
Citation: Arulraj, V.; Datta, S.; Davim,

J.P. Natural Computing-Based

Designing of Hybrid UHMWPE

Composites for Orthopedic Implants.

Appl. Sci. 2022, 12, 10408. https://

doi.org/10.3390/app122010408

Academic Editor: Gaige Wang

Received: 13 September 2022

Accepted: 12 October 2022

Published: 15 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Natural Computing-Based Designing of Hybrid UHMWPE
Composites for Orthopedic Implants
Vinoth Arulraj 1 , Shubhabrata Datta 1,* and João Paulo Davim 2

1 Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur,
Chennai 603203, India

2 Department of Mechanical Engineering, University of Aveiro, Campus Santiago, 3810-193 Aveiro, Portugal
* Correspondence: shubhabp@srmist.edu.in

Abstract: The current study deals with the design of ultra-high molecular weight polyethylene
(UHMWPE) composites by integrating various micro and nanoparticles as reinforcements for en-
hanced performance of acetabular cups in hip prostheses. For the design, a data-driven design
approach was implemented, exploiting natural computing techniques such as Artificial Neural Net-
work (ANN) and Genetic Algorithm (GA). Experimental data related to UHMWPE reinforced with
carbon nanotube, graphene, carbon fiber, and hydroxyapatite were gathered from the published
works of previous researchers. To study the relationship between the volume fraction and the mor-
phology of the particles with the tribological and mechanical properties of the composites, ANN
modeling and sensitivity analyses were used. Optimization of the properties was done with the
developed ANN models as objective functions in order to find the optimal combinations of reinforce-
ments, which helps to achieve enhanced tribo-mechanical properties of the composites. This natural
computing approach of designing the UHMWPE composites paved a way for experimentation.

Keywords: hip prosthesis; acetabular cup; UHMWPE; hybrid composite; artificial neural network;
genetic algorithm; multi-objective optimization

1. Introduction

Ultra-high molecular weight polyethylene (UHMWPE) is deemed as the right material
for the connecting parts of total joint replacements (TJR), such as hip and knee joints, in
different forms, such as straight and cross linked. UHMWPE is chosen due to the high
fatigue and wear resistance, high toughness against fracture, and biocompatibility when
compared to other kinds of polymers [1–3]. In order to know the outcomes and lifespan of
a TJR material, the following parameters are considered: oxidation consistency, and the
mechanical and wear properties of the composite materials [4,5]. The hip joint is among
the most powerful synovial joints in the human body. A point of concern with regard to
substitution of hip joints is the osteolytic condition of the acetabular attachments in the
course of time; osteolysis stimulates antagonistic reactions in the soft tissues, which are
caused by the particles delivered due to the counteracting metallic parts, necessitating
correction by medical procedure [6,7]. In the later years, such corrections by medical
procedure have expanded: at present, 5% of revision surgeries after two years of the initial
procedure are done only for the sterile extrication of the inserts [8].

Different researchers have proposed various techniques, such as cross linking of poly-
mers, inclusion of fillers and particulate, and so forth [9–11], to overcome the issue of
osteolysis. While the metallic contacts interface with the acetabular bearing, the inclusion
of fillers and particulates into UHMWPE drastically decreases the friction and wear rate,
which ultimately increases the enactment of the polymer. The addition of these reinforce-
ments into the UHMWPE is improved by compression molding technique rather than
injection molding, where the flow of UHMWPE is not supported due its viscosity [12,13].
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The usage of several particles as reinforcements for the polymer-centered composite mate-
rials brings together the application of reinforcements of numerous dimensions to attain
physical characteristics that are superior to using a single filler. The idea of using multiple
fillers is needed for an intelligent outcome, which helps to achieve an improvement in the tri-
bological and mechanical properties of the resulting composite. Sensible enhancements on
the wear properties were seen on such UHMWPE composites with various reinforcements
in tandem [14–16]. A few particles that have been utilized by researchers for strengthening
the composites after considering enhancement of the properties of UHMWPE are as follows:
a single or multiwalled carbon nanotube (SW or MWCNT) [17,18], graphene/graphene
oxide (GO) [16,19], carbon fiber (CF) [11,20], zirconia [21], nano-Al2O3 [22,23], nano/micro
hydroxyapatite (HAP) [24,25], and nano-SiO2 [26]. A noticeable impact is the boosting of
the characteristics of these composites by these fillers or particulates, accompanied by the
modification of its effects.

