software Evolution
SAC Annual ACM Symposium on Applied Computing
SANER International Conference on Software Analysis, Evolution and Reengineering
SBES Brazilian Symposium on Software Engineering
SCC International Conference on Services Computing
SEAMS Symposium on Software Engineering for Adaptive and Self-Managing Systems
SPLC International Systems and Software Product Line Conference
VACE International Workshop on Variability and Complexity in Software Design
VaMoS International Workshop on Variability Modelling of Software-Intensive Systems
UCC International Conference on Utility and Cloud Computing
WAS4FI-Mashups International Workshop on Adaptive Services for the Future Internet and International Workshop on Web APIs and Service

Appl. Sci. 2022, 12, 10240 37 of 40

Table A4. List of Journals

Acronym Journal Title

ACM-SN ACM SIGPLAN Notices
AHN Ad Hoc Networks
CHB Computers in Human Behavior
COM IEEE Computer Society
C&EE Computers & Electrical Engineering
ESA Expert Systems with Applications
IEEE-S IEEE Software
IJSEKE International Journal of Software Engineering and Knowledge Engineering
IST Information and Software Technology
JBCS Journal of the Brazilian Computer Society
JSERD Journal of Software Engineering Research and Development
JSS Journal of Systems and Software
KBS Knowledge-Based Systems
PCS Procedia Computer Science
SEaP Journal of Software: Evolution and Process
SEN Sensors
SoCP Science of Computer Programming
SoSyM Software & Systems Modeling

References
1. Weyns, D. Software Engineering of Self-adaptive Systems. In Handbook of Software Engineering; Springer International Publishing:

Cham, Switzerland, 2019; pp. 399–443. [CrossRef]
2. Hinchey, M.; Park, S.; Schmid, K. Building Dynamic Software Product Lines. Computer 2012, 45, 22–26. [CrossRef]
3. Quinton, C.; Vierhauser, M.; Rabiser, R.; Baresi, L.; Grünbacher, P.; Schuhmayer, C. Evolution in dynamic software product lines.

J. Softw. Evol. Process. 2021, 33, e2293. [CrossRef]
4. Hallsteinsen, S.; Hinchey, M.; Park, S.; Schmid, K. Dynamic Software Product Lines. Computer 2008, 41, 93–95. [CrossRef]
5. Schmid, K.; Eichelberger, H. From Static to Dynamic Software Product Lines. In Proceedings of the SPLC 2008, Limerick, Ireland,

8–12 September 2008; pp. 33–38.
6. Kephart, J.; Chess, D. The vision of autonomic computing. Computer 2003, 36, 41–50. [CrossRef]
7. Abbas, N. Towards autonomic software product lines. In Proceedings of the 15th International Software Product Line Conference,

Munich, Germany, 21–26 August 2011; Volume 2, pp. 1–8.
8. Cravero, A.; Pardo, S.; Sepúlveda, S.; Muñoz, L. Challenges to Use Machine Learning in Agricultural Big Data: A Systematic

Literature Review. Agronomy 2022, 12, 748. [CrossRef]
9. Guedes, G.; Silva, C.; Soares, M.; Castro, J. Variability Management in Dynamic Software Product Lines: A Systematic Mapping.

In Proceedings of the 2015 IX Brazilian Symposium on Components, Architectures and Reuse Software, Belo Horizonte, Minas
Gerais, Brazil, 21–22 September 2015; pp. 90–99. [CrossRef]

10. Clements, P.; Northrop, L. Software Product Lines, Course Notes of Product Line Systems Program; Software Engineering Institute,
Carnegie Mellon University: Pittsburgh, PA, USA, 2003.

11. Apel, S.; Batory, D.; Kästner, C.; Saake, G. Software Product Lines. In Feature-Oriented Software Product Lines: Concepts and
Implementation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–15. [CrossRef]

12. Deelstra, S.; Sinnema, M.; Bosch, J. Experiences in Software Product Families: Problems and Issues During Product Derivation.
In Proceedings of the Software Product Lines; Nord, R.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 165–182.

