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Abstract: This study investigates reliability modelling and optimal preventive maintenance polices
for engineering systems subject to shocks, considering two types of self-exciting mechanisms. Under
trigger mechanism 1, if the accumulative number of δ—ineffective shocks reaches the trigger threshold
k1 among the run of ineffective shocks, then the self-exciting mechanism will be activated, resulting
in the accumulative number of effective shocks increasing by m1. Under trigger mechanism 2, if the
consecutive number of δ—ineffective shocks reaches a fixed threshold K2 among the run of ineffective
shocks, then the self-exciting mechanism will be triggered and the accumulative number of effective
shocks will increase by m2. The system breaks down when the accumulative number of effective
shocks exceeds the fixed threshold. Based on the established shock models, the reliability indices
are obtained through the finite Markov chain imbedding approach. According to the operation of
the system under different monitoring conditions, two types of preventive maintenance strategies
are considered; then, optimization models are established, and the optimal preventive maintenance
thresholds are determined. Finally, the proposed models are illustrated by numerical examples.
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1. Introduction

Internal deterioration and external shock damage are two main sources of system
failure, and the shock model is commonly applied to characterize the impact of external
damage on system failure behavior such as overload and vibration. Shock models have
received extensive attention both theoretically and practically [1,2]. Numerous shock
models have been established during the past few decades and can be divided into five
basic categories: accumulative shock [3], extreme shock [4], run shock [5], δ—shock [6] and
mixed shock [7]. In the accumulative shock model, system failure is due to the accumulative
effect. Under the extreme impact model, the system will collapse as long as the single
impact exceeds the critical value. The system breaks down when k consecutive shocks
arrive and the magnitude exceeds the failure threshold. In the δ—shock model, when the
time interval between two adjacent shocks is smaller than a fixed threshold, the system
will malfunction. In addition, shock models can be combined to construct a mixed shock
model [8].

Existing research on shock models are mainly focused on reliability evaluation and
optimal preventive maintenance strategy. In reliability engineering, system reliability,
survival rate and failure rate function are discussed extensively. Zhao et al. [9] studied
the reliability modelling and optimal triggering policy of protective devices for multi-state
systems subject to shocks. Zhao et al. [10] established mixed two-stage shock models
governed by a run of external shocks with certain lengths. Wang et al. [11] applied the
copula function in deriving the joint distribution of dependent deterioration processes.
Li et al. [12] proposed reliability models for phased mission systems with finite and infinite
random shocks and compared the evaluated system reliability under different shock modes.
Yang et al. [13] studied condition based maintenance strategy for redundant systems subject
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to shock damage using improved reinforcement learning. Lin et al. [14] considered the
system reliability with both internal deterioration and external damage and used the Monte
Carlo simulation to evaluate the system reliability. In addition, some results of reliability
analyses of shock models have also been studied [15–19].

For systems operating in a shock environment, designing appropriate maintenance
policies is crucial for mitigating the failure risk caused by external shock damage.
Chang et al. [20] proposed a maintenance policy where the system is removed by a minimal
repair when experiencing a type-I failure and a perfect repair when experiencing a type-
II failure; then, a hybrid replacement policy is possible, considering system age, failure
modes, and repair cost. Qiu et al. [21] studied an optimal preventive maintenance policy
for systems subject to shock damage modelled by the shot noise process. Nakagawa [22]
introduced a replacement policy to replace an element when the total damage exceeds the
critical threshold. Zhao et al. [23] put forward three preventive maintenance strategies for
systems with varying monitoring conditions, and optimization models were formulated
to determine the optimal maintenance thresholds. Zhao et al. [24] proposed novel shock
models to characterize the case that the component damage process will be accelerated
with the increase of the damage degree in a shock environment. Wang et al. [25] described
the deterioration and shock processes of the traction power supply system by the jump
process and developed a preventive maintenance strategy to minimize the average cost
rate. Yang et al. [26] proposed a condition-based maintenance policy for systems subject to
internal degradation and external damage and evaluated the average cost per unit time by
jointly optimizing the preventive thresholds and the periodic inspection frequency. Other
operations and maintenance strategies in a shock environment have been reported [27–30].

In addition to performing preventive maintenance, self-healing ability has recently
emerged as another effective way to enhance the system reliability, due to the rapid devel-
opment of technology. To evaluate the system reliability with consideration of self-healing
mechanisms existing in polymer matrix composite materials, Liu et al. [31] characterize
healing time and healing level in the self-healing process of shocks. Cha et al. [32] sug-
gested a new type of shock models, where each delayed failure can be cured with certain
probabilities. Cui et al. [33] developed accumulative damage shock models and introduced
the concept of self-healing effects.

As another special mechanism in terms of shock damage, the damage self-exciting
phenomenon, is also commonly observed in various engineering fields. For example, an
aircraft with self-exciting materials may encounter turbulence that causes some damage to
the fuselage. When the accumulative external shock damage exceeds the critical threshold,
the aircraft will fail and cause extreme losses. If there is no effective shock in a time period,
and the airframe suffers some appropriate stimulation, the self-exciting mechanism can be
triggered. These stimuli can be considered as ineffective shocks and can be heat, light or
electric fields. As another example, a software module includes a string of codes. The errors
in software can result in software failure. We can consider the ‘bugs’ as a kind of shock
and the software failure means the answers generated by the software are deviant from
required answer. If there is no effective impact in a period of time and some ineffective
bugs occur, then the self-exciting phenomenon will appear.

Due to its significant impact on system failure behavior, the self-exciting phenomenon
should be given full consideration in system reliability evaluation. Anastasia Borovykh et al. [34]
considered that reserves are subjected to self-exciting and cross-exciting shocks and pro-
posed a modelling method. Chen et al. [35] proposed approaches to model reliability
growth and provided a common evaluation method to model self-exciting point processes.
Wang et al. [36] established a model considering mixed shock models and self-exciting
mechanisms to generalize software reliability models.