Considering the abovementioned factors, it was proposed that numerous micro/nano
particles may have the chance of improving various properties simultaneously. Shi et al.
have investigated that there is a tremendous rise in the mechanical properties of the
UHMWPE nano HAP composites by in situ filling, especially Young’s modulus and the
yield strength. He also observed a 38.2% reduction in the average coefficient of friction
(CoF) values with 1% nano HAP fillers with UHMWPE [27]. Abdelbary et al. [28] and
Shan Shan et al. [29] have elaborately reviewed the use of carbon fibers with the UHMWPE
composites that provide enriched properties, both in mechanical and tribological behavior,
owing to the interaction between the carbon fiber and UHMWPE. Xiaohong Chen et al.
observed that with the increase in GO content from 0.1 to 1%, UHMWPE–GO composites
showed a drop in COF value and wear ratio [30]. On adding CNT to UHMWPE, the wear
resistance of the composite increases, uplifting the load-bearing capability, and the same has
been investigated by Zoo et al. [31]. Due to the lighter weight of CNT—almost 7 times less
than that of steel—where its specific strength is also much higher than that of steel, it paves
a way for the capable use of reinforcement for polymer composites. The film formation
of CNT onto the surface during the interaction of the metallic counterface also reduces
the friction parameters. Combination of CNT and graphene-based UHMWPE composites
has led to a substantial reduction in wear properties because of the nano-carbon-based
particles present in it. These particles have a self-lubricating behavior and the same has
been observed by other researchers [16,32].

This research work highlights the inventive works that implement AI techniques in
regular trial techniques (experimentation) to design UHMWPE composites with multiple
reinforcements. The regular trial techniques are monotonous, and do not get commendable
outcomes, such as discovering reinforcement materials of expected structure and size of
the particles by designing such composites with complex micro/nano particles coupled as
reinforcements. In addition to this, unwinding the determined associations between the
different kinds of particles and volume fraction will help to develop productive UHMWPE
composites that present a supreme performance. It is additionally very challenging to
formulate actual models that are dependent on the complicated associations between its
structure, composition, and properties. Therefore, a data-informative-based modelling
technique, in particular, ANN, is used, which is a natural computing technique utilized in
the designing of materials [33–37]. In order to have a better understanding of the impact of
nanoparticles when utilized as reinforcements for UHMWPE composites, ANN is utilized
to model the same.

The process of modelling includes a collection of data from the published literature
involving discrete augmentations of MWCNT, graphene, carbon fiber (CF), and HAP, and
in mixture. Another natural computing technique, Genetic Algorithm (GA), has been uti-
lized [38], involving the created ANN models as objective functions in order to optimize the
parameters and for the process of designing composites that have greater enhancement in
the required properties. GA is successfully applied both in a single and multi-objective fash-
ion for the development of composites with esteem performance [39–41]. The utilization of
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ANN models as fitness functions in optimization using GA are greatly in use for the design
of materials for numerous applications [42,43]. Comparative methodology of utilizing
different artificial intelligence techniques is used for the design of composites for prosthetic
and dental applications [40,44]. UHMWPE composites with two nanoparticles were de-
signed and developed with the improved mechanical and tribological properties by the
current authors in the previous study [16]. Addition of multiple type of fillers can overcome
the shortcomings of any single type of filler, and even provide a synergistic effect. In the
current work, the four multiscale particles, namely, MWCNT, graphene, carbon fiber, and
hydroxyapatite, are added to the framework, to highlight the improved tribo-mechanical
behavior. Thus, the objective of this study is to employ a natural computing-based design
of novel hybrid UHMWPE composites with complex reinforcements, such as combined
micro and nano particles, which display unrivaled mechanical and wear properties, for
utilization in the acetabular cup of an artificial hip joint.