13. Chen, L.; Ali Babar, M. A systematic review of evaluation of variability management approaches in software product lines. Inf.
Softw. Technol. 2011, 53, 344–362. [CrossRef]

14. Asikainen, T.; Mannisto, T.; Soininen, T. A unified conceptual foundation for feature modelling. In Proceedings of the 10th
International Software Product Line Conference (SPLC’06), Baltimore, MD, USA, 21–24 August 2006; pp. 31–40. [CrossRef]

15. Pohl, K.; Böckle, G.; Van Der Linden, F. Software Product Line Engineering; Springer: Berlin/Heidelberg, Germany, 2005; Volume 10.
16. Kang, K.C.; Cohen, S.G.; Hess, J.A.; Novak, W.E.; Peterson, A.S. Feature-Oriented Domain Analysis (FODA) Feasibility Study;

Technical Report; Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst: Pittsburgh, PA, USA, 1990.
17. Heradio, R.; Perez-Morago, H.; Fernandez-Amoros, D.; Cabrerizo, F.J.; Herrera-Viedma, E. A bibliometric analysis of 20 years of

research on software product lines. Inf. Softw. Technol. 2016, 72, 1–15. [CrossRef]
18. Gacitúa, R.; Sepúlveda, S.; Mazo, R. FM-CF: A framework for classifying feature model building approaches. J. Syst. Softw. 2019,

154, 1–21. [CrossRef]
19. Sepúlveda, S.; Cravero, A. Reasoning Algorithms on Feature Modeling—A Systematic Mapping Study. Appl. Sci. 2022, 12, 5563.

[CrossRef]
20. Kim, M.; Park, S. Goal and scenario driven product line development. In Proceedings of the 11th Asia-Pacific Software

Engineering Conference, Washington, DC, USA, 30 November–3 December 2004; pp. 584–585. [CrossRef]

http://doi.org/10.1007/978-3-030-00262-6_11
http://dx.doi.org/10.1109/MC.2012.332
http://dx.doi.org/10.1002/smr.2293
http://dx.doi.org/10.1109/MC.2008.123
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.3390/agronomy12030748
http://dx.doi.org/10.1109/SBCARS.2015.20
http://dx.doi.org/10.1007/978-3-642-37521-7_1
http://dx.doi.org/10.1016/j.infsof.2010.12.006
http://dx.doi.org/10.1109/SPLINE.2006.1691575
http://dx.doi.org/10.1016/j.infsof.2015.11.004
http://dx.doi.org/10.1016/j.jss.2019.04.026
http://dx.doi.org/10.3390/app12115563
http://dx.doi.org/10.1109/APSEC.2004.56

Appl. Sci. 2022, 12, 10240 38 of 40

21. Fitzgerald, B.; Stol, K.J. Continuous Software Engineering and beyond: Trends and Challenges. In Proceedings of the 1st
International Workshop on Rapid Continuous Software Engineering (RCoSE 2014), Hyderabad, India, 3 June 2014; Association
for Computing Machinery: New York, NY, USA, 2014; pp. 1–9. [CrossRef]

22. Rosenmüller, M.; Siegmund, N.; Pukall, M.; Apel, S. Tailoring dynamic software product lines. In Proceedings of the 10th ACM
International Conference on Generative Programming and Component Engineering, Portland, OR, USA, 22–23 October 2011;
pp. 3–12.

23. Santos, I.S.; Rocha, L.S.; Neto, P.A.S.; Andrade, R.M. Model verification of dynamic software product lines. In Proceedings of the
30th Brazilian Symposium on Software Engineering, Maringá, Brazil, 19–23 September 2016; pp. 113–122.

24. Guedes, G.; Silva, C.; Soares, M. Comparing configuration approaches for dynamic software product lines. In Proceedings of the
31st Brazilian Symposium on Software Engineering, Fortaleza, CE, Brazil, 20–22 September 2017; pp. 134–143.