Despite the popularity of the self-exciting phenomenon, little research has been ded-
icated to the reliability modelling of the self-exciting process in a shock environment.
Although the proposed model shares some similarities with Zhao et al. [23], we extend
the research by considering two novel self-exciting triggering mechanisms. To be specific,
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Zhao et al. [23] proposed a self-healing mechanism by considering that the damage caused
by a valid shock can be healed when the number of invalid shocks reaches a threshold in
the trailing run of invalid shocks. In contrast, we propose two novel self-exciting mecha-
nisms by considering that the effective shocks are increased when the number of ineffective
shocks attain the trigger threshold. Two types of self-exciting trigger mechanisms are con-
sidered based on the consecutive and cumulative number of ineffective shocks. To this end,
this paper develops novel shock models considering two types of self-exciting triggering
mechanisms. Under trigger mechanism 1, when the accumulative number of δ—ineffective
shocks reaches the trigger threshold k1 among the run of ineffective shocks, the system will
trigger the self-exciting mechanism, and the accumulative number of effective shocks will
increase by m1. Under trigger mechanism 2, when the consecutive number of δ—ineffective
shocks reaches the trigger threshold k2 among the run of ineffective shocks, the system will
trigger the self-exciting mechanism, and the accumulative number of effective shocks will
increase by m2. Based on the established shock models, we analyze the system reliability.
Two maintenance policies are proposed, considering different monitoring conditions to
minimize the average cost rate.

The remainder of the paper is organized as follows. Section 2 establishes shock models
under two self-exciting trigger mechanisms. Section 3 evaluates the system reliability under
two models. Two types of maintenance strategies are proposed, and the optimal main-
tenance policies are established to minimize the average long-term cost rate in Section 4.
Numerical examples are given in Section 5. Finally, the conclusions and future research are
presented in Section 6.

2. Model Assumptions and Model Description
Problem Description

The system considered operates in a stochastic environment modeled by a homo-
geneous Poisson impact process. The time lag between adjacent shocks is independent
and identically distributed following exponential distribution with parameter λ. Arrived
shocks can be classified as effective shocks, with probability p that can lead to system
damage, and ineffective shocks, with probability 1− p, which are harmless to the system.
When the accumulative number of effective shocks exceeds the threshold n, the system
will fail. When the time interval between an ineffective shock and the previous shock is
less than the given threshold δ, it is defined as an δ—ineffective shock. When the arrival of
shocks is more frequent, the self-exciting mechanism is triggered, and the accumulative
number of effective shocks will increase by a certain number. Two types of self-exciting
mechanisms are considered.

Trigger mechanism 1: Under this trigger mechanism, among the run of ineffective
shocks, when the accumulative number of δ—ineffective shocks reaches k1, the self-exciting
mechanism will be triggered to increase the accumulative number of effective shocks by m1.

Let Xi, i = 1, 2, . . . indicate the time lag between the (i − 1)th and ith shock. Figure 1
shows the possible evolution of the system failure process under trigger mechanism 1,
where n = 5, k1 = 2, δ = 1.25, m1 = 1. Let ‘1’ denote effective shocks, ‘0’ denote ineffective
shocks, and ‘0I’ denote the initial state of the shock sequence. In Figure 1a, the first four
shocks are δ—ineffective shocks. Figure 1b shows the corresponding accumulative number
of effective shocks. Upon the 3rd shock, the accumulative number of δ—ineffective shocks
in the trailing run of ineffective shock reaches 2, then the self-exciting mechanism will be
triggered and the accumulative number of effective shocks increases by 1. In the same way,
when the 6th shock occurs, the accumulative number of ineffective shocks in the trailing
run of δ—ineffective shocks reaches 2, the self-exciting mechanism is triggered again, and
the accumulative number of effective shocks increases by 1. When the 9th shock occurs, the
accumulative number of effective shocks reaches 5, and the system fails.
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Figure 1. Failure process of the system under self-exciting trigger mechanism 1. (a denotes the type
of shock and b denotes the shock occurrence time).

Trigger mechanism 2: Under this trigger mechanism, among the run of ineffective
shocks, when the consecutive number of δ—ineffective shocks reaches k2, the self-exciting
mechanism is triggered to increase the accumulative number of effective shocks by m2.

Figure 2 shows the failure process of the system, where n = 5, k2 = 3, δ = 1.25, and
m2 = 1. When the 4th shock occurs, the accumulative number of δ—ineffective shocks in
the trailing run of ineffective shock reaches 2; then, the self-exciting mechanism will be
triggered, and the accumulative number of effective shocks should be increased by 1. When
the 4th shock occurs, the consecutive number of ineffective shocks in the trailing run of
ineffective shocks is three, so the self-exciting mechanism is triggered. When the 8th shock
occurs, the consecutive number of δ—ineffective shocks in the trailing run of ineffective
shocks reaches 2, the self-exciting mechanism is triggered, and the accumulative number of
effective shocks should be increased by 1. When the 10th shock occurs, the accumulative
effective shock times of the system reaches 5, and the system fails.
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3. Reliability Modelling and Evaluation
3.1. Reliability Modelling and Evaluation under Triggering Mechanism 1

In this section, we use the finite Markov chain imbedding method to conduct proba-
bilistic analysis under triggering mechanism 1.

First, we define three random variables in the sequence of h1 random shocks. Let
Uh1 denote the accumulative number of effective shocks. Let Vh1 represent the num-
ber of δ—ineffective shocks in the trailing run of ineffective shocks. Let Wh1 denote the
number of δ—ineffective shocks that can trigger the next self-exciting mechanism, where

Wh1 = Vh1 −
[Vh1

k1

]
·k1,

[Vh1
k1

]
is the integer part of

Vh1
k1

.

A Markov chain
{

Yh1 , h1 ≥ 0
}

that is associated with Uh1 and Wh1 is defined as
Yh1 =

(
Uh1 , Wh1

)
, for h1 ≥ 0. The state space is Ω1 = {(u1, w1) : 0 ≤ u1 ≤ n1 − 1} ∪ {Ea}.

Let Yh1 = (u1, w1) denote that the system has been impacted h1 times.
Let u1 denote the accumulative number of effective shocks. Let w1 denote the number

of δ—ineffective shocks that can trigger the next self-exciting mechanism. Let Y0 = (0, 0)
denote the initial state. Let Ea denote the absorbing state where the accumulative number
of effective shocks reaches n and the system fails.

Let q1 denote the probability that the h1 − th shock is a δ—ineffective shock whose
time lag with the preceding shock is less than δ. Let q2 denote the probability that the
h1 − th shock is an ineffective shock whose time lag with the preceding shock exceeds δ,
where q1 = q·P{Xm < δ}, q2 = q·P{Xm ≥ δ} and q1 + q2 = q. Table 1 shows the transition
rules of the transition probability matrix Λ1 of Markov chain

{
Yh1 , h1 ≥ 0

}
.