2. Materials and Methods
2.1. Database

The database, comprising 787 datasets, was obtained through articles published on com-
posites of UHMWPE reinforced with CF, graphene, MWCNT, and HAP [1,14,20,31,32,45–68].
Altogether, 18 variables were considered as inputs, which incorporate the weight propor-
tion and molecule dimensions of the micro/nano particles, with five variables considered as
outputs; i.e., three mechanical properties, namely, ultimate tensile strength (UTS), hardness
(H), and Young’s modulus (E), as well as two tribological properties, namely, the specific
wear rate (SWR) and coefficient of friction (CoF). Five independent ANN models were
created to understand the relation between the inputs and outputs. The created models
were then utilized for the minimization of the tribological properties and maximization of
the mechanical properties. Table 1 portrays the input and output variables. However, in
ANN modelling, the connection utilized for the standardization of each variable dropping
between −1 and 1 is shown in Equation (1), to limit the error.

XN =
2(X− Xmin)

Xmax − Xmin
− 1 (1)

where XN corresponds to the normalized value, and Xmax and Xmin correspond to the
maximum and minimum values of the input variable X.

Table 1. Higher and lower values of every input and output parameter, with its normal deviation
and average.

Variables Low High Average Normal
Deviation

Input variables (for all properties):
Molecular weight of UHMWPE

(million g/mol) 1.2 9.2 4.882 1.988

MWCNT (wt%) 0 3 0.72 0.758
Fiber length of MWCNT (µm) 0 30 8.606 13.244

Fiber OD of MWCNT (nm) 0 80 29.983 25.966
Graphene (wt%) 0 5 0.248 0.744

Sheet thickness of graphene (nm) 0 20 1.35 3783
Sheet length of graphene (µm) 0 40 6.058 13.190

CF (wt%) 0 20 2.529 5.081
Fiber length of CF (µm) 0 1000 106.621 308.92

Fiber OD of CF (nm) 0 7000 689.361 1959.33
HAP (wt%) 0 70 7.393 15.401

HAP particle size (µm) 0 7.5 1.017 2.320
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Table 1. Cont.

Variables Low High Average Normal
Deviation

Input variables (for wear properties):

Hardness of counteracting
material (kgf/mm2) 67.5 1950 856.958 427.162

Method 0 1 0.161 0.368
Speed of sliding (m/s) 0.004 1.667 0.415 0.427

Lubrication 0 2 0.851 0.886
Normal Load (N) 3.9 140 38.283 29.472

Sliding distance (m) 5 10,000 959.481 1230.49

Output variables:

Young’s modulus (MPa) 272 974 617.825 194.356
Ultimate tensile strength (MPa) 14.2 77 32.726 10.675

Hardness (MPa) 38 120 61.568 17.884
Specific wear rate (mm3/Nm) 8 × 10−9 0.00009 1.98 × 10−5 1.83 × 10−5

Coefficient of friction (CoF) 0.04 0.84 0.2036 0.203

2.2. Computational Techniques

To design the hybrid UHMWPE composites, two natural computing techniques were
utilized in this work: 1) ANN was used to develop data-driven models; and 2) GA was
used to optimize the tribo-mechanical properties in a single and multi-objective manner,
utilizing the created ANN model as the fitness function to GA. GA and ANN are briefly
explained in the following portions.