25. Salehie, M.; Tahvildari, L. Self-Adaptive Software: Landscape and Research Challenges. ACM Trans. Auton. Adapt. Syst. 2009, 4,
1–42. [CrossRef]

26. de Lemos, R.; Giese, H.; Müller, H.A.; Shaw, M.; Andersson, J.; Litoiu, M.; Schmerl, B.; Tamura, G.; Villegas, N.M.; Vogel, T.; et al.
Software Engineering for Self-Adaptive Systems: A Second Research Roadmap. In Software Engineering for Self-Adaptive Systems II:
International Seminar, Dagstuhl Castle, Germany, 24–29 October 2010 Revised Selected and Invited Papers; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 1–32. [CrossRef]

27. Bosch, J.; Capilla, R. Dynamic Variability in Software-Intensive Embedded System Families. Computer 2012, 45, 28–35. [CrossRef]
28. Galster, M.; Weyns, D.; Tofan, D.; Michalik, B.; Avgeriou, P. Variability in software systems—A systematic literature review. IEEE

Trans. Softw. Eng. 2013, 40, 282–306. [CrossRef]
29. Raatikainen, M.; Tiihonen, J.; Männistö, T. Software product lines and variability modeling: A tertiary study. J. Syst. Softw. 2019,

149, 485–510. [CrossRef]
30. Jaffari, A.; Lee, J.; Kim, E. Variability Modeling in Software Product Line: A Systematic Literature Review. In Software Engineering

in IoT, Big Data, Cloud and Mobile Computing; Springer: Cham, Switzerland, 2021; pp. 1–15.
31. Geraldi, R.T.; Reinehr, S.; Malucelli, A. Software product line applied to the internet of things: A systematic literature review. Inf.

Softw. Technol. 2020, 124, 106293. [CrossRef]
32. da Silva, J.R.F.; da Silva, F.A.P.; do Nascimento, L.M.; Martins, D.A.O.; Garcia, V.C. The dynamic aspects of product derivation in

DSPL: A systematic literature review. In Proceedings of the 2013 IEEE 14th International Conference on Information Reuse and
Integration (IRI), San Francisco, CA, USA, 14–18 August 2013; pp. 466–473. [CrossRef]

33. Mohabbati, B.; Asadi, M.; Gašević, D.; Hatala, M.; Müller, H.A. Combining service-orientation and software product line
engineering: A systematic mapping study. Inf. Softw. Technol. 2013, 55, 1845–1859. [CrossRef]

34. Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An
update. Inf. Softw. Technol. 2015, 64, 1–18. [CrossRef]

35. Aguayo, O.; Sepúlveda, S. Systematic Mapping Protocol: Variability Management in Dynamic Software Product Lines for
Self-Adaptive Systems. arxiv 2022. [CrossRef]

36. Kitchenham, B.; Charters, S.; Budgen, S.; Brereton, P.; Turner, M.; Linkman, S.; Jørgensen, M.; Mendes, E.; Visaggio, G. Guidelines
for Performing Systematic Literature Reviews in Software Engineering; EBSE Technical Report, EBSE-2007-01; Software Engineering
Group, School of Computer Science and Mathematics, Keele University: Keele, UK, 2007.

37. Brereton, P.; Kitchenham, B.A.; Budgen, D.; Turner, M.; Khalil, M. Lessons from applying the systematic literature review process
within the software engineering domain. J. Syst. Softw. 2007, 80, 571–583. [CrossRef]

38. Petticrew, M.; Roberts, H. How to Find the Studies: The Literature Search. In Systematic Reviews in the Social Sciences; John Wiley
& Sons, Ltd.: New York, NY, USA, 2006; Chapter 4, pp. 79–124. [CrossRef]

39. Sharifloo, A.M.; Metzger, A.; Quinton, C.; Baresi, L.; Pohl, K. Learning and evolution in dynamic software product lines. In
Proceedings of the 2016 IEEE/ACM 11th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), Austin, TX, USA, 16–17 May 2016; pp. 158–164.

40. Arcega, L.; Font, J.; Haugen, Ø.; Cetina, C. Achieving knowledge evolution in dynamic software product lines. In Proceedings of
the 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), Suita, Osaka, Japan,
14–18 March 2016; Volume 1, pp. 505–516.