Table 1. Transition probabilities in Λ1.

No. Applicability Condition Prob.

1 0 ≤ u1 < n− 1, 0 ≤ w1 < k1 − 1 P
{

Yh1
= (u1, w1)

∣∣Yh1−1 = (u1, w1)
}

q2
2 0 ≤ u1 < n− 1, 0 ≤ w1 < k1 − 1 P

{
Yh1

= (u1 + 1, 0)
∣∣Yh1−1 = (u1, w1)

}
p

3 0 ≤ u1 < n− 1, 0 ≤ w1 < k1 − 1 P
{

Yh1
= (u1, w1 + 1)

∣∣Yh1−1 = (u1, w1)
}

q1
4 0 ≤ u1 < n− 1, w1 = k1 − 1 P

{
Yh1

= (u1, w1)
∣∣Yh1−1 = (u1, w1)

}
q2

5 0 ≤ u1 < n− 1, w1 = k1 − 1 P
{

Yh1
= (u1 + 1, 0)

∣∣Yh1−1 = (u1, w1)
}

p + q1
6 u1 = n− 1, 0 ≤ w1 < k1 − 1 P

{
Yh1

= (u1, w1)
∣∣Yh1−1 = (u1, w1)

}
q2

7 u1 = n− 1, 0 ≤ w1 < k1 − 1 P
{

Yh1
= Ea

∣∣Yh1−1 = (u1, w1)
}

p
8 u1 = n− 1, 0 ≤ w1 < k1 − 1 P

{
Yh1

= (u1, w1 + 1)
∣∣Yh1−1 = (u1, w1)

}
q1

9 u1 = n− 1, w1 = k1 − 1 P
{

Yh1
= (u1, w1)

∣∣Yh1−1 = (u1, w1)
}

q2
10 u1 = n− 1, w1 = k1 − 1 P

{
Yh1

= Ea
∣∣Yh1−1 = (u1, w1)

}
p + q1

11 n/a P
{

Yh1
= Ea

∣∣Yh1−1 = Ea
}

1
12 n/a Others 0

For example, when n = 4, k1 = 2, m1 = 1, the state space Ω1 for the Markov chain{
Yh1 , h1 ≥ 0

}
is constructed as

Ω1 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)} ∪ {Ea}

Based on the transition rules, we can obtain the one-step transition probability matrix:

Λ1 =

(0, 0)
(0, 1)
(1, 0)
(1, 1)
(2, 0)
(2, 1)
(3, 0)
(3, 1)

Ea



q2 q1 p 0 0 0 0 0 0
0 q2 p + q1 0 0 0 0 0 0
0 0 q2 q1 p 0 0 0 0
0 0 0 q2 p + q1 0 0 0 0
0 0 0 0 q2 q1 p 0 0
0 0 0 0 0 q2 p + q1 0 0
0 0 0 0 0 0 q2 q1 p
0 0 0 0 0 0 0 q2 p + q1
0 0 0 0 0 0 0 0 1


9×9

.
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The transition probability matrix Λ1 with order γ1 can be partitioned into four submatrices:

Λ1 =

[
P1(γ−1)×(γ−1)

Q1(γ−1)×1

011×(γ−1)
E11×1

]
,

where P1(γ−1)×(γ−1)
is a transition probability matrix between each transient state, Q1(γ−1)×1

is the column matrix from each transient state to the absorption state, 011×(γ−1)
is a zero

matrix, which is the transition probability matrix from the absorption state to transient
state, and E11×1 is an identity matrix representing the probability from the absorption state
to the absorption state.

Let N1 denote the total number of shocks before the system failure. We can derive
some probabilistic indices related to the shock numbers N1 by the following equations. The
distribution function of the shock numbers N1 is

P{N1 ≤ l} =
l

∑
j=1

α1P1
j−1e′1γ−1 = 1−α1P1

le′1γ−1 , (1)

where α1 = (1, 0, . . . , 0)1×(γ−1), and e1γ−1 = (1, . . . , 1)1×(γ−1).
The probability mass function of the shock numbers N1 is

P{N1 = l} = α1P1
l−1Q1. (2)

The expected number of shocks E(N1) is

E(N1) = α1(I1 − P1)
−1e′1γ−1 . (3)

We can derive the probability density function of T when N1 = n:

f1(t) =
{

λntn−1 exp(−λt)/(n− 1)!, t ≥ 0
0, t < 0.

(4)

In addition, we can obtain the probability density function of T by using the Law of
Total Probability:

f1(t) =


∞
∑

l=1

[(
λltl−1 exp(−λt)/(l − 1)!

)
× P{N1 = l}

]
, t ≥ 0

0, t < 0.
(5)

The expected system life E(T1) is

E(T1) =

∞∫
0

t f1(t)dt (6)

Then, we can show the reliability function of the system as

R1(x) = P{T > x}

= P

{
N1
∑

i=1
Xi > x

}
= 1−

∫ x
0

∞
∑

l=1

[(
λltl−1 exp(−λt)/(l − 1)!

)
× P{N1 = l}

]
dt.

(7)

3.2. Reliability Modelling and Evaluation under Trigger Mechanism 2

In this section, we use the finite Markov chain imbedding method to conduct proba-
bilistic analysis under trigger mechanism 2.
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First, we define three random variables in the sequence of h1 random shocks. Let Uh2
denote the accumulative number of effective shocks.

Let Vh2 represent the number of δ—ineffective shocks in the trailing run of ineffective
shocks. Let Wh2 denote the number of δ—ineffective shocks that can trigger the next

self-exciting mechanism, where Wh2 = Vh2 −
[Vh2

k2

]
·k2,

[Vh2
k2

]
is the integer part of

Vh2
k2

.

A Markov chain
{

Yh2 , h2 ≥ 0
}

that is associated with Uh2 and Wh2 is defined as
Yh2 =

(
Uh2 , Wh2

)
, for h2 ≥ 0. The state space is Ω2 = {(u2, w2) : 0 ≤ u2 ≤ n2 − 1} ∪ {Ea}.