2.2.1. Development of Models Using ANN

The feedforward backpropagated algorithm, using the scaled conjugate gradient
method [69], is the type of ANN used in this work. Eighteen input variables incorporating
the weight proportion and size of the micro/nano particles were considered as the input
nodes in the input layer and five output variables—two tribological properties and three
mechanical properties—were considered the output nodes in the output layer. The output
layer is connected to the input layers by means of a hidden or a concealed layer that has
to be iterated by the user. The configuration of ANN is signified by the 18-N-1 scheme,
where 18 denotes the total input variables, N denotes the number of hidden layers, and
1 denotes each of the output variables. The linking of each layer is done by functions.
A non-linear transfer function—the tan hyperbolic (tanh) function—links the input and
hidden nodes (Hj), which is expressed in the Equation (2), comprising the weighted sum of
the normalized inputs (xi) and the connection weights (wji) that connect the input to the
hidden layers.

Hj = tanh
(
∑ wjixi + bj

)
(2)

The output node (Y) was then determined by the weighted sum of the outputs, and the
connection weights (Wj) of the hidden-to-output layer by the linear function is expressed
in Equation (3).

Y =
(
∑ Wj Hj + b′

)
(3)

Here, the bias values bj and b′ correspond to the input-to-hidden and hidden-to-output
layers, respectively. During the process of learning, the deviation from the targeted output
to the real output is fed back to regulate the weights and bias values of the corresponding
layers [36]. The above computation is explained in Figure 1. The developed models are
used as objective functions for the optimization work. The entire ANN modelling was
done by utilizing the Neural Network toolbox in MATLAB®.
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2.2.2. Sensitivity Analysis

The building up of any new material involves a fundamental understanding of the
absolute impact of the different input parameters on the final combined tribological and
mechanical properties of the composites. However, it is very repetitive to decide the result of
the input parameters on the output because of the intertwined, concealed connections of the
ANN models. The sensitivity analysis that assists with discovering all pertinent influences
from a bunch of potential elements can be overwhelming in this case. It is practical to
decide the relationship among the output and input parameters via different approaches.
This study uses an associated method, namely, the connection weight method [70], where
the product of the raw input-hidden (wji) and hidden-output (Wj) connection weights are
summed across all hidden neurons. These values are assigned as sensitivity for each of the
input variables. The same method has been utilized here and in previous works [37,71]
for the design of new materials. To discover the pertinent significance of the variables, it
utilizes the layer weights of the input-to-hidden and hidden-to-output from the created
ANN model.

2.2.3. Genetic Algorithm and Multi-Objective Optimization

The objective functions generated from the ANN models were used for optimization
using the Genetic Algorithm (GA). One form of the stochastic search algorithms that have
evolved from nature is the GA. GA helps to arrive at feasible solutions in a population. It
is a subset of AI, much alike other search algorithms that help to find a region of feasible
solutions to eventually attain one that resolves the given problem. The feasible solutions
are denoted as ‘genes’—a series of characters from a certain script. Fresh solutions can
be created by ‘mutating’ participants of the present population, and also by ‘breeding’
two solutions. The enhanced solutions are nominated to mate and mutate, removing the
inferior ones. GA is a probabilistic method of searching, in which the states investigated
are not defined exclusively by the properties of the issues [72]. This GA-based optimization
includes a function called objective function, in a distinct or a multi-objective manner, by
incorporating or neglecting the constraints.

In case of multi-objective problems, the genetic search is performed following the
concept of Pareto optimality [38,71]. Due to the presence of more than one conflicting
objective function, the idea of optimal solution changes from the unique solution to a
set of solutions, which lead to compromises between the objectives. This set of solutions
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is called a Pareto front. In a Pareto front, no solution exists that is not as good as some
member of the Pareto set in terms of all the objectives, and definitely better in terms of
one objective. As genetic algorithms can process a number of solutions in parallel, it
can easily find the solutions in the Pareto front. In GA, the selection of the solutions
is done using a process called the non-domination principle. The important aspects of
multiple-objective optimization using GA are as follows: (1) selection based on a non-
domination principle; and (2) niching in objective and/or decision variable space. This
method of search optimization is utilized here to build UHMWPE hybrid composites with
multiple micro/nano particles to attain feasible values of the tribo-mechanical properties.
The optimization was performed using the GA multi-objective optimization toolbox in
MATLAB® with different parameters, as shown in Table 2.