41. Gusenbauer, M.; Haddaway, N.R. Which academic search systems are suitable for systematic reviews or meta-analyses?
Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods 2020, 11, 181–217.
[CrossRef]

42. Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings
of the 18th International Conference on Evaluation and Assessment in Software Engineering (EASE ’14), London, UK, 13–14 May
2014; Association for Computing Machinery: New York, NY, USA, 2014. [CrossRef]

43. Gwet, K. Inter-rater reliability: Dependency on trait prevalence and marginal homogeneity. Stat. Methods Inter-Rater Reliab.
Assess. Ser. 2002, 2, 9.

44. Fleiss, J.L. Statistical Methods for Rates and Proportions, 2nd ed.; Probability & Mathematical Statistics S.; John Wiley & Sons:
Nashville, TN, USA, 1981.

45. Ancán, O.; Reyes, M. Cabuplot: Categorical Bubble Plot for Systematic Mapping Studies; Departamento de Ciencias de la Computación
e Informática, Universidad de La Frontera, Temuco, Chile, 2020.

http://dx.doi.org/10.1145/2593812.2593813
http://dx.doi.org/10.1145/1516533.1516538
http://dx.doi.org/10.1007/978-3-642-35813-5_1
http://dx.doi.org/10.1109/MC.2012.287
http://dx.doi.org/10.1109/TSE.2013.56
http://dx.doi.org/10.1016/j.jss.2018.12.027
http://dx.doi.org/10.1016/j.infsof.2020.106293
http://dx.doi.org/10.1109/IRI.2013.6642507
http://dx.doi.org/10.1016/j.infsof.2013.05.006
http://dx.doi.org/10.1016/j.infsof.2015.03.007
http://dx.doi.org/10.48550/ARXIV.2205.08487
http://dx.doi.org/10.1016/j.jss.2006.07.009
http://dx.doi.org/10.1002/9780470754887.ch4
http://dx.doi.org/10.1002/jrsm.1378
http://dx.doi.org/10.1145/2601248.2601268

Appl. Sci. 2022, 12, 10240 39 of 40

46. Mens, K.; Capilla, R.; Cardozo, N.; Dumas, B. A Taxonomy of Context-Aware Software Variability Approaches. In MODULARITY
Companion 2016, Proceedings of the 15th International Conference on Modularity, Málaga, Spain, 14–17 March 2016; Association for
Computing Machinery: New York, NY, USA, 2016; pp. 119–124. [CrossRef]

47. Zhang, B.; Duszynski, S.; Becker, M. Variability Mechanisms and Lessons Learned in Practice. In Proceedings of the 1st
International Workshop on Variability and Complexity in Software Design (VACE ’16), Austin, TX, USA, 15 May 2016; Association
for Computing Machinery: New York, NY, USA, 2016; pp. 14–20. [CrossRef]

48. Sousa, G.; Rudametkin, W.; Duchien, L. Extending dynamic software product lines with temporal constraints. In Proceedings of
the 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
Buenos Aires, Argentina, 22–23 May 2017; pp. 129–139.

49. Ruiz, C.; Duran-Limon, H.A.; Parlavantzas, N. Towards a software product line-based approach to adapt IaaS cloud configurations.
In Proceedings of the 9th International Conference on Utility and Cloud Computing, Shanghai, China, 6–9 December 2016;
pp. 398–403.

50. Kramer, D.; Oussena, S.; Komisarczuk, P.; Clark, T. Using document-oriented GUIs in dynamic software product lines. ACM
SIGPLAN Notices 2013, 49, 85–94. [CrossRef]

51. Weckesser, M.; Kluge, R.; Pfannemüller, M.; Matthé, M.; Schürr, A.; Becker, C. Optimal reconfiguration of dynamic software
product lines based on performance-influence models. In Proceedings of the 22nd International Systems and Software Product
Line Conference, Gothenburg, Sweden, 10–14 September 2018; Volume 1, pp. 98–109.

52. Nascimento, A.S.; Rubira, C.M.F.; Lee, J. An spl approach for adaptive fault tolerance in soa. In Proceedings of the 15th
International Software Product Line Conference, Munich, Germany, 21–26 August 2011; Volume 2, pp. 1–8.