Let Yh2 = (u2, w2) denote that the system has been impacted h2 times.
Let u1 denote the accumulative number of effective shocks. Let w2 denote the number

of δ—ineffective shocks that can trigger the next self-exciting mechanism. Let Y0 = (0, 0)
denote the initial state. Let Ea denote the absorbing state where the accumulative number
of effective shocks reaches n and the system fails.

Let q1 denote the probability that the h2 − th shock is a δ—ineffective shock whose
time lag with the preceding shock is less than δ. Let q2 denote the probability that the
h2 − th shock is an ineffective shock whose time lag with the preceding shock exceeds δ,
where q1 = q·P{Xm < δ}, q2 = q·P{Xm ≥ δ} and q1 + q2 = q. Table 2 shows the transition
rules of the transition probability matrix Λ2 of Markov chain

{
Yh2 , h2 ≥ 0

}
.

Table 2. Transition probabilities in Λ2.

No. Applicability Condition Prob.

1 0 ≤ u2 < n− 1, 0 ≤ w2 < k2 − 1 P
{

Yh2 = (u2, 0)
∣∣Yh2−1 = (u2, w2)

}
q2

2 0 ≤ u2 < n− 1, 0 ≤ w2 < k2 − 1 P
{

Yh2 = (u2 + 1, 0)
∣∣Yh2−1 = (u2, w2)

}
p

3 0 ≤ u2 < n− 1, 0 ≤ w2 < k2 − 1 P
{

Yh2 = (u2, w2 + 1)
∣∣Yh2−1 = (u2, w2)

}
q1

4 0 ≤ u2 < n− 1, w2 = k2 − 1 P
{

Yh2 = (u2, 0)
∣∣Yh2−1 = (u2, w2)

}
q2

5 0 ≤ u2 < n− 1, w2 = k2 − 1 P
{

Yh2 = (u2 + 1, 0)
∣∣Yh2−1 = (u2, w2)

}
p + q1

6 u2 = n− 1, 0 ≤ w2 < k2 − 1 P
{

Yh2 = (u2, 0)
∣∣Yh2−1 = (u2, w2)

}
q2

7 u2 = n− 1, 0 ≤ w2 < k2 − 1 P
{

Yh2 = Ea
∣∣Yh2−1 = (u2, w2)

}
p

8 u2 = n− 1, 0 ≤ w2 < k2 − 1 P
{

Yh2 = (u2, w2 + 1)
∣∣Yh2−1 = (u2, w2)

}
q1

9 u2 = n− 1, w2 = k2 − 1 P
{

Yh2 = (u2, 0)
∣∣Yh2−1 = (u2, w2)

}
q2

10 u2 = n− 1, w2 = k2 − 1 P
{

Yh2 = Ea
∣∣Yh2−1 = (u2, w2)

}
p + q1

11 n/a P
{

Yh2 = Ea
∣∣Yh2−1 = Ea

}
1

12 n/a Others 0

For example, when n = 4, k2 = 2, m2 = 1, the state space Ω2 for the Markov chain{
Yh2 , h2 ≥ 0

}
is constructed as

Ω2 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)} ∪ {Ea}

Based on the transition rules, t we can obtain the one-step transition probability matrix:

Λ2 =

(0, 0)
(0, 1)
(1, 0)
(1, 1)
(2, 0)
(2, 1)
(3, 0)
(3, 1)

Ea



q2 q1 p 0 0 0 0 0 0
q2 0 p + q1 0 0 0 0 0 0
0 0 q2 q1 p 0 0 0 0
0 0 q2 0 p + q1 0 0 0 0
0 0 0 0 q2 q1 p 0 0
0 0 0 0 q2 0 p + q1 0 0
0 0 0 0 0 0 q2 q1 p
0 0 0 0 0 0 q2 0 p + q1
0 0 0 0 0 0 0 0 1


9×9

The transition probability matrix Λ2 with order γ2 can be partitioned into four submatrices:

Λ2 =

[
P2(γ−1)×(γ−1) Q2(γ−1)×1

021×(γ−1) E21×1

]
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where P2(γ−1)×(γ−1) is a transition probability matrix between each transient state, Q2(γ−1)×1
is the column matrix from each transient state to the absorption state, 021×(γ−1) is a zero
matrix, which is the transition probability matrix from the absorption state to transient
state, and E21×1 is an identity matrix representing the probability from the absorption state
to the absorption state.

Let N2 be the total number of shocks before the system failure. We can derive some
reliability indices related to the shock numbers N2 by the following expressions. The
distribution function of N2 is

P{N2 ≤ l} =
l

∑
j=1

α2P2
j−1e′2γ−1 = 1−α2P2

le′2γ−1 , (8)

where α2 = (1, 0, . . . , 0)1×(γ−1), and e2γ−1 = (1, . . . , 1)1×(γ−1).
The probability mass function of the shock numbers N2 is

P{N2 = l} = α2P2
l−1Q2. (9)

The expected shock number E(N2) is

E(N2) = α2(I2 − P2)
−1e′2γ−1 . (10)

We can derive the probability density function of T when N2 = n:

f2(t) =
{

λntn−1 exp(−λt)/(n− 1)!, t ≥ 0
0, t < 0.

(11)

In addition, we can obtain the probability density function of T by using the Law of
Total Probability:

f2(t) =


∞
∑

l=1

[(
λltl−1 exp(−λt)/(l − 1)!

)
× P{N2 = l}

]
, t ≥ 0

0, t < 0.
(12)

The expected system life E(T2) is

E(T2) =

∞∫
0

t f2(t)dt. (13)

Then, we can show the reliability function of the system as

R2(x) = P{T > x}

= P

{
N2
∑

i=1
Xi > x

}
= 1−

∫ x
0

∞
∑

l=1

[(
λltl−1 exp(−λt)/(l − 1)!

)
× P{N2 = l}

]
dt.

(14)

4. Preventive Maintenance Policies

If the system fails, we should carry out corrective maintenance on the system, but this
usually is associated with a high cost. Therefore, we can consider preventive maintenance
when the system is still in operation to reduce the economic loss caused by system failure.
Based on this, this paper proposes two preventive maintenance strategies under different
monitoring conditions.

Suppose that when we perform a maintenance action, the system is immediately
replaced by the new system. When the system fails, we carry out corrective maintenance
on the system. When the system is still working and meets the preset conditions, we
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carry out preventive maintenance on the system. Let cp denote the cost of the preventive
maintenance action. Let c f denote the cost of the corrective maintenance. c f is higher
than cp because a sudden failure will cause larger economic losses. Next, two preventive
maintenance strategies under different cases are introduced.