Table 2. Parameters of the GA.

Parameters Values

Number of populations 500
Number of generations 500
Probability of crossover 0.95
Probability of mutation 0.05

2.2.4. Scheme of the Computational Arrangement

Five various ANN models were created utilizing the dataset as shown in Table 1, com-
prising the self-determining input variables for the mechanical and wear properties. The
impacts of the input parameters seized by the created ANN models were studied by sensi-
tivity analysis. Both the tribological and mechanical properties were optimized separately
in a multi-objective manner as there were conflicts among the properties during modelling.
To attain the hybrid UHMWPE composites, both the tribo-mechanical properties were then
optimized in tandem in a multi-objective manner by keeping the tribo test parameters constant
in order to equalize the input variables of both properties. Through all these above-stated
optimization studies, the optimal solutions were generated and final compositions for the
hybrid UHMWPE composites reinforced with multiple micro/nano particles were decided
for manufacturing the designed hybrid composites for further experimentation. The actual
computational arrangement narrated in this section is illustrated in Figure 2.
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3. Design of Hybrid Composites
3.1. Modelling Using ANN

Five separate ANN models were created after considering all the input and output
variables. After several iterations on varying the hidden neurons in the range between 3
and 15, the feasible models, which had a minimal error with 15, 12, 9, 11, and 12 hidden
neurons, were chosen for each of the output variables as three mechanical properties (UTS,
H, and E) and two wear properties (SWR and CoF). The predictability of these distinctly
trained ANN models are shown with the help of scatter diagrams, as illustrated in Figure 3.
The best predictability of the ANN models are evidently seen through the higher correlation
coefficients for the corresponding mechanical characteristics of UTS, H, and E, being 0.91202,
0.97097, and 0.90693, respectively. Similarly, the corresponding tribological properties of
SWR and CoF were 0.91876 and 0.98709.

3.2. Sensitivity Analysis

Figures 4 and 5 illustrate the sensitivity analysis plots of the created ANN models.
The mechanical and tribological properties bring forth the relationship between all the
input variables, comprising the quantity of the four particles in percentage, along with
its geometry and its corresponding output parameters, namely, UTS, H, E, SWR, and CoF.
The sensitivity plot of the mechanical properties depicted in Figure 3 shows that with the
variation in UHMWPE’s molecular weight, there is an encouraging increase in Young’s
modulus, with the following exceptions: graphene’s sheet length, the length of CF, and the
OD of CF. This leads to a depressing effect. Likewise, there is an encouraging increase in
the ultimate tensile strength, with the following exceptions: MWCNT’s fiber length, the
length of CF, and the average particle size of HAP. This shows a depressing effect; it also is
clearly seen that there is an encouraging outcome on the hardness of most of the variables,
with the exception being the MWCNT’s fiber OD, graphene’s sheet thickness, the length of
CF, the OD of CF, and the average particle size of HAP, which shows a depressing outcome.
It is obvious from Figure 3 that by changing the UHMWPE’s molecular weight, all three
mechanical properties tended to show an improvement that can be employed as objective
or fitness functions for further optimization studies.
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The sensitivity plot of the tribological properties, as depicted in Figure 4, highlights
the fact that with the variation in UHMWPE’s molecular weight, there is an encouraging
outcome on the coefficient of friction for most of the variables, with the exception being
graphene’s sheet length, the length of CF, and the method of lubrication, which results
in a negative outcome. It also is clearly seen that there is an encouraging outcome on all
the variables of the specific wear rate, comprising the composition and geometry of the
particles, with the exception being MWCNT’s fiber OD, wherein most of the variables of
the testing parameters of the wear test show a negative outcome, with the exception being
the hardness of the contact material. Related results were found by Kanagaraj et al. [46]
on the wear test parameters, such as the sliding distance, which raises the wear rate
and reduces CoF in the increase of MWCNT, with an increase in the tensile strength and
Young’s modulus of the composite. Likewise, the addition of graphene helps to improve
the hardness, tensile strength, and wear rate, but decreases the CoF, as also observed by
Bahrami et al. [54,55]. Similarly, HAP has a constructive consequence on the wear and
biological behavior but decreases the strength. This was also found by Guohan Shi et al.
and Macuvele et al. [27,73]. Furthermore, there is a constructive influence on the strength
and destructive influence on the CoF due to the addition of CF. The same has been observed
by other researchers [74,75].