53. Venero, S.K.; Eleutério, J.D.; Rubira, C.M. Research contributions on adaptive software architectures: A Brazilian female
perspective at UNICAMP. In Proceedings of the 10th European Conference on Software Architecture Workshops, Copenhagen,
Denmark, 28 November–2 December 2016; pp. 1–6.

54. dos Santos, E.B.; de Castro Andrade, R.M.; de Sousa Santos, I. Runtime monitoring of behavioral properties in dynamically
adaptive systems. In Proceedings of the XXXIII Brazilian Symposium on Software Engineering, Salvador, Brazil, 23–27 September
2019; pp. 377–386.

55. Santos, E.; Machado, I. Towards an architecture model for dynamic software product lines engineering. In Proceedings of the
2018 IEEE International Conference on Information Reuse and Integration (IRI), Salt Lake City, UT, USA, 6–9 July 2018; pp. 31–38.

56. Boonon, P.; Muenchaisri, P. An approach to clustering feature model based on adaptive behavior for dynamic software product
line. In Proceedings of the 2014 IEEE International Conference on Information Science & Applications (ICISA), Seoul, Korea, 6–9
May 2014; pp. 1–4.

57. Amja, A.M.; Obaid, A.; Mili, H. Combining variability, RCA and feature model for context-awareness. In Proceedings of the
2016 Sixth IEEE International Conference on Innovative Computing Technology (INTECH), Dublin, Ireland, 24–26 August 2016;
pp. 15–23.

58. Khiari, B.; Jilani, L.L. Towards a DSPL for Context Aware BPM. In Proceedings of the 2017 IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia, 30 October–3 November 2017; pp. 12–18.

59. Amoud, M.; Roudies, O. Dynamic adaptation and reconfiguration of security in mobile devices. In Proceedings of the 2017 IEEE
International Conference On Cyber Incident Response, Coordination, Containment & Control (Cyber Incident), London, UK,
19–20 June 2017; pp. 1–6.

60. Velázquez-García, F.J.; Halvorsen, P.; Stensland, H.K.; Eliassen, F. Autonomic adaptation of multimedia content adhering to
application mobility. In Proceedings of the IFIP International Conference on Distributed Applications and Interoperable Systems,
Madrid, Spain, 18–21 June 2018; Springer: Berlin, Germany, 2018; pp. 153–168.

61. Abbas, N.; Andersson, J.; Weyns, D. ASPLe: A methodology to develop self-adaptive software systems with systematic reuse.
J. Syst. Softw. 2020, 167, 110626. [CrossRef]

62. Cirilo, E.; Nunes, I.; Kulesza, U.; Lucena, C. Automating the product derivation process of multi-agent systems product lines.
J. Syst. Softw. 2012, 85, 258–276. [CrossRef]

63. Ayala, I.; Amor, M.; Horcas, J.M.; Fuentes, L. A goal-driven software product line approach for evolving multi-agent systems in
the Internet of Things. Knowl.-Based Syst. 2019, 184, 104883. [CrossRef]

64. Parra, C.; Blanc, X.; Cleve, A.; Duchien, L. Unifying design and runtime software adaptation using aspect models. Sci. Comput.
Program. 2011, 76, 1247–1260. [CrossRef]

65. Olaechea, R.; Atlee, J.; Legay, A.; Fahrenberg, U. Trace checking for dynamic software product lines. In Proceedings of the 13th
International Conference on Software Engineering for Adaptive and Self-Managing Systems, Gothenburg, Sweden, 28–29 May
2018; pp. 69–75.

66. Cubo, J.; Gamez, N.; Pimentel, E.; Fuentes, L. Reconfiguration of service failures in damasco using dynamic software product
lines. In Proceedings of the 2015 IEEE International Conference on Services Computing, New York, NY, USA, 27 June–2 July 2015;
pp. 114–121.