4.1. Preventive Maintenance Policy 1

We first give the preventive maintenance policy 1 under self-exciting trigger mecha-
nism 1. Under this policy, the system is replaced in the event of a failure or a predetermined
number of shocks N, whichever occurs first. If the system still works, we carry out a
preventive maintenance if the number of shocks reaches N. Once the system fails, corrective
maintenance measures should be taken. A renewal cycle is completed when replacing
the system.

Let C1 denote the cost incurred in a renewal cycle and L1 denote the shock numbers of
a renewal cycle. The expected cost in a renewal cycle is

E(C1) = cpP{N1 ≥ N}+ c f P{N1 < N}
= cpP{N1 ≥ N}+ c f − c f P{N1 ≥ N}
= c f +

(
cp − c f

)
P{N1 ≥ N}

= c f +
(

cp − c f

) ∞
∑

j=N
Pj,

(15)

where Pj = P{N1 = j}, j = 1, 2, . . . and we can obtain the expected shock numbers of a
cycle from

E(L1) =
N
∑

j=1
jPj+

∞
∑

j=N+1
NPj

=
N
∑

j=1

j
∑

i=1
Pj+

∞
∑

j=N+1

N
∑

i=1
Pj

=
N
∑

i=1

N
∑
j=i

Pj +
N
∑

i=1

∞
∑

j=N+1
Pj

=
N
∑

i=1

∞
∑
j=i

Pj.

(16)

Therefore, a model aiming at minimizing the long-term average cost per shock can be
achieved by

minC1(N) =
Expected cos t incurred in a cycle

Expected shock numbers of a cycle = E(C1)
E(L1)

=
c f +(cp−c f )

∞
∑

j=N
Pj

N
∑

i=1

∞
∑
j=i

Pj

.
(17)

We want to minimize the long-run cost rate of each shock. So, the problem is to deter-
mine the optimal N∗. The optimal N∗ is obtained by enumeration. Similarly, the preventive
maintenance policy 1 under self-exciting trigger mechanism 2 can also be obtained.

4.2. Preventive Maintenance Policy 2

Under this maintenance strategy, if the system is still working at time t, we need to
carry out preventive maintenance. Otherwise, once the system fails, corrective maintenance
should be carried out immediately. Let C2 and L2 represent the cost of an update cycle and
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cycle length, respectively. We can express the model for minimum long-term cost per unit
time as

minC2(t) = E(C2)
E(L2)

=
cpP{T>t}+c f P{T≤t}

E(min(T,t))

=
cpR(t)+c f (1−R(t))

t∫
0

x f (x)dx+tR(t)

=
cpR(t)+c f (1−R(t))

t∫
0

R(x)dx
.

(18)

Our aim is to minimize the long-term average cost per unit time, so we need to find the
optimal value t∗. By calculating the first derivative of Formula (18), the analytic solution of
t∗ can be obtained. In order to verify the results, we employ simulation methods. The flow
chart of the algorithm is shown in Figure 3. Let J be the number of simulation runs. Let
Ct be the simulated total maintenance cost. Let Lt denote the total cycle length. Then, the
average cost per unit time can be obtained as C2(t) = Ct

Lt
. After selecting the appropriate

interval (tmin, tmax), we can find the minimum C2(t) and the corresponding optimal t∗.
Similarly, the preventive maintenance policies under self-exciting trigger mechanism 2 can
also be obtained, and the detailed derivation is omitted.
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5. Numerical Examples

To validate the proposed model and preventive maintenance strategy, numerical
examples are presented in this section. We consider systems running in a random shock en-
vironment. The time interval between two adjacent shocks follows exponential distribution.
When n = 5, k1 = 2, and m1 = 1, the state space Ω1 for the Markov chain

{
Yh1 , h1 ≥ 0

}
is

constructed as

Ω1 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (4, 1)} ∪ {Ea},

We obtain the transition probability matrix Λ1 as

Λ1 =

(0, 0)
(0, 1)
(1, 0)
(1, 1)
(2, 0)
(2, 1)
(3, 0)
(3, 1)
(4, 0)
(4, 1)

Ea



q2 q1 p 0 0 0 0 0 0 0 0
0 q2 p + q1 0 0 0 0 0 0 0 0
0 0 q2 q1 p 0 0 0 0 0 0
0 0 0 q2 p + q1 0 0 0 0 0 0
0 0 0 0 q2 q1 p 0 0 0 0
0 0 0 0 0 q2 p + q1 0 0 0 0
0 0 0 0 0 0 q2 q1 p 0 0
0 0 0 0 0 0 0 q2 p + q1 0 0
0 0 0 0 0 0 0 0 q2 q1 p
0 0 0 0 0 0 0 0 0 q2 p + q1
0 0 0 0 0 0 0 0 0 0 1


11×11

, and then

P1 =



q2 q1 p 0 0 0 0 0 0 0
0 q2 p + q1 0 0 0 0 0 0 0
0 0 q2 q1 p 0 0 0 0 0
0 0 0 q2 p + q1 0 0 0 0 0
0 0 0 0 q2 q1 p 0 0 0
0 0 0 0 0 q2 p + q1 0 0 0
0 0 0 0 0 0 q2 q1 p 0
0 0 0 0 0 0 0 q2 p + q1 0
0 0 0 0 0 0 0 0 q2 q1
0 0 0 0 0 0 0 0 0 q2


10×10

, Q1 =



0
0
0
0
0
0
0
0
p

p + q1


10×1

.

The value of parameters are chosen to be λ = 0.55, δ = 2, and p = 0.4. Then,
q1 = q·P{Xi < δ} = 0.3793. Then, q2 = q·P{Xi ≥ δ} = 0.2207. Thus, using Equation (3),
we can obtain E(N1) = 9.5388.