Therefore, it is obvious from the sensitivity analysis that the inclusion of multiple
particles introduces a conflict of interest among the distinct tribological properties and the
combined tribo-mechanical behavior of the hybrid UHMWPE composites, calling for a
multi-objective-based optimization study.

3.3. Surface Plots

Figure 6 depicts the surface plots of the mechanical properties, namely, E and UTS,
along with the tribological properties CoF and SWR, by considering the average value of
the corresponding input parameters. The plots were generated by plotting each of the
above-said output parameters with the combination of weight percentage of HAP with
each of the weight percentages of the other three particles (CNT, graphene, and CF). The
below surface plots provide similar observations as the sensitivity analysis, showing the
correlation between the input and output variables. Figure 6a–c signify the variation in
E due to the effect of the four different reinforcement particles. From these figures, it is
evident that to have an increase in Young’s modulus, the amount of HAP required is quite
high—about 40 to 50% more in weight—compared to the other particles, such as CNT and
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graphene, which require a maximum of 2% each. E increases gradually with the addition
of CF.

Likewise, Figure 6d–f signify the variation in UTS due to the influence of the four
different particles. Even in these figures, the role of HAP on the strength of the UHMWPE
composites is not predominant when compared to the other particles. The strength increases
with the increase in CNT, up to 2%, and beyond that it decreases. The effect of graphene on
the strength is also up to a weight of 3%, and the increase in strength is not very significant
up to 10% of CF; then, it decreases. Figure 6g–I represent the variation in CoF due to the
influence of the four different particles. Here, the role of HAP influences the reduction in
CoF significantly along with the combination of three other particles. Figure 6j–l signify the
variation in SWR due to the influence of the four different particles. From these figures,
it is clearly seen that all the four particles play a crucial part in the decline of the wear
rate of the composites, with a lesser amount of particles, as HAP varies from 10 to 15%,
SWR decreases gradually as CNT increases from 0.5 to 2%, graphene requires 0.5 to 3%,
and SWR decreases gradually up to 8% of CF, increasing slightly thereafter. Hence, the
sensitivity analysis and surface plots showed a suitable correlation between the input
variables and corresponding outputs, paving a way forward for the design of UHMWPE
hybrid composites through optimization studies in a multi-objective fashion, since there is
a clash among the tribological and mechanical properties individually and in tandem.
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3.4. Multi-Objective Optimization of Tribo-Mechanical Properties

Optimization is done with GA in a multi-objective fashion without having any con-
straints on the composition of the particles. The same GA parameters, as shown in Table 2,
utilized in an earlier study by the authors [16] were used for the optimization. The created
models of ANN for each of the tribological and mechanical properties were utilized as fit-
ness functions. The different combinations of tribo-mechanical properties viz E_CoF_SWR
and H_CoF_SWR were chosen so as to attain the optimal solutions on the composition of
all the four particles to design the composites.