67. Nakanishi, T.; Furusho, H.; Hisazumi, K.; Fukuda, A. Dynamic SPL and derivative development with uncertainty management
for DevOps. In Proceedings of the 2016 5th IEEE IIAI International Congress on Advanced Applied Informatics (IIAI-AAI),
Kumamoto, Japan, 10–14 July 2016; pp. 244–249.

http://dx.doi.org/10.1145/2892664.2892684
http://dx.doi.org/10.1145/2897045.2897048
http://dx.doi.org/10.1145/2637365.2517214
http://dx.doi.org/10.1016/j.jss.2020.110626
http://dx.doi.org/10.1016/j.jss.2011.04.066
http://dx.doi.org/10.1016/j.knosys.2019.104883
http://dx.doi.org/10.1016/j.scico.2010.12.005

Appl. Sci. 2022, 12, 10240 40 of 40

68. Shen, L.; Peng, X.; Zhao, W. Software Product Line Engineering for Developing Self-Adaptive Systems: Towards the Domain
Requirements. In Proceedings of the 2012 IEEE 36th Annual Computer Software and Applications Conference, Izmir, Turkey,
16–20 July 2012; pp. 289–296. [CrossRef]

69. Nascimento, A.S.; Rubira, C.M.; Castor, F. ArCMAPE: A Software Product Line Infrastructure to Support Fault-Tolerant Composite
Services. In Proceedings of the 2014 IEEE 15th International Symposium on High-Assurance Systems Engineering, Miami Beach,
FL, USA, 9–11 January 2014; pp. 41–48. [CrossRef]

70. Metzger, A.; Bayer, A.; Doyle, D.; Sharifloo, A.M.; Pohl, K.; Wessling, F. Coordinated run-time adaptation of variability-intensive
systems: An application in cloud computing. In Proceedings of the 2016 IEEE/ACM 1st International Workshop on Variability
and Complexity in Software Design (VACE), Austin, TX, USA, 15 May 2016; pp. 5–11.

71. Lochau, M.; Bürdek, J.; Hölzle, S.; Schürr, A. Specification and automated validation of staged reconfiguration processes for
dynamic software product lines. Softw. Syst. Model. 2017, 16, 125–152. [CrossRef]

72. Gamez, N.; Romero, D.; Fuentes, L.; Rouvoy, R.; Duchien, L. Constraint-based self-adaptation of wireless sensor networks. In
Proceedings of the 2nd International Workshop on Adaptive Services for the Future Internet and 6th International Workshop on
Web APIs and Service Mashups, Bertinoro, Italy, 19 September 2012; pp. 20–27.

73. de Sousa Santos, I.; de Jesus Souza, M.L.; Luciano Carvalho, M.L.; Alves Oliveira, T.; de Almeida, E.S.; de Castro Andrade, R.M.
Dynamically Adaptable Software Is All about Modeling Contextual Variability and Avoiding Failures. IEEE Softw. 2017, 34,
72–77. [CrossRef]

74. Pfannemuller, M.; Krupitzer, C.; Weckesser, M.; Becker, C. A Dynamic Software Product Line Approach for Adaptation Planning
in Autonomic Computing Systems. In Proceedings of the 2017 IEEE International Conference on Autonomic Computing (ICAC),
Columbus, Ohio, USA, 17–21 July 2017; pp. 247–254. [CrossRef]

75. Göttmann, H.; Bacher, I.; Gottwald, N.; Lochau, M. Static Analysis Techniques for Efficient Consistency Checking of Real-
Time-Aware DSPL Specifications. In Proceedings of the 15th International Working Conference on Variability Modelling of
Software-Intensive Systems (VaMoS’21), Krems, Austria, 9–11 February 2021; Association for Computing Machinery: New York,
NY, USA, 2021. [CrossRef]

76. Marinho, F.G.; Maia, P.H.; Andrade, R.M.; Vidal, V.M.; Costa, P.A.; Werner, C. Safe adaptation in context-aware feature models. In
Proceedings of the 4th International Workshop on Feature-Oriented Software Development, Dresden, Germany, 24–25 September
2012; pp. 54–61.