When n = 5, k2 = 2, and m2 = 1, the state space Ω2 for the Markov chain
{

Yh2 , h2 ≥ 0
}

is constructed as

Ω2 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (4, 1)} ∪ {Ea}

We obtain the transition probability matrix Λ2 as

Λ2 =

(0, 0)
(0, 1)
(1, 0)
(1, 1)
(2, 0)
(2, 1)
(3, 0)
(3, 1)
(4, 0)
(4, 1)

Ea



q2 q1 p 0 0 0 0 0 0 0 0
q2 0 p + q1 0 0 0 0 0 0 0 0
0 0 q2 q1 p 0 0 0 0 0 0
0 0 q2 0 p + q1 0 0 0 0 0 0
0 0 0 0 q2 q1 p 0 0 0 0
0 0 0 0 q2 0 p + q1 0 0 0 0
0 0 0 0 0 0 q2 q1 p 0 0
0 0 0 0 0 0 q2 0 p + q1 0 0
0 0 0 0 0 0 0 0 q2 q1 p
0 0 0 0 0 0 0 0 q2 0 p + q1
0 0 0 0 0 0 0 0 0 0 1


11×11

, and then

P2 =



q2 q1 p 0 0 0 0 0 0 0
q2 0 p + q1 0 0 0 0 0 0 0
0 0 q2 q1 p 0 0 0 0 0
0 0 q2 0 p + q1 0 0 0 0 0
0 0 0 0 q2 q1 p 0 0 0
0 0 0 0 q2 0 p + q1 0 0 0
0 0 0 0 0 0 q2 q1 p 0
0 0 0 0 0 0 q2 0 p + q1 0
0 0 0 0 0 0 0 0 q2 q1
0 0 0 0 0 0 0 0 q2 0


10×10

, Q2 =



0
0
0
0
0
0
0
0
p

p + q1


10×1

.

The value of parameters are chosen to be λ = 0.5, δ = 2, and p = 0.45, Then
q1 = q·P{Xi < δ} = 0.37, q2 = q·P{Xi ≥ δ} = 0.22. Thus, using Equation (9), we can
obtain E(N2) = 9.9146.
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Reliability Analysis for the Shock Model

The simulation result of the system reliability under trigger mechanism 1 is presented
in Figure 4, where m1 = 1, λ = 0.55, and δ = 2. From Figure 4, we can know that as
n increases, the system will fail after more shocks, and the system reliability increases.
When k increases, the self-exciting mechanism will be triggered after more shocks, and the
reliability of the system increases. When p increases, the probability of the effective shock
arrival increases, and the reliability of the system decreases. It can be observed that the
system is most reliable when n = 5, k1 = 2, and p = 0.45.
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Figure 4. Simulation result of the system reliability under trigger mechanism 1.

The simulated system reliability under trigger mechanism 2 is presented in Figure 5,
where m2 = 1, λ = 0.55, and δ = 2. The effect of n, k2 and p on the system reliability is
similar to trigger mechanism 1. The reliability of the system is highest when n = 5, k2 = 2,
and p = 0.4. The comparison of the simulated system reliability under trigger mechanism 1
and trigger mechanism 2 is presented in Figure 6, where n = 5, k = 2, m = 1, λ = 0.55,
δ = 2, and p = 0.4. From Figure 6, we can see that the system reliability under trigger
mechanism 2 is higher than the system reliability under trigger mechanism 1.

It can be observed that under self-exciting mechanisms, the reliability is much lower
than that under the self-healing mechanism in ref. [23]. Such phenomenon is due to the
fact that the damage under a self-exciting mechanism is much larger than that under a self-
healing mechanism; thus, the system reliability is lower under self-exciting shock models.
Furthermore, the reliability under a self-exciting mechanism is much lower than that under
a protective mechanism in a shock environment [37], since the damage is reduced via the
protective mechanism, which increases system reliability.

Under maintenance strategy 1, the optimal solution with multiple parameters under
trigger mechanism 1 is obtained, as shown in Table 3, where we can see that the increase of
p leads to the decrease of the optimal value N∗. In other words, the greater the probability
of effective shocks arrival, the lower the reliability; thus, the maintenance should be carried
out after fewer shocks. N∗ increases with the rise of n or k. That is to say, the system can
be repaired after more shocks when the system can withstand more shocks before it fails.
The system should undergo preventive maintenance after experiencing more shocks if
more shocks can trigger the self-exciting mechanism. Figure 7 shows the cost function with
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several parameters. From Figure 7, we can see that the cost function is convex, and there
exists an optimal solution.
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Table 3. Optimal solution with different parameters when cp = 2, c f = 5, λ = 0.55, δ = 2, m1 = 1.

p n k E(N1) N∗ C(N∗)

0.45

3 2 5.7233 4 0.5569
4 2 7.6310 6 0.4054
4 3 8470 6 0.3841
4 4 9.4388 7 0.3783
5 2 9.5388 7 0.3143

0.75

3 2 4.0910 3 0.6667
4 2 5.4547 4 0.5
4 3 5.6590 4 0.5
4 4 5.7025 4 0.5
5 2 6.8184 5 0.4
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The optimal results of different cost parameter values are shown in Table 4, where
n = 5, k1 = 2, and p = 0.45. The results show that the larger cp is, the larger the optimal
solution N∗ is, and the later the replacement time is. When c f increases, it needs to be
replaced in advance.

Table 4. Optimal solution with different values of cost parameters when n = 5, k = 2, p = 0.45,
δ = 2, m1 = 1.

cp cf N∗ C(N∗)

1.5 5.5 6 0.1951
1.5 6.5 6 0.1985
1.5 7.5 6 0.2073
2.5 5.5 7 0.3214
3.5 5.5 8 0.3815

Under maintenance strategy 2, the optimal t∗ and the corresponding C2(t∗) are ob-
tained, as shown in Table 5. As can be observed from Table 5, the increase of p results in the
decrease of optimal t∗, implying that the system suffers from more effective shocks, and
preventive maintenance should be performed earlier. However, it leads to the increase of
the average cost per unit time. The optimal t∗ increases when n increases, which means that
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the system can withstand more shocks and we can replace the system later. The optimal
t∗ increases with the increase of k because a higher k indicates that it is more difficult to
trigger the self-exciting mechanism and the system fails later.