Table 3 shows the range of different input parameters for both the tribological and
mechanical properties, with variation in the UHMWPE’s molecular weight without consid-
ering any constraints on the parameters. From Table 3, it is evident that for the different
combinations of tribo-mechanical properties, there is not much significance regarding the
CNT requirements of the composites; i.e., a maximum of 2% and 0.1%, respectively, on
the above-said combination, by varying the molecular weight of UHMWPE. Likewise,
when it comes to graphene, it is required in a much smaller amount in the combination of
tribological properties with E than with H. We can thus infer that graphene plays a major
role in increasing the hardness than the elastic modulus. Similarly, the effect of CF on
the combined tribo-mechanical properties has no or less significance on the composition,
except for the molecular weight of 4 million gm/mol. As with the case of HAP, it is re-
quired in lesser amounts at lower molecular weights—till 4 million gm/mol—after which
it increases significantly for the combination of E_CoF_SWR. There is a requirement for a
larger amount of HAP with no substantial change in the combination of H_CoF_SWR on
varying the molecular weight. Hence, similar trends in the effect on the composition of the
reinforcement materials are observed from the multi-objective optimization in comparison
with the sensitivity analysis and surface plots.
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Table 3. Series of input variables of tribo-mechanical properties on varying molecular weight without constraints.

Properties Molecular Weight
(Million gm/mol)

MWCNT Graphene Carbon Fiber HAP

Weight % Length of
Fiber (µm)

OD of Fiber
(nm) Weight % Thickness of

Sheet (nm)
Length of

Sheet (µm) Weight % Length of
Fiber (µm)

OD of Fiber
(nm) Weight %

Average
Particle Size

(nm)

E_CoF_SWR

3 0.01–2 0.344–3.849 1.171–31.15 0.011–0.676 0.001–1 0.01–0.95 0.27–8.6 5.73–58.6 0.035–2.56 1.223–15.22 0.393–1.575
4 0.016–1.99 0.0878–3.276 0.565–38.14 0.007–1.369 0.003–0.98 0.002–0.156 0.0003–9.93 14.093–56.35 0.0102–2.263 3.4–13.9 0.03–1.56
5 0.053–1.997 0.598–8.209 10.864–21.893 0.007–0.96 0.91–0.995 0.013–0.114 1.29–8.51 15.72–52.98 0.007–0.512 6.276–38.62 0.141–1.567
6 0.017–1.98 0.010–4.273 1.042–4.181 0.002–0.13 0.719–0.998 0.006–0.095 0.14–8.34 6.973–27.132 0.0001–2.45 5.967–25.61 0.078–1.551

H_CoF_SWR

3 0.006–0.097 0.004–2.837 1.491–32 0.02–1.995 0.011–0.936 0.009–2.043 0.04–7.71 14.022–64.88 0.249–3.609 0.882–44.23 0.004–0.045
4 0.072–0.09 0.282–2.43 5.924–7.615 0.0407–1.884 0.294–0.907 0.078–1.43 2.91–4.17 76.64–90.18 1.544–2.32 14.32–44.05 0.016–0.022
5 0.0018–0.097 0.025–5.217 0.026–5.735 0.0024–1.995 0.686–0.993 0.018–0.306 0.47–10.15 67.42–97.69 2.024–5.752 4.111–43.71 0.002–0.031
6 0.052–0.099 0.235–6.676 2.977–9.185 0.009–1.406 0.658–0.964 0.014–0.214 1.43–7.91 54.184–87.17 1.672–6.65 6.768–42.68 0.0006–0.03
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Figure 7 illustrates the 3-dimensional plots of the different Pareto fronts of the com-
bined tribo-mechanical properties CoF, SWR, and E, varying the different molecular weight
of the matrix material without having any constraints on the amount of the reinforcement
particles to be added. From Figure 7, it is evident that in order to have superior amount
of E, the specific wear rate is also improved, which reduces the CoF for all the different
values of UHMWPE’s molecular weight. In the actual scenario, the articulating surface
must have a lower wear rate and the enhancement of all the required properties is feasible
from all these Pareto fronts at their tail region, where the optimal solutions are achiev-
able. The corresponding optimal solutions of the different reinforcement particles without
constraints for the grouping of E, COF, and SWR are shown in Figure 8 for the different
molecular weights of the matrix material sorted in increasing order of SWR. It is obvious
from Figure 8a that the amount of CNT required for enhancement in the value of CoF, SWR,
and E is higher at the lower molecular weights and less at the higher molecular weights
among the optimal solutions. A similar trend is also observed in the case of CF, which is
clearly seen in Figure 8c. The amount of graphene required is predominantly low, as seen
in Figure 8b, for all the molecular weights of the matrix, and the role of graphene in the
increase in E is insignificant; the same has been described clearly in the Sections 3.2 and 3.3.
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Figure 7. 3D Pareto front of E, CoF, and SWR without constraints on varying the molecular weight of
UHMWPE (a) 3, (b) 4, (c) 5, and (d) 6.
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Figure 8. Deviation of the particles in the Pareto solutions for E, CoF, and SWR.