77. Murguzur, A.; Capilla, R.; Trujillo, S.; Ortiz, Ó.; Lopez-Herrejon, R.E. Context variability modeling for runtime configuration
of service-based dynamic software product lines. In Proceedings of the 18th International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and Tools, Florence, Italy, 15–19 September 2014; Volume 2, pp. 2–9.

78. Baresi, L.; Quinton, C. Dynamically evolving the structural variability of dynamic software product lines. In Proceedings of the
2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, Florence,
Italy, 18–19 May 2015; pp. 57–63.

79. Pessoa, L.; Fernandes, P.; Castro, T.; Alves, V.; Rodrigues, G.N.; Carvalho, H. Building reliable and maintainable dynamic software
product lines: An investigation in the body sensor network domain. Inf. Softw. Technol. 2017, 86, 54–70. [CrossRef]

80. Achtaich, A.; Roudies, O.; Souissi, N.; Salinesi, C.; Mazo, R. Evaluation of the State-Constraint Transition Modelling Language: A
Goal Question Metric Approach. In Proceedings of the 23rd International Systems and Software Product Line Conference, Paris,
France, 9–13 September 2019; Volume B, pp. 106–113.

81. Frantzi, K.; Ananiadou, S.; Mima, H. Automatic recognition of multi-word terms: The c-value/nc-value method. Int. J. Digit. Libr.
2000, 3, 115–130. [CrossRef]

82. Petersen, K.; Gencel, C. Worldviews, Research Methods, and their Relationship to Validity in Empirical Software Engineering
Research. In Proceedings of the 2013 Joint Conference of the 23rd International Workshop on Software Measurement and the
8th International Conference on Software Process and Product Measurement, Ankara, Turkey, 23–26 October 2013; pp. 81–89.
[CrossRef]

83. Alférez, G.H.; Pelechano, V. Achieving autonomic Web service compositions with models at runtime. Comput. Electr. Eng. 2017,
63, 332–352. [CrossRef]

84. Bezerra, C.; Lima, R.; Silva, P. DyMMer 2.0: A Tool for Dynamic Modeling and Evaluation of Feature Model. In Brazilian
Symposium on Software Engineering; Association for Computing Machinery: New York, NY, USA, 2021; pp. 121–126.

http://dx.doi.org/10.1109/COMPSAC.2012.40
http://dx.doi.org/10.1109/HASE.2014.15
http://dx.doi.org/10.1007/s10270-015-0470-4
http://dx.doi.org/10.1109/MS.2017.4121205
http://dx.doi.org/10.1109/ICAC.2017.18
http://dx.doi.org/10.1145/3442391.3442409
http://dx.doi.org/10.1016/j.infsof.2017.02.002
http://dx.doi.org/10.1007/s007999900023
http://dx.doi.org/10.1109/IWSM-Mensura.2013.22
http://dx.doi.org/10.1016/j.compeleceng.2017.08.004

	Introduction
	Background
	Software Product Lines
	Variability
	Dynamic Software Product Lines
	Runtime Variability
	Self-Adaptive Systems

	Related Work
	Methodology
	Protocol Definition
	Aim and Need
	Definition of Research Questions
	Definition of Publication Questions
	Data Sources
	Search Strategy
	Selection Process
	Protocol Validation

	Pilot Selection
	Classification Scheme and Extraction
	SMS Tool Support

	Results
	Answers to RQs
	RQ1: What Approach Was Used To Apply Constraints during Software Reconfigurations in DSPL?
	RQ2: What Methodologies Are Currently Used to Manage DSPL Variability during Reconfigurations?
	RQ3: What Are the Current Challenges in the Management of DSPL?

	Answers to PQs
	PQ1: What Year Was the Article Published?
	PQ2: Where Was the Article Published?

	Discussion
	Interpreting Answers to RQs and PQs
	Interpreting Answers to RQs
	Interpreting Answers to PQs

	Relationships between RQs
	Bibliometric Analysis
	Most Relevant Terms
	Most Relevant Authors

	Threats to Validity
	Descriptive Validity
	Theoretical Validity
	Generalizability
	Interpretive Validity
	Repeatability

	Conclusions
	
	
	
	References