Table 5. Optimal solution with different parameters when cp = 2.5, c f = 5.5, λ = 0.55, δ = 2, m1 = 1.

p n k E(T) t∗ C2(t∗)

0.45

3 2 10.9461 9.8307 0.4510
4 2 14.8619 11.2785 0.3327
4 3 17.2837 13.8568 0.2955
4 4 18.4945 14.7425 0.2836
5 2 19.5388 13.3568 0.2649

0.75

3 2 7.7819 7.3522 0.6408
4 2 10.5092 8.2760 0.4615
4 3 10.8179 8.8378 0.4499
4 4 11.1049 8.7688 0.4584
5 2 13.3365 9.4617 0.3631

Several parameters in the cost function are plotted in Figure 8. Every line in Figure 8
is a convex function, which means that we can find the optimal t∗ to minimize the average
cost per unit time. From Figure 8, we can see that the value of C2(t) is lowest when n = 5,
k1 = 2, and p = 0.45.
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Table 6. Optimal solution with different values of cost parameters when n = 5, k = 2, p = 0.45,
δ = 2, m1 = 1.

cp cf t∗ C2(t∗)

1.5 5.5 9.6102 0.1601
1.5 6.5 9.3356 0.1703
1.5 7.5 8.9661 0.1863
2.5 5.5 12.8461 0.2345
3.5 5.5 19.7651 0.2742
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The optimal results under different cost parameters are shown in Table 6, where n = 5,
k1 = 2, and p = 0.45. It shows that the larger cp is, the larger t∗ is, and the later the
replacement time is. When c f increases, it needs to be replaced in advance.

6. Conclusions

This study considers systems subject to random shocks with two types of self-exciting
mechanisms and constructs shock models to describe the system failure behavior. On the
basis of the proposed shock models, system reliability and expected lifetime are evaluated.
According to the shock number and system operation time, two maintenance strategies
under different conditions are proposed. Detailed numerical analysis of the reliability mod-
els and maintenance strategies are carried out. For further studies, reliability models for
systems with multi-components and self-exciting mechanisms could be established. In addi-
tion, both internal deterioration and external shock damage with self-exciting mechanisms
can be incorporated into the reliability modelling. Finally, other self-exciting mechanisms
caused by ineffective shocks can be studied. Future research can take into account the
number of ineffective shocks and occurrence time to model self-exciting mechanisms. For
example, effective shocks can increase due to the cumulative or consecutive number of
shocks in a fixed duration, reaching a threshold.
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Notations

Xi time interval between the (i− 1)th and ith shocks, i = 1, 2, 3, . . .
N1 number of shocks before the system failure under self-exciting mechanism 1
N2 number of shocks before the system failure under self-exciting mechanism 2
m1 number of effective shocks increased under self-exciting mechanism 1
m2 number of effective shocks increased under self-exciting mechanism 2
T1 system lifetime under self-exciting mechanism 1
T2 system lifetime under self-exciting mechanism 2
n accumulative number of effective shocks leading to the system failure
k1 number of δ—ineffective shocks triggering self-exciting mechanism 1
k2 number of δ—ineffective shocks triggering self-exciting mechanism 2
cp preventive maintenance cost
c f corrective maintenance cost

References
1. Eryilmaz, S. Computing optimal replacement time and mean residual life in reliability shock models. Comput. Ind. Eng. 2016, 103,

40–45. [CrossRef]
2. Zhao, X.; Chai, X.; Sun, J.; Qiu, Q. Joint optimization of mission abort and component switching policies for multistate warm

standby systems. Reliab. Eng. Syst. Saf. 2021, 212, 107641. [CrossRef]
3. Gut, A. Accumulative shock models. Adv. Appl. Probab. 1990, 22, 504–507. [CrossRef]
4. Shanthikumar, J.G.; Sumita, U. General Shock Models Associated with Correlated Renewal Sequences. J. Appl. Probab. 1983, 20,

600–614. [CrossRef]
5. Mallor, F.; Omey, E. Shocks, runs and random sums. J. Appl. Probab. 2001, 38, 438–448. [CrossRef]
6. Li, Z.; Zhao, P. Reliability Analysis on the δ-Shock Model of Complex Systems. IEEE Trans. Reliab. 2007, 56, 340–348. [CrossRef]
7. Gut, A.; Hüsler, J. Shock Models. Adv. Degrad. Model. 2010, 7, 541–555.
8. Mallor, F.; Omey, E.; Santos, J. Asymptotic results for a run and accumulative mixed shock model. J. Math. Sci. 2006, 138,

5410–5414. [CrossRef]
9. Zhao, X.; Li, R.; Fan, Y.; Qiu, Q. Reliability and optimal triggering policy for multi-state systems subject to shocks and supported

by a protective device. Comput. Ind. Eng. 2021, 156, 107232. [CrossRef]

http://doi.org/10.1016/j.cie.2016.11.017
http://doi.org/10.1016/j.ress.2021.107641
http://doi.org/10.2307/1427554
http://doi.org/10.2307/3213896
http://doi.org/10.1239/jap/996986754
http://doi.org/10.1109/TR.2007.895306
http://doi.org/10.1007/s10958-006-0306-4
http://doi.org/10.1016/j.cie.2021.107232


Appl. Sci. 2022, 12, 10418 17 of 17

10. Zhao, X.; Cai, K.; Wang, X.; Song, Y. Optimal replacement policies for a shock model with a change point. Comput. Ind. Eng. 2018,
118, 383–393. [CrossRef]

11. Wang, C.; Zhang, H.; Li, Q. Reliability assessment of aging structures subjected to gradual and shock deteriorations. Reliab. Eng.
Syst. Saf. 2017, 161, 78–86. [CrossRef]

12. Li, X.-Y.; Li, Y.-F.; Huang, H.-Z.; Zio, E. Reliability assessment of phased-mission systems under random shocks. Reliab. Eng. Syst.
Saf. 2018, 180, 352–361. [CrossRef]

13. Yang, A.; Qiu, Q.; Zhu, M.; Cui, L.; Chen, J. Condition based maintenance strategy for redundant systems with arbitrary structures
using improved reinforcement learning. Reliab. Eng. Syst. Saf 2022, 108643. [CrossRef]

14. Lin, Y.H.; Li, Y.F.; Zio, E. Reliability assessment of systems subject to dependent degradation processes and random shocks. IIE
Trans. 2016, 48, 1072–1085. [CrossRef]

15. Zhao, X.; Chai, X.; Sun, J.; Qiu, Q. Optimal bivariate mission abort policy for systems operate in random shock environment.
Reliab. Eng. Syst. Saf. 2021, 205, 107244. [CrossRef]

16. Qiu, Q.; Cui, L. Reliability evaluation based on a dependent two-stage failure process with competing failures. Appl. Math. Model.
2018, 64, 699–712. [CrossRef]