However, it is just the opposite in the case of HAP, where the lower the UHMWPE’s
molecular weight, the lesser is the HAP requirement, which is evident from Figure 8d. The
consumption of HAP is also huge when compared to the other particles.

Figure 9 designates the 3-dimensional plots of the different Pareto fronts for the
combined tribo-mechanical properties H, CoF, and SWR on varying the molecular weight
of UHMWPE without having any constraints on the amount of the reinforcement particles
to be added. Related styles on the Pareto fronts are observed as in the combination of
H, CoF, and SWR, as it is agreed that considerable enhancement on the tribo-mechanical
properties can be seen where the optimal solutions lie at the tail region of the Pareto fronts.

The corresponding ideal solutions of the different reinforcement particles without
constraints for the grouping of H, CoF, and SWR are shown in Figure 10 for the different
molecular weights of the matrix material sorted by an increasing trend in SWR. It is obvious
from the Figure 10a that the amount of CNT required for the enhancement of H, CoF, and
SWR in tandem is quite low, as the influence of CNT on the increase in the value of H is
insignificant. The same has been described elaborately in Sections 3.2 and 3.3 through the
simulation studies, to understand the influence of reinforcement particles on the output
properties. As for the graphene requirement for the enhancement of these properties, it
follows a similar trend in all the molecular weights, and the difference in the amount of
required graphene is considerably significant, which is evident from Figure 10b.
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It is obvious from the Figure 10c that the amount of CF required is considerably
reduced when compared to the previous combination of the properties. The amount of
CF required is also significantly less in all the molecular weights of the matrix, except in
3 million gm/mol. Similarly, there is a similar trend in the variation in HAP from Figure 10d
on varying the molecular weight of UHMWPE. Even in this combination of properties, the
required amount of HAP is quite high when compared to most optimal solutions.
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Figure 10. Deviation in the reinforcements in the Pareto solutions for H, CoF, and SWR.

4. Conclusions

The following are the conclusions arrived at from this work:

- The correlations of the different input variables with the tribo-mechanical behavior
were revealed efficiently by the created ANN models.

- The ANN models can be used as objective functions for the GA-driven multi-objective
optimization of the properties, towards their simultaneous improvement.

- A set of non-dominated optimal solutions on the variations in the different micro/nano
particles on the different combinations of the mechanical and tribological properties
can be generated from the optimization studies.

- The solutions can be explicitly observed to propose plans to design the hybrid UHM-
PWE composites.

- Further, the multi-objective optimization can be carried out on considering the con-
straints on the total amount of the reinforcement particles to reduce the amount of
required particles.

- This kind of computational design of materials paves the way for experimental trials
to understand the tribo-mechanical behavior of hybrid UHMWPE composites.
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Abbreviations

UHMWPE Ultra-high molecular weight polyethylene
ANN Artificial Neural Network
GA Genetic Algorithm
TJR Total joint replacement
SW or MWCNT Single or multiwalled carbon nanotube
GO Graphene oxide
CF Carbon fiber
HAP Hydroxyapatite
CoF Coefficient of friction
SWR Specific wear rate
UTS Ultimate tensile strength
E Young’s modulus
H Hardness
OD Outer diameter
wt% Weight percentage
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