17. Eryilmaz, S.; Kan, C. Reliability and optimal replacement policy for an extreme shock model with a change point. Reliab. Eng.
Syst. Saf. 2019, 190, 106513. [CrossRef]

18. Qiu, Q.; Cui, L. Optimal mission abort policy for systems subject to random shocks based on virtual age process. Reliab. Eng. Syst.
Saf. 2019, 189, 11–20. [CrossRef]

19. Eryilmaz, S.; Tekin, M. Reliability evaluation of a system under a mixed shock model. J. Comput. Appl. Math. 2019, 352, 255–261.
[CrossRef]

20. Chang, C.; Sheu, S.; Chen, Y.; Zhang, Z. A multi-criteria optimal replacement policy for a system subject to shocks. Comput. Ind.
Eng. 2011, 61, 1035–1043. [CrossRef]

21. Qiu, Q.; Cui, L.; Dong, Q. Preventive maintenance policy of single-unit systems based on shot-noise process. Qual. Reliab. Eng.
Int. 2019, 35, 550–560. [CrossRef]

22. Toshio, N. Further Results of Replacement Problem of a Parallel System in Random Environment. J. Appl. Probab. 1979, 16,
923–926. [CrossRef]

23. Zhao, X.; Guo, X.; Wang, X. Reliability and maintenance policies for a two-stage shock model with self-healing mechanism. Reliab.
Eng. Syst. Saf. 2018, 172, 185–194. [CrossRef]

24. Zhao, X.; Lv, Z.; He, Z.; Wang, W. Reliability and opportunistic maintenance for a series system with multi-stage accelerated
damage in shock environments. Comput. Ind. Eng. 2019, 137, 106029. [CrossRef]

25. Wang, Q.; He, Z.; Lin, S.; Li, Z. Failure Modeling and Maintenance Decision for GIS Equipment Subject to Degradation and
Shocks. IEEE Trans. Power Deliv. 2017, 32, 1079–1088. [CrossRef]

26. Yang, L.; Ma, X.; Zhao, Y. A condition-based maintenance model for a three-state system subject to degradation and environmental
shocks. Comput. Ind. Eng. 2017, 105, 210–222. [CrossRef]

27. Wang, J.; Qiu, Q.; Wang, H.; Lin, C. Optimal condition-based preventive maintenance policy for balanced systems. Reliab. Eng.
Syst. Saf. 2021, 211, 107606. [CrossRef]

28. Zhao, X.; Chai, X.; Sun, J.; Qiu, Q. Joint optimization of mission abort and protective device selection policies for multistate
systems. Risk Anal. 2022. [CrossRef]

29. Qiu, Q.; Cui, L. Reliability modelling based on dependent two-stage virtual age processes. J. Syst. Eng. Electron. 2021, 32, 711–721.
30. Wang, J.; Qiu, Q.; Wang, H. Joint optimization of condition-based and age-based replacement policy and inventory policy for a

two-unit series system. Reliab. Eng. Syst. Saf. 2021, 205, 107251. [CrossRef]
31. Liu, H.; Yeh, R.H.; Cai., B. Reliability modeling for dependent competing failure processes of damage self-healing systems.

Comput. Ind. Eng 2017, 105, 55–62. [CrossRef]
32. Cha, J.H.; Finkelstein, M. A note on ‘curable’ shock processes. J. Stat. Plan. Inference 2012, 142, 3146–3151. [CrossRef]
33. Cui, L.; Chen, Z.; Gao, H. Reliability for systems with self-healing effect under shock models. Nephron Clin. Pract. 2018, 15,

551–567. [CrossRef]
34. Borovykh, A.; Pascucci, A.; Rovere, S.L. Systemic risk in a mean-field model of interbank lending with self-exciting shocks. IISE

Trans. 2018, 50, 806–819. [CrossRef]
35. Chen, Y.; Singpurwalla, N.D. Unification of Software Reliability Models by Self-Exciting Point Processes. Adv. Appl. Probab. 1997,

29, 337–352. [CrossRef]
36. Wang, R. A mixture and self-exciting model for software reliability. Stats Probab. Lett. 2005, 72, 187–194. [CrossRef]
37. Wu, Y.; Qiu, Q. Optimal Triggering Policy of Protective Devices Considering Self-Exciting Mechanism of Shocks. Mathematics

2022, 10, 2732. [CrossRef]

http://doi.org/10.1016/j.cie.2018.03.005
http://doi.org/10.1016/j.ress.2017.01.014
http://doi.org/10.1016/j.ress.2018.08.002
http://doi.org/10.1016/j.ress.2022.108643
http://doi.org/10.1080/0740817X.2016.1190481
http://doi.org/10.1016/j.ress.2020.107244
http://doi.org/10.1016/j.apm.2018.07.039
http://doi.org/10.1016/j.ress.2019.106513
http://doi.org/10.1016/j.ress.2019.04.010
http://doi.org/10.1016/j.cam.2018.12.011
http://doi.org/10.1016/j.cie.2011.06.017
http://doi.org/10.1002/qre.2420
http://doi.org/10.2307/3213159
http://doi.org/10.1016/j.ress.2017.12.013
http://doi.org/10.1016/j.cie.2019.106029
http://doi.org/10.1109/TPWRD.2017.2655010
http://doi.org/10.1016/j.cie.2017.01.012
http://doi.org/10.1016/j.ress.2021.107606
http://doi.org/10.1111/risa.13869
http://doi.org/10.1016/j.ress.2020.107251
http://doi.org/10.1016/j.cie.2016.12.035
http://doi.org/10.1016/j.jspi.2012.06.020
http://doi.org/10.1080/16843703.2016.1264146
http://doi.org/10.1080/24725854.2018.1448491
http://doi.org/10.2307/1428006
http://doi.org/10.1016/j.spl.2004.11.027
http://doi.org/10.3390/math10152732

	Introduction 
	Model Assumptions and Model Description 
	Reliability Modelling and Evaluation 
	Reliability Modelling and Evaluation under Triggering Mechanism 1 
	Reliability Modelling and Evaluation under Trigger Mechanism 2 

	Preventive Maintenance Policies 
	Preventive Maintenance Policy 1 
	Preventive Maintenance Policy 2 

	Numerical Examples 
	Conclusions 
	References

